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Abstract

This paper proposes a novel approach to constructing

a hierarchical representation of visual input that aims to

enable recognition and detection of a large number of ob-

ject categories. Inspired by the principles of efficient index-

ing (bottom-up), robust matching (top-down), and ideas of

compositionality, our approach learns a hierarchy of spa-

tially flexible compositions, i.e. parts, in an unsupervised,

statistics-driven manner. Starting with simple, frequent fea-

tures, we learn the statistically most significant composi-

tions (parts composed of parts), which consequently define

the next layer. Parts are learned sequentially, layer after

layer, optimally adjusting to the visual data. Lower layers

are learned in a category-independent way to obtain com-

plex, yet sharable visual building blocks, which is a crucial

step towards a scalable representation. Higher layers of the

hierarchy, on the other hand, are constructed by using spe-

cific categories, achieving a category representation with a

small number of highly generalizable parts that gained their

structural flexibility through composition within the hierar-

chy. Built in this way, new categories can be efficiently and

continuously added to the system by adding a small number

of parts only in the higher layers. The approach is demon-

strated on a large collection of images and a variety of ob-

ject categories. Detection results confirm the effectiveness

and robustness of the learned parts.

1. Introduction

The importance of good representations in vision tasks

has often been emphasized in literature [5, 17, 13]. In pur-

suit of a general categorization system capable of recogniz-

ing a vast number of object categories, a need for hierarchi-

cal structuring of information has emerged [21, 13, 4, 6, 19].
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This is also consistent with the findings on biological sys-

tems [17]. Hierarchical systems build on simple features

that fire densely on all objects and combine them into more

complex entities that become sparser, thus achieving com-

pact object representation, enabling fast and robust catego-

rization with better generalization properties [4, 20, 12]. A

number of hierarchical methods have confirmed the success

of such representations in object categorization tasks [9, 19,

8, 2, 20, 11, 22, 18, 1, 8]. However, the design principles

guiding an automatic construction of the visual hierarchy

that would scale well with the number of image categories

(that are in nature in the order of tens of thousands) are still a

relatively open issue. The following principles should guide

the design of hierarchical systems:

Computational plausibility. Our main motivation for

building a hierarchical visual representation is to enable fast

indexing and matching of image features against hierarchi-

cally organized stored prototypes in order to avoid the com-

putationally prohibitive linear search in the number of ob-

jects/categories [4].

Statistics driven learning. Parts and their higher level

combinations should be learned in an unsupervised man-

ner (at least in the first stages of the hierarchy) in order to

avoid hand-labelling of massive image data as well as to

capture the regularities within the visual data as effectively

and compactly as possible [3, 17, 5, 7].

Robust detection. To achieve robustness against noise

and clutter, the parts comprising the individual hierarchi-

cal layers should be manifested as models to enable a ro-

bust verification of the presence of their underlying compo-

nents [2]. Models should incorporate loose geometric rela-

tions to achieve the spatial binding of features [5, 13], yet

encode enough flexibility to gain discrimination gradually -

through composition within the hierarchy.

Fast, incremental learning. Learning of novel cate-

gories should be fast with its efficiency increasing with the

amount of visual data already “seen” by the system. To

achieve such a learning capacity, the design of lower levels

within the hierarchy is crucial in order to obtain the features



optimally shared by various object categories. Once the vi-

sual building blocks are learned, learning of novel objects

can proceed mainly in the higher layers and can thus oper-

ate fast and with no or minimal human supervision. In addi-

tion, the system has to be capable of online learning without

the inefficient restructuring of the complete hierarchy.

The current state-of-the-art categorization methods

predominantly build their representations on image

patches [14, 22] or other highly discriminative features

such as the SIFT [20]. Since the probability of occurrence

of such features is very small, masses of them need to

be extracted to represent objects reasonably well. This

results in computationally highly inefficient recognition,

which demands matching of a large number of image

features to enormous amounts of prototypical ones. This

drawback has been alleviated within the most recent

methods that employ hierarchical clustering in a high

dimensional feature space, yet the resulting representations

still demand at least a linear search through the library of

stored objects/categories [14, 20].

