
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Towards Secure Agent Distribution and Communication
Korba, Larry

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=152b2eb4-150d-46f7-a750-418196c4cd53

https://publications-cnrc.canada.ca/fra/voir/objet/?id=152b2eb4-150d-46f7-a750-418196c4cd53

Abstract

Development of acceptable agent-based, distributed
systems requires secure techniques for agent migration
and agent communication. Several Java-based agent
frameworks provide these functions to greater or lesser
extents. This paper describes an agent distribution
framework for intercommunicating agents using Java
which targets several key goals: 1) Provide an agent
dispatch mechanism to selected nodes from secured agent
repositories by one or more authenticated agent
deployment applets or agents, 2) Adjust the operating
environment for each agent depending upon its role-based
authenticated security level. 3) Provide inter-agent
communication by way of its own published objects as well
as a multicast event service. 4) Provide encryption for
communications depending on the security requirements.
5) Provide a distributed naming directory of agents
populating the network. 6) Monitor agents proactively for
appropriate activity. 7) Keep the environment lightweight,
making agents small in size, and the package easy to use.

Index terms—Agent, Java, Object Communication, Mobile
Agent, Security

1. Introduction
With the advent of the web and more recently the Java
programming language, the potential for distributed agent
applications is exploding. To further this movement,
several groups have developed mobile agent systems in the
Java Programming language for many different target
applications. Some basic requirements for an agent
environment are:
• The ability to distribute agent entities throughout the

network.
• Support for different types of communication among

the distributed agents and

1
National Research Council, Room 286B, Building M-50, Montreal Road,

Ottawa, Ontario K1A 0R6. (613)998-3967, NRC Paper # 41600

• Measures to ensure safe operations by the agents and
the agent environment.

Meeting security requirements is fundamental to successful
deployment of mobile agent systems [1]. Fully mobile
agents compound security issues [2]. A major concern in
the deployment of these systems is the ability to prevent
illicit operations by any of the distributed entities. The
concerns here may be better understood by listing some
potential sources of illicit or unwanted operations:

1. Agent corruption during agent storage. A secure
repository for the agents is required to ensure that
agents are not corrupted while in storage.

2. Corruption during agent transfer. The transfer of an
agent must be secured and sources verified to ensure
that the agent is not corrupted in transit. It is vital to
ensure the integrity and privacy of the agent and the
information it may carry.

3. Communication interception and corruption. In a
system of distributed agents, communication between
agents located at different nodes must be secured to
ensure that:
- sender and receiver are allowed to communicate,
- message transfers may not be easily deciphered by a
third party and
- the message transfers between the parties are not
modified.

4. Corruption or damage to host resources. Agents must
be restricted from access to resources on the host. The
concern here is unauthorized, potentially harmful
access or changes to host resources.

5. Corruption or damage to network resources.
Depending on the mandate of an agent, it may be
restricted to accessing only certain network resources.

This paper briefly reviews some of the better known
developments to date for mobile agent deployment in the
Java programming language with an emphasis on
communication and security aspects. It also describes an
agent communication and distribution environment
(ACDE) which uses service negotiation and authentication
among other techniques for secure deployment of one-hop
agents. The system is part of a core development for
network management applications in the area of security.

Towards Secure Agent Distribution and Communication

Larry Korba1, Member, IEEE
National Research Council of Canada

Larry.Korba@iit.nrc.ca

2. Mobile Agent Environments

This section provides a brief comparison of the
communication and security features of several popular
mobile agent systems. Kiniry and Zimmerman provide a
more general overview of these systems [3] [4]. There are
currently many mobile agent environments developed by
universities or research institutions and by companies [5].
The environments considered for this paper include:
Aglet’s Workbench [6], Concordia [7], Voyager [8], and
Odyssey [9]. Table 1 summarizes current communication
and security features of these environments.

Security Communication Comments

Aglets
Workbench

Java.lang.Securit
yManager
extensions

message-based Primitive
security and
communication
means.

Concordia java.lang.Securit
yManager

Secure Sockets
Layer

Encrypted
Storage

 User Identity

Distributed
multicast Events

Collaboration
communication
based on Java’s
Remote Method
Invocation (RMI)
API

Excellent
security
provisions but
not available
with evaluation
license.

