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Abstract: With the growth of computing and communication technologies, the information processing
paradigm of the healthcare environment is evolving. The patient information is stored electronically,
making it convenient to store and retrieve patient information remotely when needed. However,
evolving the healthcare systems into smart healthcare environments comes with challenges and
additional pressures. Internet of Things (IoT) connects things, such as computing devices, through
wired or wireless mediums to form a network. There are numerous security vulnerabilities and risks
in the existing IoT-based systems due to the lack of intrinsic security technologies. For example,
patient medical data, data privacy, data sharing, and convenience are considered imperative for
collecting and storing electronic health records (EHR). However, the traditional IoT-based EHR
systems cannot deal with these paradigms because of inconsistent security policies and data access
structures. Blockchain (BC) technology is a decentralized and distributed ledger that comes in handy
in storing patient data and encountering data integrity and confidentiality challenges. Therefore,
it is a viable solution for addressing existing IoT data security and privacy challenges. BC paves
a tremendous path to revolutionize traditional IoT systems by enhancing data security, privacy,
and transparency. The scientific community has shown a variety of healthcare applications based
on artificial intelligence (AI) that improve health diagnosis and monitoring practices. Moreover,
technology companies and startups are revolutionizing healthcare with AI and related technologies.
This study illustrates the implication of integrated technologies based on BC, IoT, and AI to meet
growing healthcare challenges. This research study examines the integration of BC technology with
IoT and analyzes the advancements of these innovative paradigms in the healthcare sector. In addition,
our research study presents a detailed survey on enabling technologies for the futuristic, intelligent,
and secure internet of health things (IoHT). Furthermore, this study comprehensively studies the
peculiarities of the IoHT environment and the security, performance, and progression of the enabling
technologies. First, the research gaps are identified by mapping security and performance benefits
inferred by the BC technologies. Secondly, practical issues related to the integration process of BC
and IoT devices are discussed. Third, the healthcare applications integrating IoT, BC, and ML in
healthcare environments are discussed. Finally, the research gaps, future directions, and limitations
of the enabling technologies are discussed.
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1. Introduction

With the growth of healthcare technologies, the information processing paradigm
of the healthcare environment is evolving, and data are stored electronically. Healthcare
is the most important field that needs attention to restructure with today’s advanced
solutions from science and technology to reduce pressure due to the growing population
and to provide quality treatment. The information and communication technologies (ICTs)
from the 1990s responded to such needs and improved the access, quality of virtually any
process, and the efficiency related to healthcare [1]. However, the term e-health, assigned
as an ICTs application to health care, has gained public and private funding and research
efforts [2]. The advancement in technology and e-health is growing day by day, leading
to changes in the characterization and specification of terms. The current one is Industry
4.0 (I4.0). However, the government is committed to promoting technology culture and
legal frameworks. The German government used the term I4.0 once in November 2011
to define its high-tech strategy, “Industry4.0”. Thus, technologies are associated, but a
development plan includes enterprise management aspects, regulatory framework, and
training. Technically, this is also called the fourth industrial revolution-based cyber-physical
system (CPS), which relies on groups of technologies. The indication of fast technological
growth associated with the world governmental struggles concludes that I4.0 effectively
influences the healthcare sector that moves e-health towards Healthcare 4.0 [3,4].

The scientific community has published many research articles on IoT, ML, and BC
in regard to e-health, supply chain, agriculture, smart cities, and smart home [5,6]. State-
of-the-art works published on BC technology implementation and applications with the
Internet of Energy (IoE) provide readers with future ideas [7]. Many BC smart contract
applications are explained for energy management, such as automated data exchange
trading on a secure peer-to-peer network and energy transactions. In the literature, BC
applications in smart grids have been summarized with technical details, implementation,
and challenges [8]. A detailed literature review explains the use of BC in smart agriculture
and suggests how to use BC-based security in smart farming, explores the drawbacks in
existing research, and presents future research directions in artificial intelligence [9]. Due to
the capacity of innovative services for different applications, such as academics, researchers,
and entrepreneurs, especially in telehealth, IoT has become popular [10,11]. In IoT, with-
out human interaction, communication processes, sensing, and processing are controlled
automatically in a physical network formed by heterogeneous devices and objects [12].
It can connect different devices on the network, such as a vehicle, household appliances,
and other electronic devices, making human life more intelligent. Real-time identification,
monitoring, event triggers, and location are all achieved by using an IoT-based system.
The IoT applications can be categorized into two categories. The first category includes
smart cities [13], crowdsensing [14], industrial automation [15], traffic monitoring [16], and
power administration [17]. The second category includes IoT applications with business
intelligence and predictive analytics. These applications refer to remodeling business
operations communed to commercial procedures, such as banking, insurance, and provi-
sion enhancement of healthcare [18]. In addition, the anticipation of more than 27 billion
connected devices by 2025 is the arrival of smart cities, smart homes, and other intelligent
machines [19]. In the literature, various technologies, such as cyber-physical systems (CPS),
wireless sensor networks (WSNs), and machine-to-machine (M2M), have been developed
and considered necessary elements for IoT. At the same time, security concerns arise in
IoT with standard IP protocol that needs to be secure against security attacks. Similarly,
IoT architecture and enabling technologies [20] highlighted and described various issues
related to security in IoT systems [21]. Therefore, the IoT systems need to be restructured
fundamentally to devastate these problems [22].