To overcome the curse of large-scale recognition, some

authors emphasized the need for indexable hierarchical rep-

resentations [4, 2]. A hierarchy of parts composed of parts

that could limit the visual search by means of indexing

matching in each individual layer would enable an efficient

way to store and retrieve information.

However, a majority of hierarchical methods perform

matching of all prototypical units against all features found

in an image. Mutch et al [15] (and their predecessor [19])

employ matching of all 4000 higher-layer templates against

features extracted in each pixel and scale of the resampled

pyramid. This is also a drawback in layers of clustered his-

tograms used in [1] and hierarchical classifiers in [11].

On the other hand, the success of hierarchical methods

that do employ the principles of indexing and matching has

been hindered by the use of hand-coded information. In [2],

the authors use hand-crafted local edge features and only

learn their global arrangements pertaining to specific object

categories. The authors of [16] use predesigned filters and

process the visual information in the feed-forward manner,

while their recent version [19] exchanged the intermediate

layer with random combinations of local edge arrangements

rather than choosing the features in accordance with the nat-

ural statistics.

Approaches that do build the layers by learning and are

able to make a sufficient number of them (by starting with

simple features) mostly design the parts by histogramming

the local neighborhoods of parts of the previous layers [1]

or by learning the neural weights based on the responses

on previous layers [11, 9]. Besides lacking the means of

indexing, additional inherent limitation of such methods

is the inefficiency in performing incremental learning; as

the novel categories arrive, the whole hierarchy has to be

re-adapted. Moreover, histograms do not enable robust

top-down matching, while convolutional networks would

have problems with the objects or features that are super-

sets/subsets of other features.

While the concepts of hierarchical representations, in-

dexing and matching, statistical learning and incrementality

have already been explored in the literature, to the best of

our knowledge, they have not been part of a unifying frame-

work. This paper proposes a novel approach to building a

hierarchical representation that aims to enable recognition

and detection of a large number of object categories. In-

spired by the principles of efficient indexing (bottom-up),

robust matching (top-down), and ideas of compositionality,

our approach learns a hierarchy of spatially flexible compo-

sitions, i.e., parts, in a completely unsupervised, statistics-

driven manner. As the proposed architecture does not yet

perform large-scale recognition, it makes important steps

towards scalable representations of visual categories.

The learning algorithm proposed in [8], which acquires

a hierarchy of local edge arrangements by correlation, is

in concept similar to our learning method. However, the

approach demands registered training images, employs the

use of a fixed grid, and is more concerned with the coarse-

to-fine search of a particular category (i.e. faces) rather than

finding features shared by many object classes.

With respect to our previous work [7], this paper pro-

poses a much simpler and efficient learning algorithm, and

introduces additional steps that enable a higher level rep-

resentation of object categories. Additionally, the proposed

method is inherently incremental - new categories can be ef-

ficiently and continuously added to the system by adding a

small number of parts only in the higher hierarchical layers.

The paper is organized as follows: in Sec. 2 we provide

the motivation and the general theory behind the approach.

The results obtained on various image data sets are shown

in Sec. 3. The paper concludes with a summary in Sec. 4.

2. Designing a Compositional System

The design of a hierarchical representation proposed in

this paper is driven to support all the requirements set in

the Introduction. We start by a careful definition of parts

(hierarchical units) in Subsec. 2.1 that enable an efficient

indexing and robust matching in an interplay of layered in-

formation. This can be attained by the principles of com-

position [10], i.e., parts composed of parts, allowing for a

representation that is dense (highly sharable) in the lower

layers and gets significantly sparser (category specific) in

the higher layers of the hierarchy. In agreement with such a

definition of parts, principles of indexing and matching are

roughly illustrated in Subsec. 2.2.

However, the main issue in compositional/hierarchical

systems is how to automatically recover the “building

blocks” by means of learning. Subsec. 2.3 presents a novel



learning algorithm that extracts the parts in an unsupervised

way in the lower layers and with minimal supervision in the

higher layers of the hierarchy.

2.1. Definitions

In accordance with the postulates given in the Introduc-

tion, each unit in each hierarchical layer is envisioned as a

composition defined in terms of spatially flexible local ar-

rangements of units from the previous layers. We shall re-

fer to such composite models as parts. However, a clear

distinction must be made between the parts within the hier-

archy that will serve as a library of stored prototypes and

the parts found in a particular image being processed. This

Subsection gives the definition of the library parts, while the

part realizations in images are explained in Subsection 2.2.