Authentication
not available
yet

Objectspace
Voyager

java.lang.Securit
yManager
extension

Multicast Event

Object Sharing,
Remote Methods

Mobile Agents
as an extension
to CORBA

Odyssey java.lang.Securit
yManager
extension

RMI (DCOM,
IIOP optional)

General Magic
holds US Patent
Number
5,603,031,
System and
method for
distributed
computation
based upon the
execution and
interactions of
processes in a
network

Table 1. Comparison of some of the better known

Java-based mobile agent packages.

2.1. Mobile Agent Communication Environments

CORBA and Java’s RMI are commonly used for inter-
agent communication in a number of environments. These
techniques are useful in that they abstract away the
communication interface to object exchange and remote
method invocation. A local method call may have the
arguments serialized and transferred to a remote target
class where the call is executed. Any objects returned from
the remote method are serialized and returned to the entity
which remotely invoked the method. CORBA is designed
to work across many computer-programming languages.
This makes CORBA especially useful in large enterprise
applications where there is a need to interconnect
applications written in different languages. It has become
an effective way of integrating new client-server
developments with legacy applications. In a multi-agent
system, this feature may prove useful to interface with
packages or modules written in languages other than Java.
Essentially CORBA can serve as a bridge for these cases.

To provide this common communication substrate across
many programming environments, CORBA uses Object
Management Group’s Interface Definition Language to
provide a common interface for communication. Although
IDL provides "the best standard notation language
available for defining component boundaries" [23], the
disadvantage of this approach is the significant level of
overhead required to map IDL constructs into
programming.

RMI is a Java-only solution for inter-object
communication. It extends Java’s object model to support
remote method invocation. For building homogenous Java
solutions, RMI is a reasonable choice, since it is a bit easier
to learn than CORBA and does not require the purchase of
an ORB. Both CORBA and RMI require extra overhead,
however, due to the requirement of extra servers (for
CORBA, an Object Request Broker (ORB), for RMI, RMI
Registry). Although some performance tests have indicated
that CORBA performs very well for remote method
invocation compared to RMI [10], object initialization can
take substantial amount of time. Another issue is the Java
class library support required for both RMI and CORBA is
on the order of 200K. This means that in order to run a
CORBA-based applet, a web browser without the class file
support for the communication means must transfer this
large class file unless the client has specific support for the
communication means. Both CORBA and RMI have a
considerable learning curve due to the extent of the support
library.

None of the Java-based mobile agent packages offer
extensive tools for monitoring or controlling inter-agent
communication. In contrast, ACDE uses a communication
infrastructure in which inter-agent communication may be
monitored and restricted as required. The communication
system is object based, offering the advantages of RMI by
providing remote method invocation for peer-to-peer
communication and multicast object messaging for one-to-
many communication. More detail on the communication
infrastructure may be found in the communication section
(5.) below.

2.2. Mobile Agents and Security

With the advent of Java and the extensive use of Intranets
and the Internet, the possibilities of widespread use of
distributed applications have come into focus. Mobile agent
technologies offer developers the advantage of building
applications that may be distributed across the network
using high levels of abstraction. Although many
advantages of mobile agents have been offered, the
overriding advantage of their deployment is the ability to
balance network and processing load among nodes in a
network. Essentially, the mobile agent may be sent to the
node where the resources with which it needs to deal are
located. By so doing, local communication rates between
the agent and its required resources increase, while overall
network traffic decreases. Mobile agents may also migrate
to nodes that offer more processing resources for
performing a task.

In terms of Security requirements, mobile agent
environments are problematic. The push to use agent
mobility entails having autonomous agents that can roam a
network, from computer-to-computer based upon an
itinerary generated by the agent, modulated by what the
agent senses and its prescribed goals. To allow free agent
movement requires a high level of trust as to the legitimacy
of the host and mobile agent as well as the integrity and
confidentiality of the network connections for agent
communication and transport. These are all challenging
research issues.

Developers and researchers have taken a variety of
approaches to security of mobile agent environments. In
recognition of the need to bolster security facilities for the
Aglet environment for instance, Karjoth et. al. have
suggested a security model which defines an authorization
language specifying the principals within an Aglet system
and the responsibilities of each of them within the system

[11]. The model also defines how the agents might migrate
and access local resources, providing a means for handling
agent privileges and local preferences. This work does not
define the infrastructure for distribution of the security
information nor does it address the problem of protection
of the internal state of Aglets. In the management of
Intranet resources, an approach has been proposed in the
form of a role-based access control system for Intranet
security [12]. In this case, network objects, humans users
as well as all network resources, are given unique
identities, permissions, properties and access control lists.
Local role manager agents handle validating an object’s
identity and deriving permissions for accessing resources.
Although this work is focussed on access to resources by
Intranet users rather than a solution for the Mobile agents
environment, it appears that the relation of an agent to
other agents and network resources can form a
fundamental framework for provisioning access to only
those resources required for operation. The approach taken
for security implementation within ACDE follows along
the lines of role-based access to resources.

