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Abstract

We explore detailed 3D representations of rigid, de-

formable 3D object classes, amenable to both estimating

the 3D shape and pose of individual objects, and to scene

understanding tasks such as reasoning jointly about multi-

ple object instances or about scene-level interactions such

as occlusions.

1. Introduction

Visual scene understanding requires good quality object

detections as input so that higher-level reasoning about in-

teractions among objects and between objects and the scene

can be performed. Over the last decade, object class de-

tectors have attained reasonable efficiencies at finding in-

stances of a variety of object classes in images [2, 1]. How-

ever, the object hypotheses these detectors provide as out-

put, i.e. 2D bounding boxes along with viewing angles dis-

cretized into a few bins, are overly crude. We believe that

such simplistic representations hamper subsequent higher-

level reasoning about objects and their relations, since they

convey very little information about the objects’ geometry.

Recent research has revisited a number of classic ideas w.r.t.

fine-grained 3D object modeling [8, 7, 5], ranging in detail

from about a dozen planar segments used as parts [7] to over

thirty surface vertices in a wireframe representation [8, 5].

While a number of recent works have revived (rough) 3D

geometric models in the context of scene level understand-

ing [4, 3], we are unaware of any attempts to employ de-

tailed 3D models for scene-level reasoning. In this work we

describe a detailed 3D object model together with an ex-

plicit occluder representation [9], and use it for estimating

the 3D layout of the scene which allows benefiting from the

interactions between the modeled 3D objects, all in a com-

mon camera-centered coordinate frame.

2. 3D Geometric Object Class Model

We split 3D object detection and modeling into two lay-

ers. The first layer is a representation in the spirit of the

poselet framework [1], whereas the second layer is a 3D ac-

tive shape model (ASM) based on local parts, augmented

with a collection of explicit occlusion masks. The ASM

tightly constrains the geometry to plausible shapes, and thus
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Figure 1. Different outputs of the proposed 3D model – see Sec. 3

for details.

can more robustly predict object shape when parts have only

weak evidence or are occluded. The inference for the sec-

ond layer relies on explicit 3D model fitting, adjusting the

object hypotheses (in shape, 3D location, and pose) such

that their projection best matches image evidence. Thus

we inherently reconstruct the 3D layout of the scene while

searching for the best deformable models fits for the indi-

vidual objects.

2.1. Parts and part configurations

The atomic units of our representation are parts, which

are small square patches located at salient points of the

object (yellow dots in Fig. 2a). We encode patches with

densely sampled shape-context descriptors, and learn a

multi-class Random Forest to recognize them, trained on

synthetic renderings of 3D CAD models rather than on real

data, which greatly reduces the annotation effort. The basic

unit of the first layer are larger part configurations rang-

ing in size from 25% to 60% of the full object extent (two

examples shown in Fig. 2a). These are defined in the spirit

of [1] and found with k-means clustering. The spatial vari-
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Figure 2. (a) 3D model with two configurations of mul-

tiple parts (yellow dots) and their distributions within the

configurations; (b) example occlusion masks.

ability within a configuration is accounted for by training

a single-component DPM detector [2] for each. We found

that for these detectors real training data is needed.

2.2. Geometric model

We employ two different geometric models for the initial

detection and the subsequent 3D modeling. The first layer

follows the philosophy of the ISM/poselet method. The sec-

ond layer utilizes a more explicit representation of global

object geometry that is better suited for estimating detailed

3D shape and pose. In the tradition of active shape models

we learn a deformable 3D wireframe model (through PCA

of n salient vertices in 3D-space [8]) from CAD data. The

parts described above are defined as small windows around

the 2D projection of such a vertex (≈ 10% in size of the full

object width). They allow for fine-grained estimation of 3D

geometry and continuous pose, as well as part-level reason-

ing about occlusion relations.

2.3. Explicit occlusion modeling

The second layer includes an explicit representation of

occluders, which are assumed to block the view onto a

spatially connected region of the object. Since occluders

can only be distinguished if the visibility of at least one

part changes, one can approximate the space of all possi-

ble occluders by a small, discrete set of masks (Fig. 2(b)).

With that set, we aim to explicitly recover the occlusion

pattern during second-layer inference, by selecting one of

the masks. All parts falling inside the occlusion mask are

considered occluded. Their detection scores are not consid-

ered in the objective function (Sec. 2.4), instead they are as-

signed a fixed low score, corresponding to a weak uniform

prior that prefers parts to be visible.

2.4. Shape, pose, and occlusion estimation

During inference, we attempt to find instances of the 3D

shape model whose 2D projections into the image plane

along with occlusion masks best explain the observed im-

age evidence. We devise an objective function which com-

prises the image evidence from part and configuration

detectors, for given viewpoint, 3D location, shape and oc-

clusion mask. Since inference over the non-convex, high-

dimensional objective is difficult, we employ a sample-

based maximization scheme [6]. This sampling-based ap-

proach, where one hypothesizes plausible shapes, poses,

and locations of multiple objects in the same camera-

centered 3D coordinate frame, further allows one to reason

about object-object interactions (e.g. determine occlusions

from depth-ordering) and object-scene interactions (e.g. by

explicitly modeling a ground plane).

3. Applications and Experiments

We have evaluated different aspects of our approach and

found it to perform en par with or better than state-of-the-art

methods for continuous viewpoint estimation, part localiza-

tion, part occlusion estimation, fine-grained categorization,

and even ultra-wide baseline matching.

Fig. 1(a) shows 3D deformable wireframe detections of

individual objects. In Fig. 1(b) we additionally retrieve 3D

CAD models most similar to these wireframes from the

training set (fine-grained object categorization). Fig. 1(c)

shows an image with multiple objects (left), and the esti-

mated 3D layout of the scene (right).

Given two images (with very wide baseline) of a static

scene with the same object(s), we can also recover the rel-

ative camera pose from 3D predictions of those objects, or

equivalently find (part) correspondences independent of lo-

cal appearance. Fig. 1(d) visualizes corresponding epipolar

lines.

4. Conclusions

We discuss a detailed 3D representation for deformable

object classes which includes an explicit occluder model,

so as to enable part-level reasoning about multiple objects

in a camera-centric frame. In the future, we intend to in-

clude more object interactions and further explore 3D scene

understanding using this model.
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