Initially, BC was considered a financial transaction protocol in Bitcoin. Then, the
security features, such as fault tolerance, identities (IDs), and decentralization security,
convinced analysts and researchers to use it as a solution to the security issues of IT. BC is
the one proper technology that supports a distributed and secure ecosystem for IT [23]. It
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is a distributed ledger as all the blocks are chained together. It can save information from
billions of computing devices [24]. BC refers to a decentralized, tamperproof, transactional
database that stores and processes information securely across a wide range of network
nodes [25]. BC has grown as a breakthrough technology known as a distributed transaction
ledger (DTL) that solves privacy, scalability, and security issues. The distributed ledger
nature of BC removes the trust of the participating parties due to immutable features.
BC development is essential for eliminating trust in a traditional system, such as online
intermediaries, and for removing the need for trust among entities. Participants in BC are
directed to the authority of technological techniques rather than a centralized organization
that can be unreliable. However, trust in BC-based systems is not eliminated but indirectly
reduces the need for trust by increasing confidence among participants. Trust can be
achieved in BC because of its technical arrangements, and anyone can predict the outcome
theoretically, specifically in open-source software in which the code is open. The higher
the predictability of software, the greater the belief and the lower the need for trust in
that technical system’s operators or developers. The open Bitcoin protocol allows any
participant to study and know that the new Bitcoin is produced at a particular speed of one
block per 10 min when a miner wins a PoW without trusting any third party. Therefore, BC
technology assures participants no need to be relied on by any third party, or no one can
pretend to be trusted [26].

Challenges in IoT connectivity are sharing data with stakeholders, which requires
connectivity with extensive storage, computing, and networking resources. However, its
capability is limited to connecting IoT with BC technology to provide new opportunities to
implement business applications and services in many domains [27]. Big data handling on
BC requires copying the complete distributed ledger stored by every participant in BC. Ev-
ery node appends a newly confirmed block to its local ledger broadcasted to a peer-to-peer
network. Several issues are solved by this decentralized storage structure, such as efficiency
and removing trust from the third party during load put on the participant’s node by the
management of IoT data on centralized BC [28]. For example, suppose a thousand partici-
pants exchange 2 MB of data per year. In that case, the BC node will need 730 GB of data,
thus posing a storage challenge when IoT device stores data in BC infrastructure [29,30].
Transparency and privacy challenges can be better explained in some applications like
finance, such as transparency in transactions. Moreover, BC ensures transparency and
privacy in applications, such as e-health. However, transparency may be affected when
storing and accessing IoT data from IoT systems. Moreover, regulatory challenges caused
by BC features are promising security solutions for different IoT applications [31]. These
features are decentralization, immutability, anonymity, and automation. For example, data
cannot be deleted or modified once published by the immutability feature in DTL on a
peer-to-peer network [32].