Authentication verifies that messages really come from
their stated source. There are a number of authentication
protocols or frameworks [13]. Chess describes an itinerant
agent framework to support mobile computing [14]. Digital
signing of itinerant agents as the sole security means has
been suggested to have serious limitations [15]. In cases
where mobile agents roam widely, the identity of the
author or the owner of the signed agent may be unknown.
For widely roaming agents, a high level of trust would be
required by the operator of a network node when a foreign
mobile agent would like to use resources. In this case, the
author or the owner of the agent may be unknown. The
operator needs to have more information about the source
of the agent, the benefits that will accrue to the operator
from the agent’s operation, knowledge of the agent’s role,
and the full extent of resources the agent will require.
Agent authentication using the details of the role of an
agent could help provide some level of trust in the agent.
Authentication and cryptography in general, however, is
problematic. There are questions of scalability, especially
when considering the level of verification required (valid
digital certificate, public key validity, certificate not
expired, certificate not revoked), the lack of
interoperability and the difficulty of managing many
certificates and keys. [16]. One suggestion for a scalable
and open security solution, presented by Hsu and Seymour,
uses short-lived certificates [17]. Their approach would
provide benefits to Intranets where there is a great deal of

control over both client and server. It is not apparent how
this technique may be directly applied to mobile agents.

Security policies for mobile agents, i.e. information
regarding movement of an agent, resource access and
communication history are important areas of research
[18]. Problems of security with mobile agents are outlined
in various papers contained in [19]. Some key issues are
protection from damage or overuse of the network or host
resources, protection of private information contained in
either the host or mobile agent and protection from damage
of either the agent or host code [20].

3. System Overview

The system presented in this paper was designed to target
the development of distributed, agent-based, security
applications in the area of Network Management. Secured
access to wireless local area networks is the first
application of this system [21]. For many network
management applications, mobile, multi-hop agents are not
necessary. Indeed, it has been argued by many [22] that the
key benefit of agent mobility is dynamic resource usage or
load balancing for distributed applications. For network
management applications, agent mobility provides a means
for populating a network with required agents for the
distributed system. Appropriate design and location
selection of agent systems and agents reduces the load on
network and host resources within a target network.
Single-hop agents, that is agents that can only move from a
secure agent repository to a target execution environment,
increase the level of trust in the agent and agent system
since the agent has not followed a complicated itinerary
and it is coming from a trusted source. The goals in the
development of the agent distribution and communication
environment described in this paper are:

1. Single-hop agent dispatched from secure agent
storage,

2. Agent authentication to provide agent authorization
based upon the agent’s role,

3. Negotiation for and security management of network
and host resources,

4. Inter-Agent communication via remote object sharing
and multicast events.

5. Secure communication,

6. Monitoring and logging of resource usage and,

7. A distributed naming service to support multiple
authorized managers for the agent system monitoring.

The system takes the following approach. All agents are
digitally signed. To simplify security infrastructure, the
agents are single-hop, meaning that they can only move
from a "safe" agent storage place to an agent meeting place
called the Agent Daemon. The safe agent storage place is a
restricted access directory of a web server. Agents may also
operate in a web browser. All agents have predefined roles
for operation within an agent system. The predefined roles
of an agent include information concerning its resource
requirements and levels of interaction and authority in
dealing with network and host objects (databases, computer
resources, network resources, Agent Daemons, or other
agents). Information regarding the agent systems and
authority level details for agents are stored in a secure
trusted server. Agents are authenticated via the trusted
server when they arrive at an agent daemon. Agents
operating within Agent Daemons and within browsers
must negotiate with Agent Daemons for network resources.
Finally, in order to operate in the Agent Daemon
environment, agents must implement an interface which
permits Agent Daemon monitoring of the agent
communications.

4. Block Diagram

The ACDE deploys Agent Daemons throughout the
network to provide an environment at network nodes to
which agents may be dispatched. Agent Daemons provide
resource allocation based on agent authentication, the
agent requirements and authority. Figure 1 depicts the
functions supported by the agent daemon.