Let Ln denote the n-th Layer. We define the parts re-

cursively in the following way. Each part in Ln is charac-

terized by the identity, Pn
i (which is an internal index/label

within the library of parts), the center of mass, orientation,

and a list of subparts (parts of the previous layer) with their

respective orientations and positions relative to the center

and orientation of Pn
i . One subpart is the so-called cen-

tral part that indexes into Pn
i from the lower, (n − 1)th

layer. Specifically, aPn
i that is normalized to the orientation

of 0 degrees and has a center in (0, 0) encompasses a list

{
(

Pn−1
j , αj , (xj , yj), (σ1j ,σ2j)

)

}j , where αj and (xj , yj)

denote the relative orientation and position of Pn−1
j , re-

spectively, while σ1j and σ2j denote the principal axes of

an elliptical gaussian encoding the variance of its position

around (xj , yj). Additionally, for each layer we define a set

of Links, where Links(Pn
i ) denotes a list of all identities

of Ln+1 parts that Pn
i indexes to.

The hierarchy starts with a fixed L1 composed of lo-

cal oriented filters that are simple, fire densely on ob-

jects, and can thus be efficiently combined into larger

units. The employed filter bank comprises eight odd Ga-

bor filters whose orientations are spaced apart by 45◦. It

must be emphasized, however, that all the properties of

parts comprising layers higher than 1 (the complete lists

{
(

Pn−1
j , αj , (xj , yj), (σ1j ,σ2j)

)

}j as well as Links) will

be learned.

2.2. Detection of parts in images

For any given image, the process starts by describing the

image in terms of local oriented edges similarly as proposed

in [7]. This is done on every scale – each rescaled version

of the original image (a Gaussian pyramid with two scales

per octave) is processed separately. First, each image in

the pyramid is filtered by 11 × 11 Gabor filters. By ex-

tracting local maxima of the Gabor energy function that are

above a low threshold, an image (on each scale) is trans-

formed into a list of L1 parts; {π1
i }i, where πn

i stands for

Figure 1. The indexing and matching scheme.

a realization of the Ln part Pn with a corresponding orien-

tation and location at which it was recovered in an image;

πn
i = {Pn, αi, xi, yi} (i denotes the successive number of

the found part). We additionally define a set of links Λn,

where Λn(πn
i ) represents a list of all image location points

that contributed to part πn
i . Λn is calculated from Λn−1 at

each step up in the hierarchy, while Λ1 is simply a list of all

image pixels on which a particular part (filter) fired. This

list will be referred to as the image layer. In contrast to [7],

we do not perform the global MDL, but rather local inhibi-

tion (see Subsec. 2.3.2) to reduce the redundancy in parts’

description. Each higher level interpretation is then found

by an interplay of indexing (evoking part hypotheses) and

matching (verifying parts). Performed in this way, the top-

down mechanism is extremely robust to noise and clutter.

The indexing and matching procedure is described in

Alg. 1 and illustrated in Fig. 1.

Algorithm 1 : Indexing and matching

1: INPUT: {{πn−1

i }i, Λn−1}
nscales

scale=1

2: for each scale do

3: Πscale = {}
4: for each πn−1

i = {Pn−1

ik
, αi, xi, yi} do

5: Rotate the neighborhood of πn−1

i by angle −αi

6: for each part Pn ∈ Links(Pn−1

ik
) do

7: Check for subparts of Pn according to their relative

positions and spatial variance

8: if subparts found then

9: add πn = {Pn, αi, xi, yi} to Πscale,

set Λn(πn) =
�

Λn−1(π
n−1

j ), where πn−1

j are

the found subparts of Pn.