Some advantages of BC implementation with IoT include solving a single point of
failure issue, increasing fault tolerance, and ensuring end-to-end communication without a
centralized server’s involvement. A single point of failure is an issue that affects reliability
and high availability in any system [33]. In addition, data integrity and user identity
can be verified very easily by participants [34]. Furthermore, to ensure traceability and
accountability, BC stores data and event logs in an immutable way. BC solves many issues
related to IoT, but it has many challenges, such as high computation costs and delays, which
restricts storage and power capabilities [35,36]. Power, performance, and security trade-
offs are essential because BC technology-based applications are slowed down due to the
high computational power needed to run BC algorithms on limited-resource devices [37].
A comparison of energy consumed by Bitcoin in Ireland with domestic power consumption
is made, which IoT devices cannot undertake [38]. The Bitcoin network consumes more
energy than several nations, including Austria and Colombia. Moreover, the central
algorithm can increase performance by increasing the number of confirmed blocks per
second while processing IoT data by BC suggested by many researchers [39]. Improving
performance and lowering power consumption can be achieved by eliminating proof of
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work (PoW) [40]. Still, PoW protects from Sybil attacks and malicious attacks and makes
the blocks immutable to make the BC process secure and efficient, which is the ultimate
goal. Throughput and concurrency are also an issue; devices in IoT concurrently generate
a stream of data [41]. Throughput is limited in BC due to its consensus mechanisms and
cryptographic security protocol. A large amount of bandwidth for new blocks in the BC is
required to improve throughput [42,43]. Thus, increasing throughput in BC is challenging
to meet the need for frequent transactions in IoT systems. A bottleneck of an IoT-based
advanced computing paradigm is that it generates a vast amount of data that results in a
poor quality of service (QoS) [44].

Healthcare systems are transforming into smart healthcare environments with the ad-
vancement of computing and communication technologies. This encourages practitioners
and researchers in the field of ICTs to implement their expertise to address the requirements
of the health sector. Moreover, interdisciplinary researchers in the field of information
systems and healthcare automation systems research new ideas productively and efficiently,
constituting the IoHT evolution. However, smart health adopts ICT-based healthcare solu-
tions with different expectations. It is important to note that the paradigm defined here as
IoHT has a different meaning. It can be defined as information technology for intelligent
health management in medical services. Like I4.0 revolutionized the manufacturing sector,
IoT is revolutionizing e-health and its whole ecosystem. With technological progress, it is
difficult for operators and stakeholders to keep pace because of the fundamental multidis-
ciplinary nature of IoHT. Although several studies present I4.0 either at a technology base
or as single ICT applications in the healthcare sector, there is no notable contribution in
the field of intelligent and secure health care [45]. IoHT lies in the field of research that
raises the use of biosensors, wearables, and other medical devices to improve patient data
management in hospitals, decrease hospitalization times, and enhance patient healthcare
delivery. However, the use of IoHT in hospitals raises many challenges; therefore, any
technology that deals with healthcare must focus on privacy, security, safety, and trust,
which needs to be identified as the basis for developing IoHT systems.

In this paper, we have systematically investigated the literature for the scope and
purpose of our article. First, the background of IoT with detailed architecture, benefits,
risks, and security requirements is discussed. Second, the background of BC is discussed
with basic concepts of BC applications. Moreover, BC viability is discussed as a sustainable
solution for enhancing the security and transparency of IoT applications, such as IoT-based
health monitoring. Lastly, the convergence application of BC, IoT, and machine learning
(ML) for secure internet of health things (IoHT) is discussed. For this purpose, we searched
and selected articles related to the following keywords: IoT, BC, e-health, IoT security,
ML, deep learning, AI-based IoT, BC-based health monitoring, e-health, Internet of Things,
healthcare IoT, and ML for health monitoring. First, as selection criteria, we searched and
selected articles from journals indexed by the web of science. Then, an excel-based database
was created from the searched papers, and a query was applied to the database’s list of
papers selected from 2016 until 2022 (IC2). A total of 384 articles were searched, out of
which 102 were collected from IEEEXplore, 71 from ScienceDirect, 59 from Springer Link,
41 from MDPI, 26 from ACM Digital Library, and 85 articles from other sources.

Moreover, after scanning the abstracts, these articles were thoroughly read and consid-
ered based on the English language (IC3). Another selection criterion was health-related
papers based on IoT, BC, healthcare, e-health, and ML (IC4). The articles were excluded
based on the type of the research study, such as a systematic review or literature survey
(EC1). In addition, articles not focused on IoT were subjects for exclusion (EC2). Other
exclusion criteria included were articles that are not mainly focused on healthcare applica-
tions (EC3). Relevancy was another criterion, for instance, articles that are not relevant to
BC, IoT, ML, and DL (EC4). This study aims to answer the following research questions:

• What is IoT and its application in healthcare?
• What is BC and the applications of BC in healthcare systems?
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• What is ML, and how can ML applications enhance pervasive computing-based
healthcare systems?

• What are the convergence trends of IoT and BC for healthcare applications?
• What is the applicability of ML in IoT-based systems?
• What are the challenges of developing integrated healthcare platforms based on IoT,

BC, and ML?