A Security Manager manages security of the operating
environment for the agents. The Security Manager extends
the java.lang.SecurityManager Class to monitor activities
within the threads of the agent. It also handles
authentication negotiation with the agents that wish to
operate at the Agent Daemon network node. The
communication manager handles requests from agents to
set up communication services and monitors agent
communication activity, allowing only authorized
intercommunication for the agent. The network services
controlled by the Agent Daemon include:

1. Publishing of objects,

2. Requesting of objects from other agents,

3. Request of network-based Agent Daemon services,

4. Request for multicast services, and

5. Socket usage.

Figure 1. Block Diagram of the Agent Communication and
Distribution Environment.

When an agent wishes to publish an object, it must
negotiate with the communication manager for available
resources. The communication manager determines
whether or not the agent is authorized to use
communication resources from a trusted server. The trusted
server contains reference information about the agent and
the agent system(s) with which it is associated. Among that
information is a list of the types and targets of interactions
the agent is allowed to make. This technique provides more
fine grain control over communication permissions that
those offered by Security Manager extensions.

5. Communication
Distributed Agent systems have entities operating at
different network nodes. To operate in an ensemble they
must be able to communicate with each other. One goal
with this agent distribution system is for an easy-to-use,
versatile, yet lightweight communication infrastructure.

Java RMI (supported within JavaSoft’s Development Kit
(JDK) Ver. 1.1 and above) takes advantage of Java’s Object
model. It is a much simpler architecture than CORBA and
easier to use. It does have the requirement of a number of
steps or rules to make a Java class remote-enabled [24].
The number of classes and interfaces representing the API
for the framework are 26 (JDK Version 1.1.3). An RMI
Registry program must also be running for each node with
remotely enabled objects. Although RMI does an admirable
job for providing communication, it still is more complex
and requires more resources than the approach taken for
communication within ACDE.

ACDE builds upon the communication techniques
developed by Ennio Grasso at CSELT (Centre Studi e

Laboratori Telecomunicazioni S.p.A., Italy) called the Java
Reflection Broker [25]. The package uses several of Java’s
APIs: Sockets, Object Serialization and Reflection. It
deploys a dynamic invocation model similar to the
dynamic invocation interface in CORBA. In contrast with
CORBA or RMI, remotely enabling a Java class requires
no modifications to the class whatsoever. No stubs and
skeletons (as used in RMI) need be developed for remote
enabling. The communication package works with JDK
1.1x compliant browsers. To publish an object, the agent or
applet creates for itself something akin to a mini ORB.
Remote method invocations provide point-to-point
communication. The package also provides an event
service for an asynchronous, multicast, connectionless
communication. In this one-to-many communication
model, a sender sends a message, and a number of
recipients, registered for the message type and
implementing an interface to receive these multicast
messages, receive it. Not only is the package very easy to
use, it is also small, requiring a class file size of about 14K
bytes for both client and server sides in contrast to class file
sizes an order of magnitude larger for RMI or CORBA
approaches.

The communication services provided within the ACDE
for the agents are extended to include a "back door" type of
communication monitoring system. To be allowed to
operate within an Agent Daemon, agents must maintain
objects reflecting the identity and nature of
communications with its published class. An Agent
Daemon may access information within the Agent
regarding recent data exchanges. The information
includes: contents of communication streams, identities of
entities connecting for remote invocation, multicast events
requested and received. This provides much more detailed
monitoring possibilities for communication monitoring
than would be possible with a simple extension of Java’s
Security Manager class.

To secure communication interchanges between agents
within any agent system operating with the ACDE, the
system deploys Secure Sockets Layer version 3 (SSL v 3)).
This protocol authenticates and encrypts Transmission
Control Protocol connection. The protocol is popular and
appears to have become a standard for secure network
communication. There are a number of third party
implementations available in Java, for instance [26].

6. Security Management
Single-hop agents provide a straightforward way of
distributing agents to nodes within the network. This eases

Multi-Threaded Agent Execution Environment

Daemon Services
 Security Manager Environment Manager
 Network Resource Manager Host Resource Manager
 Applet Proxy

 Authentication Comunication Resource Negotiator
 Multicast Event Proxy Communication Monitor
 Class Loader Directory

Agent A

Agent B

Communication Manager Thread Control

some of the security requirements from the distribution
point of view. Agents are only served from one secure host,
rather than moving between many host computers as with
other mobile agent systems. In such systems there is
greater potential for agent alteration by hostile hosts or by
other entities during agent transmission. With ACDE,
agents may pass state information to other agents and
authorized agents may destroy or deploy other agents. This
process is intended for populating a network with an agent
system or for dynamic load balancing, i.e. load balancing
for an agent system while in operation. Although this
technique may be used to provide the effect of node-to-
node mobility, it is intentionally less convenient than with
truly mobile agent systems. Essentially it offers a
reasonable compromise in terms of lowering security risks
while at the same time providing agent mobility functions.