10: end if

11: end for

12: end for

13: end for

14: Perform local inhibition over {πn
i }

15: return {{πn
i }i, Λn}

nscales
s=1

2.3. Learning the hierarchy of parts

This Subsection presents a novel approach to learning

parts in successive layers in the hierarchy. We first intro-

duce the necessary steps that need to be performed prior

to learning and propose an algorithm that learns the higher

layer compositions of parts taking into account their spa-

tial relations. We then present a part selection process, and



provide a means of grouping perceptually similar parts that

are realized only as indices within the hierarchy. Finally,

we show how incremental adding of parts as well as their

deletion comes as a natural property of the proposed frame-

work. Within our framework we will also try to answer the

question of a reasonable number of layers that would well

represent object categories.

In order to exploit the statistical redundancy present in

the visual data as effectively as possible, layers are built

sequentially; only after Ln−1 has been obtained, learning

of the Ln can proceed. We must emphasize that parts can,

however, be added to each of the layers later on.

Learning starts on the basis of a fixed L1 composed of

oriented Gabor filters. Input images are processed as de-

scribed in the previous Subsection. Each image is thus

transformed into a set of parts {πi}i, encoding their lo-

cation, orientation, and identity. From here on, the algo-

rithm is general, thus we describe how learning of Ln is

performed once Ln−1 has already been obtained.

For clarity, let us denote the already learned parts (parts

already added to the hierarchy — starting with a set of ori-

ented filters) with Pn−1, and the set of possible composi-

tions with Cn. Let Ni denote the average number of firings

of part Pn−1
i per image.

The parts/compositions that will consequently define the

next layer should optimize the following contrasting terms:

Computation required for indexing and matching:

min
∑

P
n−1

i

Ni ·
∑

Cn
j
∈Links(Pn−1

i
)

O(Cn
j ) (1)

where O(Cn
j ) denotes the complexity of matching a compo-

sition Cn
j against an image. This term stands for the amount

of computation required by matching all compositions in-

dexed by a part Pn−1
i found in an image.

Coverage and repeatability:

min average
(
∣

∣

⋃

iΛ(π1
i )\

⋃

jΛ(πn
j )

∣

∣

)

(2)

which simply means that the compositions we are looking

for should on the average (per image) cover as many origi-

nal image points as possible.

Optimizing (1) and (2) is virtually impossible, since in

order to calculate each of the terms one must already have

the compositions. We therefore propose to find them as the

following approximations to optimizing the above terms.

As it can be evident from the computational perspective

in (1), and even more so from the exponential complexity of

unsupervised learning (with computational issues addressed

in [7]), the number of parts that consequently define a novel

composition should not be too large. Additionally, good

coverage with as few parts as possible can be attained by

finding statistically significant, most frequently occurring

parts.

We therefore propose the following steps for learning the

parts: 1.) reduction in spatial resolution to alleviate the pro-

cessing time and to avoid over-learning of local neighbor-

hoods already inspected within Ln−1, 2.) an automatic se-

lection of the optimal neighborhood size within which com-

positions will proceed to be learned, 3.) learning of com-

positions by sequential increase in complexity by keeping

statistics of combinations with the so-called spatial maps,

4.) selection of most frequent and stable compositions by

keeping the number of indexing links from the previous

layer low, and 5.) grouping perceptually similar parts by

projection and statistics in the original, image layer. The

learning process is incremental: the compositions obtained

are projected on images (with Alg. 1) and the steps 3 − 5
repeated on parts πn−1

i that are not described by the se-

lected compositions. This is done until either no more sig-

nificant compositions are found or the number of indexing

links reaches the computationally set maximum.

The details for step 2.) will be omitted, since the proce-

dure is the same as proposed in [7]. All the other steps are

described in the next subsections.

For ease of reference, we omit the orientation invariance

of parts - let the identity of each part also encode its ori-

entation (for example, the eight Gabor filters can instead of

using one type of part, i.e., a line in 8 orientations, be con-

sidered as eight different parts).

2.3.1 Reduction in resolution

The first crucial step that must be performed prior to learn-

ing is the reduction in spatial resolution. Since the sizes of

local neighborhoods within which compositions are formed

become increasingly larger within the hierarchy, the reduc-

tion of spatial resolution greatly aids the processing time.