This research study was conducted to find answers to the above research questions.
First, we provide a brief literature review to aid in readers’ understanding of the back-
ground of IoT, BC, and convergence of IoT, BC, and ML for the internet of health care
applications. Second, we summarize the contributions more relevant to healthcare. Finally,
the main challenges and solutions for intelligent and secured IoT-based health monitoring
applications with main benefits are discussed. A summary of the comparative analysis of
this study with existing survey papers is presented in Table 1.

Table 1. Comparison of this study with existing survey papers.

S.No Study Publication
Year BC Ml &

AI IoT
Remote
Patient

Monitoring

Access Man-
agement

Healthcare
Challenges
& Related
Solutions

Solutions for
Secure and
Intelligent

IoHT

1 Shailaja et al. [46] 2018 No Yes No No No No No

2 Panarello et al. [47] 2018 Yes Yes Yes No No Yes No

3 Faust et al. [48] 2018 No Yes Yes No No No No

4 Kuo et al. [49] 2019 Yes No No No No No No

5 Ahmadi et al. [50] 2019 No No Yes Yes No No No

6 Aggarwal et al. [51] 2019 Yes No Yes Yes Yes Yes No

7 Andoni et al. [52] 2019 Yes Yes No No No No No

8 Naser et al. [53] 2019 Yes No Yes No Yes Yes No

9 Wang et al. [54] 2019 No Yes Yes No No Yes No

10 Qadri et al. [55] 2020 Yes Yes Yes No Partial Yes No

11 Qayyum et al. [56] 2020 No Yes No Yes No No No

12 Karthick et al. [57] 2020 No No Yes Yes No Yes Yes

13 Hosseinzadeh
et al. [58] 2021 No Yes Yes Yes No No No

14 Uddin et al. [34] 2021 Yes Yes Yes Yes Yes No No

15 Yaqoob et al. [59] 2021 Yes No Yes Yes Yes Partial No

16 Mostafa et al. [60] 2021 No yes yes Yes No No Yes

16 Proposed survey 2022 Yes Yes Yes Yes Yes Yes Yes

The significance of this study is explained by the research questions and the com-
parison of our study with recent surveys and review studies. Our survey is based on the
applications of IoT, BC, and ML in healthcare. Nevertheless, we attempted to survey the
studies for futuristic secure, and intelligent internet of healthcare things. The overview of
key contributions of this survey paper is as follows:

• This study presents a detailed background of IoT and BC to understand the core of
IoT and BC for healthcare applications.

• This study presents the requirements of IoT in healthcare applications.
• This study provides trust and security solutions based on BC for IoT-based healthcare

applications, such as remote health monitoring in smart hospitals.
• This study presents the background of IoHT and its enabling technologies.
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• This study also highlights BC and ML-based solutions to address the current issues
and challenges of secure and intelligent IoHT.

• Lastly, this study presents the limitations of the enabling technologies and research
challenges and directions.

The rest of the paper is organized as follows. Section 2 presents the background of IoT,
and Section 3 presents the background of BC. Section 4 presents enabling technologies for
secure IoT-based healthcare applications. The convergence of BC, IoT, and ML for secure
and intelligent healthcare applications is also discussed in Section 4. Section 5 presents the
research gap and optimistic solutions for the future research directions in the IoHT. Finally,
the conclusion of the study is presented in Section 6.

2. IoT Background

In this section, a brief background of IoT is discussed, including IoT architecture, the
difference between current IoT and traditional networks, the security needs and perfor-
mance of IoT systems, and the threat and intrusion detection environment. The scientific
community presented many applications of IoT in daily life [61]. Today, the scope of the
interaction of end devices and networking technologies from IoT applications’ internal
composition is broadened. Two essential features associated with IoT are heterogene-
ity and decentralization. Decentralization property is critical in the case of analyzing a
large amount of data from hundreds of IoT devices, such as in the case of smart cities.
Data collection from IoT devices and recording and analyzing such data are decentralized.
Furthermore, decentralized algorithms can improve the IoT network’s scalability and capac-
ities. For instance, decentralized computation and clustering algorithms were implemented
in wireless sensor networks (WSN) [62]. The increase in the rate of IoT devices in IoT
networks is growing continuously due to the growing demand for IoT frameworks.