Within web browsers, Java’s sandbox approach to browser
security management places severe limits on access to host
and network resources for untrusted applets. The sandbox
restrictions may be relaxed through the use of digitally
signed code [27]. When classes are created, they are signed
with a digital certificate based upon the author of the class
and the contents of the class. Successful authentication of
delivered classes assures first of all that a class has not
been modified during transfer. Second, systems can be
configured to allow different levels of privileges depending
on the author of the class.

ACDE uses code signing for all agents. This assures that
the classes received are the same as the classes at the agent
archive server. Rather than allowing the signed agent
immediate access to resources, the Agent Daemon
authenticates the identity and role of the Agent through
interchanges with a trusted server. This approach
authenticates the agent as a bona fide member of an agent
system that has permission to operate within the network.
The interchanges with the trusted server also provide an
added level of assurance against agent corruption and
provide a means for restricting or relaxing agent operations
on the basis of agent role. When agents and agent systems
are created, their names, roles, required resources,
relationships between agents and agent systems, and
lifetimes of agent systems are stored in a secure database
within the trusted server. A developer uses a Security
Management program to interact with the Security Server
in the creation of these entries within this database. The
database also relates agent names to the communication
relationships with other agents, Agent Daemon services,
and network services. A full description of the role-based
security provisions of ACDE is the subject of a future
paper. Figure 2 schematically illustrates the Security

Server while Figure 3 illustrates the use of one-hop agents
in ACDE.

Figure 2. Trusted Authentication server for ACDE.

The Security Server provides two functions: 1) generation
of ANSI X9.17 keys for authenticated agents and users and
2) management of a log of security events. Data Encryption
Standard (DES) is the basis for encryption used by the
Security Server. Although 56 bit encryption keys are
considered weak by today’s standards [13], DES provides
reasonable software implementation speeds and adequate
protection against attacks from individuals or
organizations other than those with massive resources. In
cases where a higher level of security is required (e.g.
financial transactions) triple DES (112 bit effective key
length) may be used within the present framework.

Figure 3. This diagram illustrates how agents are
distributed to Agent Daemons and Browsers.

The process of Agent Daemon and agent authentication,
and agent resource negotiation proceeds as follows:

 1. Whenever a user starts an Agent Daemon, its digital
signature is checked through interchanges with the trusted
server. A user name, password authentication exchange
permits an Agent Daemon to access agents stored in a
protected area of a web server and to act as a trusted entity

Trusted Authentication Server

Security DB

Event Log DB

Agent
Daemons

Agents

Security
Server

Trusted Authentication Server

Web Server Node

Agent Archive (Protected Storage)

Agent Classes
& Behaviours

Creation, Control &
Monitoring Applets

Agent
Systems

Agent System
Archives

WWW
Server

Agent
Daemon

Applet in
Client Browser

Security
Server

for authentication exchanges with the Trusted Server on
behalf of deployed agents. This process not only provides
some assurance that an authenticated user has started the
Agent Daemon, but also that its version is correct.

Figure 4 a) Creating digitally signing agents and b)
Verifying digital signed agents.

Figure 5. This diagram illustrates some of the interchanges
between the Agent Daemon and Trusted Server for

certificate and agent security information interchange for
individual agents. Blocks E and D are Encryption and

Decryption blocks.

 2. Through a remote method invocation, the Agent
Daemon loads agents from the agent storage area. The
Agent Daemon’s class loader loads the agent as a signed
class. Even though the agent’ digital signature has been
verified, it is still not yet considered by the Agent Daemon
to be trusted. Using Java’s Security Manager mechanism,
the agent is not allowed access to resources, other than
communication with the Agent Daemon security and
communication managers until step 3 is completed. Figure
4 depicts the process of digitally signing the agent and
receiving a signed agent within the Agent Daemon.