Moreover, as the receptive fields of parts increase, the prob-

ability of two neighboring parts describing approximately

the same image area is high, thus high-rate sampling would

be an unnecessary computational overhead. Additionally,

since the parts in Ln−1 have been designed to optimally

model a certain size of local neighborhoods, over-learning

must be prevented. Thus, positions of all parts in a certain

image are downsampled by a factor f < 1 and parts that are

within a small radius of distance (relative to the size of the

neighborhoods they cover) will not be considered to form a

novel composition. We use f = 1/2 for L2 and f = 1/2.5
for higher layers.

2.3.2 Learning of compositions

Due to the prohibitive number of possible local configura-

tions, learning proceeds by determining statistically signifi-

cant subcompositions with an increasing number of the sub-

parts contained.



Figure 2. Learning of compositions by sequentially increasing the

number of subparts

To achieve shift invariance of parts, we choose a part-

centered coordinate system, that is, each local neigh-

borhood is defined relatively to a certain part (which is

hereafter referred to as the central part). Define the

s−subcomposition as a composition modeling s subparts in

addition to the central one. Learning proceeds by increasing

s, starting with s = 1, yet setting the upper bound s ≤ 4
(meaning that compositions may only contain up to 5 sub-

parts). To optimize the computation function in (1) it is

evident that each composition should be indexed to by its

containing subpart with the least value Ni. Therefore, each

subcomposition will be formed as a chain of parts increas-

ing in their value of Ni. Moreover, to minimize the descrip-

tion length of higher layer patterns, the subparts forming

a certain composition should have as minimal an average

image-point overlap as possible. This will be achieved by

performing local inhibition through the links to the image

layer as described within the next paragraph and Alg. 2.

Algorithm 2 : Learning of s−subcompositions

1: INPUT: Collection of images

2: for each image and each scale do

3: Preprocessing:

4: process image with L1 parts to produce {{π1

i }i, Λ1}
5: for k = 2 to n − 1 do

6: {{πk
i }i, Λk} = Algorithm 1({{πk−1

i }i, Λk−1})
7: end for

Learning:

8: for each πn−1

i = {Pn−1, xi, yi} do

9: for each Cn
s ∈ Links(Pn−1) do

10: Find all parts πn−1 within the neighborhood

11: Match the first (s− 1)-subparts contained within the

subcomposition relative to the central part

12: Perform local inhibition: Λ(neigh.parts) :=
Λ(neigh.parts)\

�
Λ(found subparts). Keep

parts that have
�
�Λ(πn−1)

�
� ≥ thresh ·

�
�Λ(πn−1

i )|.
We use thresh = 0.5.

13: If all s − 1 subparts are found and s-th subpart ap-

pears anywhere in the neighborhood, update the spa-

tial map for the s-th subpart.

14: end for

15: end for

16: end for

1−subcompositions. For the 1−subcompositions, spa-

tial configurations of one part conditioned on the identity of

the central one are sought for. A list of possible composi-

tions with the so-called spatial maps are formed: {Cn
s=1} =

{Pn−1
i , {Pn−1

j ,mapj}}, Ni ≤ Nj , where Pn−1
i denotes

the central part and Pn−1
j the additional subpart, whose

spatial position relative to the central one will be stored in

mapj . Also define Links(Pn−1
i ) as the set of all subcom-

positions Cn
1 that contain Pn−1

i as a central part.

With the set of prepared subcompositions, learning pro-

ceeds in local neighborhoods of all Ln−1 parts found in im-

ages. For each neighborhood (relative to the central part),

we first perform local inhibition to reduce redundancy: for

each neighboring part πn−1
neighb of the central part πn−1

central

the value
∣

∣Λ(πn−1
neighb)\Λ(πn−1

central)
∣

∣/
∣

∣Λ(πn−1
central)

∣

∣ is cal-

culated, which amounts to the percentage of novelty that

πn−1
neighb represents relative to the central one. We disregard

all neighboring parts having novelty less than 0.5. After in-

hibition, spatial maps of the remaining subparts contained

in Cn
1 are updated accordingly.

Spatial maps thus model the spatial distribution of Pn−1
j

conditioned on the presence of Pn−1
i in the center of the

neighborhood. The sum of its elements is the number of

“votes” for the combination. After all images are processed,

we detect voting peaks in the learned spatial maps, and for

each peak, a spatial area that captures most of the votes is

formed (modeled by an elliptical gaussian having princi-

pal axes (σ1j ,σ2j)). This area consequently represents the

spatial variability of the part Pn−1
j within the composition

Cn
1 . The sum of votes in the area of variability divided by

the number of all inspected neighborhoods defines the prob-

ability of occurrence of the subcomposition.