2.1. IoT Architectures Initiatives

IoT products lack standardization, due to which the world cannot agree on a specific
IoT reference model [63–65]. The five-layered models contain the perception layer, ser-
vices management or middleware layer, application layer, and business layers. The object
abstraction layer works similarly to the network layers implemented in all other models.
However, the function of this layer includes transferring and receiving data from devices
in the next layer from the middleware or service management layer using different commu-
nication protocols. These communication protocols include RFID, 3G/4G, Wi-Fi, Bluetooth
low energy (BLE), infrared, and ZigBee, to name a few. Management to control access to
data provides an interface to business for data analysis, and service delivery to users is
performed by the application layer. However, a four-layered architecture shows the dif-
ference between perception and physical layers. The business layer manages services and
activities, such as business models and extensive data analysis for decision-making [66,67].
The physical layer has smart appliances in the network settings, such as smart objects of
power supplies. Collecting sensor data is the responsibility of the perception layer, while
the transfer of data among devices is done in the network layer. Finally, the application
layer delivers service and provides a platform for data analysis.

The three-layered architecture model presented by Khari et al. can be compared to
the previously discussed IoT architecture containing the sensor, network, and application
layer. The functionality of each layer is the same as in the previous two models. However,
the functionality of the layers is approximately similar. Another four-layered architecture
consists of the sensing, networking, cloud, and application layer. The cloud computing layer
was replaced by the service management or middleware layer in the previous architectures.
Data analytics and storage capacity are better when the cloud servers have more computing
power, thus performing better data analytics on massive heterogeneous data from IoT
devices. In addition, the interoperability aspect is affected by proprietary protocols used in
the middleware services. Another issue caused by middleware is disguising the differences
in network protocols and operating systems. Moreover, middleware services among
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incompatible protocols of subsystems suffer from time delay and memory overhead, while
the cloud servers ensure the communication for heterogeneous systems flawlessly. Table 2
presents IoT architecture initiatives.

Table 2. IoT architecture initiatives.

S.No Architecture Description

1 SAM [68] Proprietary DIY IoT platform with offline access and cloud support
2 IEEE Project P2413 [69] Allows compatibility among heterogeneous frameworks

3 IoT-A [70] Architecture Reference Model (ARM) for the inter-working of
IoT platforms

4 iCore [71] An IoT platform handling the heterogeneity and facilitating
user-level management

5 TRESCIMO [72] Smart City M2M Connections Test-beds
6 Glue.thing [73] Proprietary DIY based IoT platform
7 FIWARE [74] Software development in IoT using APIs
8 Node-red [75] Web-based flow editor, open source IoT platform

9 Dweet.IO [76] Open source middle-ware simply shares data using web-based
RESTful API based on the IoT platform

10 Particle.IO [77] Exclusive middle-ware based fully-integrated IoT platform

11 COMPOSE [78] An Open Market in a collaborative fashion to allocate things at
your service

12 IoTDM [79] Middle-ware that act as M2M’s information broker
13 OneM2M [80] Handle the vertical heterogeneity, vertical applications connectivity

2.2. Benefits and Risks of IoT Adoption

The realization of IoT in healthcare still needs an understanding of its impact on differ-
ent industries in terms of risk analysis. The impact on organizations means effects on data
generated from IoT networks. In ref. [81], the authors presented three main characteristics
of IoT, which are “Big,” “Open,” and “Linked.” Compared to the previous conventional
techniques, extensive amounts of data with high quality and enhanced accuracy, diversity,
and timeliness generates data referred to as big data. When the data are prepared for a
specific aim and can be used for several other purposes to achieve different goals, it defines
the open characteristic of IoT. IoT combining data from multiple sources with traditional
sources defines the linked characteristics. Different sensors can be installed with regulations
and public safety and considerations of diversity in IoT technology to ensure compliance.
Moreover, smart governance and teamwork result from big data analytics based on secure
and accurate data provided by IoT applications among collaborating agencies. In ref. [82],
researchers noted that IoT in the asset management domain is also progressing to observe
the health and quality of industrial assets. A person’s privacy can be impacted by data
leaks, such as asking about health conditions and personal financial status, etc. To prevent
misuse of resources, it is crucial to prevent unauthorized access [83]. However, to uncover
unforeseen sights, big data can be used. Therefore, to convert big data into practical in-
formation, the duality of IoT can be sighted in changes to industries, which is essential.
However, standard data storage architecture is not accepted universally, nor is the quality
of data clear. At the same time, the adoption of IoT has high costs and risks due to a
reduction in return investment [84].