 3. The Agent Daemon interacts with the Trusted Server to
authenticate the agent as a member of an agent system
scheduled for network deployment. The agent name is
passed in plain text, the hash value derived from the Agent
certificate provides a simple means for securing a channel
for exchanging key information. This technique protects
the shared DES key during start up of an agent or agent
system. Agent security information and agent system
information is exchanged using a key generated for the
session by the Trusted server. Figure 5 depicts typical
agent authentication interactions.

 4. The Agent Daemon and the trusted server perform a
nonce exchange periodically to ensure the validity of
certificates for agents running at the Agent Daemon node
[13].

 5. If the agent has authority to publish classes for
communication, it must negotiate with the Agent Daemon
for allocation of communication resources for this purpose
immediately. If the Agent does not do so, the Agent
Daemon kills the Agent and adds a security violation to the
event log.

The Trusted Server monitors, time stamps and logs a
number of different events including:

 1. Successful and failed attempts of access to the security
database.

 2. Breaches within the agent daemon security manager.
For instance, the Agent Daemon notifies the Trusted
Server if an agent attempts to overstep its bounds in terms
of host or network resources, or contact with other entities.

 3. Creation and destruction agents.

The system administrator is notified whenever any of
several settable trigger events occurs. For instance, if there
is a repeated authentication failure for an Agent trying to
operate at an Agent Daemon, the Trusted Server sends a
message to the system administrator by email. As well,
subsequent requests from the source address for further
authentication are rejected until the system administrator
investigates. These events typically would be evidence of a
brute force attack on the agent system.

7. Distributed Directory
A distributed agent directory service provides a means for
locating agents without requiring a centralized naming or
directory server. X.500 Directory services can provide a
versatile, distributed directory service for this purpose,
providing services for security, search, requesting,
administration, access controls and replication. ACDE is
intended for use within subnetworks consisting of several
hundred nodes whereas X.500 directory services are

Agent Class
Secure Hash

Function

X.509
Private Key

Encryption

Jar File

Digital
Signature

a) Digitally Signing an Agent

X.509
Public KeyJar File

Digital
Signature Decryption

Jar Process

Jar Process

Secure Hash
Function

Signature
Check

Valid Signed
Agent Class

Signature Error

Hash Value

Hash Value

Agent ClassJar Process

b) Verifying a Digitally Signing Agent

OK

Error

Security DB

Agent Name

Agent Daemon

Hash Value

Agent Name
AgentSystem Name

ED

Agent Hash Values

Agent A Hash
Agent B Hash

Agent System Tables

System A Description
System B Description

Certificate
Generator

Agent Name
Agent System Name

Agent
Certificate

ED
Agent

Priveledge
Attributes Trusted Server

intended for larger enterprise applications. The complex
APIs for implementing X.500 directories are out of
keeping with the lightweight philosophy behind ACDE.
The service deployed in ACDE uses multicast events to
update authorized naming service users of changes in
agents resident at any Agent Daemon. Using this
information, an agent may determine the physical
configuration of agents within a sub-network and inform
other agents of their counterparts within agent systems for
communication purposes. Figure 6 illustrates one operation
of the distributed directory service when deployed from an
agent operating as an applet within a web browser. Within
some web browsers, an applet is restricted from opening a
multicast socket. A remote method invocation between the
client agent applet and a multicast reflector service of the
Agent Daemon, residing at the node of the web server that
served the applet, effectively provides the multicast service.
The reflector service generates a multicast message and
uses a callback mechanism, making the Agent Daemons
deliver each of their respective portions of the distributed
directory to the client agent. The operation is similar for
agents residing at agent daemons, except that the multicast
reflector service is not required.

Figure 6. Block diagram illustrating the operation of the
naming service for the agent distribution and

communication environment.

Authorized agents access the distributed directory and
other Agent Daemon services to facilitate the deployment
of agent systems. These Agent System Deployment Agents
are also authorized to use the information within the
security database concerning the agent system to deploy
agents and make the necessary agent introductions for
communication purposes in the process of building a target
agent system. At the same time, agent-monitoring tools
may use the directory to monitor agent locations and
communication activities.

The simple scheme used in the distributed directory service
for ACDE is not meant to replace the potential benefits of
an X.500 directory service. The intention is to have an
easy-to-use, lightweight directory service. Although IP
Multicast provides an efficient means for transmitting
information to a group, it does not guarantee packets will

be reliably and sequentially delivered to all group
members. Several approaches have been suggested for
increasing IP Multicast reliability [28]. Although in the
current deployment of ACDE IP Multicast has not been an
issue due perhaps to small size of Multicast messages
(single packet) and light network load, this issue is one
that will require careful testing.