Amongst all acquired 1−subcompositions, we employ a

selection process which discards some of the learned com-

positions or passes them to the next stage, at which more

complex compositions are formed. We impose the follow-

ing criteria to decide upon keeping a particular composi-

tion: 1.) Pr(Cn
1 ) ≫ Pr(Pn−1

i ) Pr(Pn−1
j ), 2.) N(Cn

1 ) >
threshn−1. The first condition simply means that a com-

position must violate the independency condition (it must

be statistically significant), while the second sets a layer-

specific threshold. For the lower layers we require that a

composition on average appears at least twice per image

(for L2) and 0.5 times per image (for L3). For the higher

layers it is set to 0.5 times per category specific image.

s−subcompositions. For a general s-subcomposition,

configurations consisting of s + 1 subparts altogether

are built on the basis of those having s subparts.

When the construction of s-subcompositions com-

mences, empty spatial maps for possible combinations

{Cn
s } = {Pn−1

i , {Pn−1
jm

, (xjm
, yjm

), (σ1jm
,σ2jm

)}s−1
m=1,

{Pn−1
j ,mapj}}, where the first s terms denote the central

part and the learned s − 1 subparts, are prepared. As the

local neighborhoods are inspected, mapj is updated when-

ever all subparts forming a certain composition are found



in the local image neighborhood (after performing local

inhibition). The learning procedure is summarized in Alg. 2

and illustrated in Fig. 2. The selection procedure is similar

to the one described previously for 1−subcompositions.

The overall number of votes for individual parts de-

creases as their complexity increases. When no derived

composition passes the set threshold, the layer learning pro-

cess concludes.

2.3.3 The selection process

The final selection of parts follows the indexibility con-

straint i.e., each part of the lower, (n− 1)th Layer, must not

index into too many higher layer compositions. Thus the

compositions acquired in the learning procedure are sorted

according to their decreasing probabilities and only a num-

ber of statistically strongest parts consequently define the

next layer. We set the upper bound to the order of 10 − 20
times the number of parts in the previous, (n − 1)th Layer,

meaning that on average each part in Ln−1 indexes into 10
to 20 composite parts inLn. The thresholds used are chosen

to comply with the available computational resources and

affect only the number of finally selected parts and there-

fore the efficiency of the representation.

However, in order to best satisfy (2), the part learn-

ing procedure must proceed incrementally, by sequentially

adding parts that capture the image points not described by

previously selected parts. Subsec. 2.3.5 addresses this issue.

2.3.4 Grouping of parts

The selected parts can be redundant in the following way:

the compositions can be formed with different parts yet still

be perceptually similar. However, the parts are realized only

as a combination of indices within the hierarchy, and a sim-

ple normalized correlation as done in the case of the patch-

based methods cannot be employed. Moreover, the parts

additionally encode spatial flexibility which must be taken

into account in their comparison. We propose to establish

equivalence by tracking the average overlap of pairs of parts

within small neighborhoods.

We define the overlap of two parts πn
i and πn

j found

in an image as: overlap(πn
i , πn

j ) = min
(∣

∣Λ(πn
j ) ∩

Λ(πn
i )

∣

∣/
∣

∣Λ(πn
i )

∣

∣,
∣

∣Λ(πn
j ) ∩Λ(πn

i )
∣

∣/
∣

∣Λ(πn
j )

∣

∣

)

. The overlap

of parts Pn
k and Pn

l is calculated as the average overlap

of all image parts πn
i and πn

j that encode the identities Pn
k

and Pn
l , respectively. This measures the average number of

overlapping image layer points that the two parts describe.

According to the acquired statistics, parts Pn
k and Pn

l

are pronounced equal (their identities are set equal) if their

average overlap is high.

2.3.5 Incrementallity

Once the compositions inLn are found, they can be used for

describing the image content as proposed by Alg. 1. How-

ever, some image points may not be captured by the chosen

parts. Thus the learning procedure runs iteratively (and con-

tinuously) and only on those image parts (from Ln−1) that

have a high percentage of non-described image points. Per-

formed in this way, the hierarchy can continuously adapt to

the ever-changing environment.