The data are made available by the IoT data feature for general open use. Advantages
of making information open to the public include ensuring organization transparency,
improving business processes, and reducing waste. Citizens and businesses can be em-
powered by enabling consumer services through better information gain. However, as IoT
provides flexibility in business value delivery, better decision making, and service efficiency,
the industries need to observe the situation in real-time. IoT allows other devices to use
publicly published data on the IoT network while publishing and sharing information.
A mature set of protocols is needed to guarantee the accessibility of data. Furthermore,
search locality, scalability, and real-time processing are substantial barriers to IoT adoption
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due to the mechanism of the current search that relies on remote information sharing and
fails to provide local entity search efficiency. Technical and regulatory barriers are security,
data sharing, and ownership. Reducing labor costs and empowering the community by
providing consumer self-service are the advantages of using the linked feature of IoT.
In addition, linking data from several sources can also develop consumer trust and detect
fraud. Eventually, the organization can use insights gained from linking data from various
sources to communicate effectively, support additional service revenues, and create new
opportunities for interaction.

Furthermore, the insights collected from the processed big data can enhance efficiency,
effectiveness, and compliance [85]. However, the collected data are from different sources
due to diverse IoT applications. Furthermore, the user of these data is also different, and
linked data use a different technique for processing these data. This feature complicates the
design of IoT architecture. Furthermore, due to its challenging policies and lack of guide-
lines, achieving benefits from IoT adoption can be difficult. Due to this difficulty, limited
education, training institutes, shortage of skilled staff, and new organization processes are
needed [86].

2.3. Requirements of IoT in Healthcare Applications

First, the related security prerequisites must be resolved before estimating the potential
security threats in the IoT healthcare system. Security prerequisites for IoT were studied
and determined by researchers [87–89]. A few major security requirements for IoT are
listed below:

2.3.1. Confidentiality

Confidentiality focuses on information hiding from unauthorized users and can be
described using two steps. The first step is to ensure that unauthorized users do not access
confidential data. The second step is to protect the proprietary data, and confidentiality
should be guaranteed. Encryption schemes, asymmetric and symmetric, can contribute
toward ensuring data confidentiality.

2.3.2. Integrity

Integrity ensures that unauthorized users cannot change or alter the data within IoT
nodes. Integrity comprised by the most launched attack is the man-in-the-middle attack [90],
which modifies data by intercepting its path before it is passed to its original receiver.

2.3.3. Authenticity

Authenticity guarantees that the origin of the information and transactions is au-
thentic. The individuals involved in the operation must be the ones they claim to be.
Authenticity contributes to preserving the authenticity of data through cryptographic
digital signatures [91].

2.3.4. Non-Repudiation

Events or tasks that occurred and cannot be denied later are the responsibility of
non-repudiation. Generally, the user’s ownership cannot be refused by the users after
performing a send or receive operation.

2.3.5. Authorization

The authority to perform some operation assigned to any user is the responsibility
of the authorization. Therefore, the data and other network services to authorized users
should be available all the time. Data and computational power resources must be available
whenever a service requires them. Furthermore, all components need to work correctly,
such as computation systems needed to analyze data, the IoT nodes responsible for the
communication links, and data capture [92,93].
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2.4. Security Challenges in IoT-Based Healthcare Systems

In IoT systems, security is a high priority due to different types of interactions in a
virtual and physical world. In addition to addressing traditional networking attacks, the
deployed IoT protocols need to provide secure communications [94,95]. The list of most
significant security challenges in IoT systems is given below:

2.4.1. Data Volume

Critical and confidential data generated by different IoT applications, such as smart
hospitals, and smart homes, cause security risks.

2.4.2. Privacy Protection

Sensitive data inside IoT nodes must not be linkable and traceable and must be
protected to be identifiable. Moreover, data are processed in today’s interconnected world,
sent, and collected by large enterprises using multiple IoT devices, raising privacy concerns.

2.4.3. Resource Limitations

Even security protocols are not supported by these devices, such as asymmetric key
encryption or other advanced privacy-preserving techniques, and the reason for this is
limited computation power and memory [96].

2.4.4. Scalability

An efficient technique for security and confidentiality needs to be carried out through
the IoT network because an IoT system involves many network nodes. Heterogeneity means
the connectivity of IoT devices with different identities, release versions, and technical
interfaces to perform different functions. Therefore, IoT needs to handle different devices
and situations and connect among heterogeneous networks and things [97].

2.4.5. Interoperability

In an IoT system, security should not restrict the operational capabilities of IoT nodes.
Many issues are caused by interoperability, such as difficulty developing cross-domain
IoT applications, non-interoperable device implementation in heterogeneous systems, and
user satisfaction.