8. Agent Monitoring and Control
The communication issue is a prominent one in the Mobile
Agent computing environments. For multiple agents to
negotiate, share or allocate tasks, make arrangements, etc.
they must communicate. While vital for agents to do their
tasks, agent systems with many intercommunicating agents
can be very difficult to build without appropriate tools to
monitor communications. The Agent Daemon of the
ACDE monitors agent communications through a
monitoring class within the class library used by ACDE
agents. An authorized agent or applet may remotely set
environment settings within agents causing them to queue
information exchanges they have with other entities. An
authorized agent may also inspect the internal methods of
the published agent class to determine communication
details. Figure 7 shows a screen shot of an agent
distribution and monitoring client. The applet lists:
 1. The agents available for distribution from the agent
repository (bottom left box of Figure 7), in this case,
located at the 132.246.128.180 address.
 2. The Internet Protocol addresses of the Agent Daemons
(top right box of Figure 7). These addresses are updated
automatically as Agent Daemons are started and stopped
using the distributed directory infrastructure.
 3. The selected published classes and their assigned
communication ports resident at any Agent Daemon (large
box on the upper right side of Figure 7). The items in this
list are also updated automatically using the distributed
directory.

The applet also provides a text area to display messages
resulting from ACDE operations. Whenever a user selects
an agent daemon IP address the applet lists the agents
resident at the chosen node and the communication ports
and names assigned to published classes of the agent. By
selecting an agent daemon node and an agent, then
clicking on the "Send to Daemon" button, the agent will be
sent to the target Agent Daemon from the agent repository.

When an Agent Daemon and an agent are selected and the
user presses the "Details" button, a window similar to the
one shown in Figure 8 appears. When the user selects a
"Published Class" within the agent, the text area at the
lower left of the window displays the list of methods and

Client Agent
Applet

Request Update

Multicast Reflector
Service

Request Update
Broadcast

Agent Daemon
Request Update Event

Rcvd
Send Directory

Agent Daemon
Request Update Event

Rcvd
Send Directory

MultiCast Message
Remote Method Invocation

the attributes of those methods and the associated
variables. A list at the right of the window displays
methods that may be remotely invoked within the agent
from the monitoring applet. This feature, implemented
using Java’s Reflection class is useful for testing or
debugging purposes.

Figure 7. A window snapshot of an agent distribution and
monitoring applet.

Figure 8. A screen shot of the detail screen for an agent.

The lower two message boxes in the dialog window
provide communication information. The "Connections"
box provides a list of agents that have made connections to
this agent. The other list itemizes the exchanges made with
the selected agent class.

9. Conclusions
This paper presents a system for securely distributing
intercommunicating agents. Although there are several
prototype and release versions of mobile agent packages
written in the Java programming language available, these
packages offer far more than required in terms of agent
mobility to provide the agent distribution function, low
security provisions and poor provisions for monitoring of
agent communications. The approach taken with ACDE is
Designed for security applications in Network
Management, this agent distribution and communication
environment uses single hop agents. Although this
technique reduces an agent’s ability to roam, it simplifies
security implementation and for most applications while
still providing the ability to move an agent to a target node
and control its execution. The system provides a
mechanism for agent authentication and for authorized
agent access to various network and computing resources,
on the basis of the roles of agents within an agent system.

To summarize agent instantiation, an agent may be
instantiated by an Agent Daemon only if:

1. The agent exists in a secured access agent repository.
2. The agent is properly signed by the agent creator.
3. The agent and its function and resource requirements

are detailed in an agent system database stored in a
trusted server.

4. The agent system is currently scheduled for operation.

An agent must negotiate with its Agent Daemon for
communication resources. If it does not negotiate correctly
for the resource, the agent will be terminated. Agents use a
communication library which provides a communication
back door for the Agent Daemon to monitor agent
communications. This feature has been very useful during
the development of agent applications. The Agent
Daemons and a diagnostic Agent Control and Monitoring
program provide an excellent set of tools for monitoring
and time stamping inter-agent communication streams.
The system may be used to simply distribute Java
applications throughout a network. To do this, few changes
are required to the application code.