2.4. Representation of object categories

After extensive evaluation of the proposed scheme and

many statistical insights gained on large collections of im-

ages (the most important results are presented in Sec. 3) we

propose the representation of object categories be built in

the following way.

Learning sharable parts in a category-independent way

can only get so far - the overall statistical significance drops,

while the number of parts reaches its critical value for learn-

ing. Thus, learning of higher layers proceeds only on a sub-

set of parts - the ones that are the most repeatable in a spe-

cific category. Specifically, we build:

Category-independent lower layers. Learning the

lower layers should be performed on a collection of images

containing a variety of object categories in order to find the

most frequent, sharable parts.

Category-specific higher layers. Learning of higher

layers should proceed in images of specific categories. The

final, categorical layer then combines the parts through the

object center to form the representation of a category.

Since the learning process is incremental, categories can

be efficiently added to the representation by adding a small

number of parts only in the higher hierarchical layers.

3. Results

We applied our method to a collection of 3, 200 images

containing 15 diverse categories (cars, faces, mugs, dogs,

etc.). The learned parts of L2 and L3 are presented in the

first row of Fig. 4 with corresponding average frequencies

(per image per scale) of occurrence depicted in Fig. 3.

To test the robustness and efficiency of representation of

learned parts, we implemented a voting-for-center scheme

(similar to voting in [14]) with L3 parts on the UIUC

database (containing difficult, low-resolution car images).

In the case of multiple-scale database we obtain better re-

sults (Table 1) than those reported in the literature so far.

However, a representation with L3 would still not scale

well with the number of categories. To see this, Fig. 5 shows

a representation with varying number of repeatable L3 parts

with respect to face center. Evidently, a relatively high num-

ber of parts is needed to represent the face category well.

This would lead into a highly inefficient indexing in the case

of a large number of object categories.

Thus, as proposed in Subsec. 2.4, the learning of L4 was

run only on images containing faces. The obtained parts



were then learned relative to centers of faces to produce L5

- category layer (parts are presented in Fig. 4 with maps

shown in Fig. 6). Cars and mugs were then incrementally

added to our representation. Second and third row of Fig. 4

shows the learned Layers, while Fig. 7 depicts the learned

compositionality within the hierarchical library for faces

and cars. The detection of parts through the hierarchy of

specific images is presented in Fig. 8.

We tested L5 on the single-scale UIUC data set and ob-

tained Fscore = 96.5%. We believe that efficiency of higher

layer representation could be improved by representing ob-

jects with parts on different, relative scales (now, the rep-

resentation is single-scale, detection, however, is always

multi-scale). This is part of our on-going work.

Clearly, only a small number of L4 parts are needed to

represent an individual category. Since the proposed hierar-

chical representation would computationally handle 10−20
times the number of L3 parts in Layer L4 (in the order of

5, 000 − 10, 000 parts), a large number of categories could

potentially be represented in this way.

Figure 3. Average occurrence of parts per image per scale

Table 1. Localization results on UIUC database (recall at EER)

Method Single-scale Multiple-scale

Mutch et al [15] 99.94 90.6
our method 98 92.1

Figure 5. Representation with 15, 100, 300, and 600 L3 parts
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Figure 6. Learned spatial maps of L4 parts for the L5 face part

4. Summary and conclusions

This paper proposes a novel approach to building a rep-

resentation of object categories. The method learns a hier-

archy of flexible compositions in an unsupervised manner

in lower, category-independent layers, while requiring min-

imal supervision to learn higher, categorical layers.

Figure 7. Learned compositionality for faces and cars (Layers L1,

L2 and L3 are the same for both categories)

Furthermore, the design of parts is incremental, where

new categories can be continuously added to the hierarchy.

Since the hierarchy is built as an efficient indexing machine,

the system can computationally handle an exponentially in-

creasing number of parts with each additional layer. The

results show that only a small number of higher layer parts

are needed to represent individual categories, thus the pro-

posed scheme would allow for an efficient representation of

a large number of visual categories.
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