2.4.6. Autonomous Control

The configuration is needed from users in conventional data systems. However, the
setting must be developed autonomously in the end devices in the IoT network. Moreover,
in IoT systems, end devices are tiny to secure, such as fixed devices that can be easily
destroyed by natural disasters or sensors or mobile phones that can be stolen [98].

2.5. Security and Intrusion Attacks in IoT Systems

With the increase in the number of devices in IoT systems, the increase in vulnerabili-
ties causes security attacks in IoT. For example, if it leaks, data encryption and access control
enable attackers to launch attacks, such as eavesdropping and traffic analysis [99–101].

2.5.1. End Device Attacks

One thing that affects confidential data, such as certificates and keys, is that the attacker
physically stops devices and controls them. At the same time, malicious users pretend to
be authentic, orchestrating other attacks by providing the seized information [102].

2.5.2. Communication Channel Attacks

In some cases, if the communication channels are not encrypted, the attacker tries to
intercept the communication and gain access to confidential data. Sometimes they try to
interfere with or jam wireless channels by transmitting noisy or corrupt signals.
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2.5.3. Network Protocol Attacks

Many attacks, such as blackhole attacks, Sybil attacks, wormhole attacks, denial of
service (DoS) attacks, and reply attacks, are caused by vulnerabilities in network protocol.
Therefore, these attacks would degrade the performance and precision of protocols [103].

2.5.4. Sensory Data Attacks

In the IoT system, ad hoc protocols are used for communication. Messages in the
system are transferred hop by hop until they reach a destination, allowing attackers to
modify data, which characterizes the process by which attackers modify data and broadcast
it to other hosts [104]. Attackers transfer data with an authentic identity called data infusion
or corrupt data. In a DoS attack on an IoT system, the system’s resources are consumed
so that they will not be available to the users on request [105]. However, these attacks
consume many resources, such as energy reserves of sensory nodes and network lifespan
mitigation, and paralyze entire networks [106].

2.5.5. Software Attacks

Mutating and controlling the entire system by using software loopholes is called a
software attack. Malicious scripts, worms, or viruses are base of these attacks. Intrusion
detection systems in the traditional security protocols are used to prevent such attacks [107].

3. Background of BC

BC is the technology behind the virtual Bitcoin cryptocurrency developed by Satoshi
Nakamoto in 2008, and it can be defined as a decentralized, transparent ledger on a peer-to-
peer network that contains data units called transactions. A collection of transactions is
called a block. In a distributed ledger, a BC is created with all confirmed blocks, and each
block is linked to the previous block using the cryptographic hash code of the block [108].
In BC, every participant on a peer-to-peer network can approve and verify the behavior and
transaction of other participants. This infrastructure is resistant to tampering and reduces
the vulnerability of a single point of failure. A consensus mechanism principle imposes a
mutual agreement and strict rules among network nodes. The network authorities do not
regulate it. Therefore, a BC ledger is available to all members, and the consensus mechanism
refers to a process in BC to synchronize the decentralized ledger across all nodes.

The number of consecutive blocks connected to form a chain of blocks is termed BC,
and the first block is called genesis. Each block in the chain is connected to the previous
block with a hash code, and each block contains timestamp, nonce, and transaction history.
The central concept is decentralization [109–112] and security in BC, where each node is a
device that stores data securely. The BC system ensures security for each transaction made.
Satoshi Nakamoto et al. stated that BC is not based on the third-party Bitcoin, with the
first block created in January 2009. The timeframe between 2009 to 2013, referred to as
BC 1.0, represents Bitcoin, and the next two years as BC 2.0, where smart contracts and
cryptocurrency helped improve the financial area. During this duration, bitcoin-based
trading and currency exchange existed, where investment in BC started from $93 million to
$550 million in two years from 2013 [113] and grew to $2.3 billion in 2021. Overall, BC is
composed of three core parts, the block, chain, and network. A block stores information
that is immutable once stored, and it cannot be modified until all other blocks validate and
verify it, while the size and period depend on the type of BC. A chain is a function that
involves the formation of a chain by linking a list of blocks leading to BC. BC blocks are
considered nodes, and connected nodes form a network. Routes are considered nodes in a
conventional network.