The system is currently undergoing further development
and refinement while new security applications of
intelligent agents in the network management area are
being developed. Until now the agent systems developed
for the system include only a low number of agents (ten at
most). Although initial results are promising in terms of
the level of performance for these small, network
management agent systems we are developing, further
testing is needed to assess the scalability of the
communication and security measures.

10. References
[1] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile
agents: Are they a good idea? Technical report, IBM Research
Report, IBM Research Division, T.J. Watson Research Center,
Yorktown Heights, NY, March 1995.
http://www.research.ibm.com/massive.

[2] William M. Farmer, Joshua D. Guttman, and Vipin Swarup.
Security for mobile agents: Authentication and state appraisal. In
Proceedings of the Fourth European Symposium on Research in
Computer Security, pages 118-130, Rome, Italy, September 1996.
Springer-Verlag Lecture Notes in Computer Science No. 1146.

[3] Joseph Kiniry and Daniel Zimmerman. A Hands-on Look at
Java Mobile Agents. IEEE Internet Computing, July-August,
1997.

[4] Joseph Kiniry and Daniel Zimmerman. Addendum to "A
Hands-On Look at Java Mobile Agents, A Look at Mitsubishi’s
Concordia", http://computer.org/internet /v1n4/kiniry.htm

[5] Links to other mobile agent tools collected by AgentBuilder.
http://www.agentbuilder.com/ AgentTools/

[6] IBM Aglets Workbench. http://www.trl.ibm.co.jp/aglets/

[7] Mitsubishi Concordia Agents Information Page.
http://www.meitca.com/HSL/Projects/Concordia/Welcome.html

[8] Objectspace Voyager Information Page.
http://www.objectspace.com

[9] General Magic Odyssey Information Page.
http://www.genmagic.com/technology/ mobile_agent.html

[10] Robert Orfali, Dan Harkey. Client/Server Programming with
Java and CORBA, John Wiley and Sons, 1997.

[11] Gunter Karjoth, Danny B. Lange, and Mitsuru Oshima. A
Security Model for Aglets, IEEE Internet Computing, July-
August, 1997, http://computer.org/internet

[12] Zahir Tari and Shun-Wu Chan. A Role-Based Access
Control for Intranet Security, IEEE Internet Computing,
September-October, 1997, http://computer.org/internet

[13] B. Schneier, "Applied Cryptography." John Wiley & Sons,
1996.

[14] David Chess, Benjamin Grosof, Colin Harrison, David
Levine, Colin Parris and Gene Tsudik. Itinerant Agents for

Mobile Computing. IEEE Personal Communications, October,
1995, pp. 34-49.

[15] Tom Walsh, Noemi Paciorek, David Wong. Security and
Reliability in Concordia, Hawaii International Conference on
Software Systems, HICSS 31, January 6-9, 1998, Hawaii.

[16] Steve Steinke. Authentication and Cryptography. Network -
Strategies and Solutions for the Network Professional., Vol. 13,
No. 1, pp. 51-57.

[17] Yung-Kao Hsu, Stephen P. Seymour. An Intranet security
framework based on short-lived certificates, IEEE Internet
Computing, March-April, 1998, http:computer.org/internet/

[18] Fred B. Schneider. Towards Fault-Tolerant and Secure
Agentry. 11th Int. Workshop on Distributed Algorithms,
Saarbrücken, Germany, Sept. 1997.

[19] http://www.cnri.reston.va.us/home/koe/bib/mobile-
abs.bib.html

[20] Tomas Sander, Christian Tschudin. Towards Mobile
Cryptography, Technical Report 97-049, International Computer
Science Institute, Berkeley.

[21] Larry Korba. Securing Wireless LAN Access: A Network
Management Approach. IEEE Int. Symp. on Wireless
Communication, Montreal, P.Q., May 22-23, 1998.

[22] UMBC Agent email list. http://www.cs.umbc.edu/agentslist/

[23] Tom Mowbray. The Essential CORBA, John Wiley & Sons,
1995.

[24] Sunsoft Java Development Kit Information Page.
http://java.sun.com:80/products/jdk/rmi/ index.html

[25] Java Reflection Broker Information Page.
http://andromeda.cselt.it/users/g/grasso/free.htm

[26] Phaos Inc. http://www.phaos.com /main.htm

[27] Sunsoft Java Security Information Pages.
http://java.sun.com/marketing/collateral/security.html

[28] Christopher Metz. Reliable Multicast: When many must
absolutely positively receive it. IEEE Internet Computing, Vol. 2,
No. 4, July-August, 1998, pp. 9-13.