Two types of users can interact with BC, namely the reader and writer. The reader is
a passive participant and can only analyze record contents and validate BC. On the other
hand, the writer is an active participant who can participate in the transaction process
to extend the chain by using the consensus protocol [114,115]. Thus, three categories of
BC are based on the permission given to the users for interaction with a ledger. A user
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can access the main chain in the consensus protocol allowed by the public BC without
restrictions as a reader or writer. Mining is mainly based on incentives. Therefore, the
public ledger cost is higher than a private ledger. Furthermore, the time to complete a
transaction is longer in public BC than in private because of less connectivity in nodes [116].
Some examples of public BC are Bitcoin, Zerocash, and Ethereum [117]. In a private BC,
the number of nodes is limited; they can be identified, and to selected miner nodes, only
participation in the transaction is available. Compared to the public BC, a private BC
is more confidential in terms of user information, and the user only has access to the
data linked with him. As a result, transaction throughput is greater because committing
transactions is less, and the transaction speed is faster [118]. Examples are multichain [119]
and Quorum [120]. Consortium BC developed the aim for when the specific industry faces
difficulties in scaling the effect of cooperation. It is a hybrid of private and public BC and
is closer to private [121]. Moreover, it is decentralized and under the supervision of a
particular group [122]. A multi-party consensus exists in which only predetermined nodes
can authenticate all of the operations. A node can establish its instructions, modify account
balances, and modify or delete erroneous transactions if all nodes agree and consortium BC
execution is weak against malicious nodes due to its centralized feature. Table 3 presents a
summary of the known types of BC.

Table 3. Summary of known types of BC.

S.No BC Types Description

1 Public BC The transaction is open to the public for verification
Open source public can read code

2 Private BC Only trusted parties can participate, validate and verify a transaction
3 Consortium BC Semi-private, which users of different organizations control

4 Enterprise Ethereum BC
Second largest open source enterprise BC

Use for general purpose
Facilitates smart contracts and distributed apps dApps

5 Enterprise Hyperledger Fabric

Open-source
Permissioned distributed ledger developed by the Linux Foundation-hosted

Hyperledger consortium
To interact with Hyperledger Fabric Network, clients use SKD or REST API

6 Public Permissioned BC Bridges the gap between the public permission-less network
Examples are C3’s Corda, Fabric Hyperledger

7 Private Permissioned BC Permissioned BC
Only selected participants can join the BC

8 Customized BC Customized
Public/Private BC

Developers uses programming language such as Go language, C++, java, python, etc.
to analyze their application performance

9 Enterprise Permission BC Enterprise-level BC such as Hyperledger Fabric
Permission needed for participation

10 Cloud BC BC operated by third-party clouds such as AWS

3.1. Basics of BC Technology

Several research articles organize BC into different layers [123,124]. This section will
discuss BC’s five layers’ core properties, such as security, integrity, and immutability.
Figure 1 presents the layered architecture of blockchain.

3.1.1. The Data Layer

This layer manages the hash function, digital signature, blocks, and Merkle tree.
BC has a fundamental part called blocks, where the genesis block is the first block in the

chain connected with other confirmed blocks, and each block in the chain has information
called transactions. One information field belonging to a block is the hashtag of its previous
block used to create a link between them. A typical block has two parts, namely transaction
records and a header. Any modification to the block is impossible because all confirmed
blocks in the chain can be traced back. Figure 2 presents the block structure of BC.
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Figure 1. The layered architecture of BC.

Figure 2. Block structure of BC.
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Merkle tree checks and summarizes the content of large datasets securely and effi-
ciently in binary tree structure form. Each node of the network keeps a complete copy
of all transactions that the user has never committed on the BC if the transaction into
Merkle trees is not packed [125]. Moreover, the Merkle tree of all transactions, generating
a digital fingerprint to summarize transactions within a block, enables users to check if a
transaction is included or not in a block. One field in the block’s header contains the Merkle
tree root that was generated while making the block. In essence, the Merkle tree or root
hash involves continuously hashing node pairs until only one hash is left. The hash of the
previous hash is in a non-leaf node, while the hash of transaction data is inside a leaf node.
To ensure trust transactions and associated data are signed with the user’s private key,
they can securely exchange digital currencies or smart contracts. For authentication, the
block header generally includes a hash of the previous block. The nonce uses the consensus
mechanism, which generates a hash value. The time at which a block is created is known
as a timestamp.

To authenticate and ensure the integrity of digital content, a digital signature (DS) can
be used [126]. DS uses public-key cryptography (PKI), which uses the public and private
keys as a pair but asymmetrically (not identical). The pair of keys can be shared with
authorized entities that do not disclose the private key to anyone. The pair of keys can
encrypt a message.

3.1.2. The Application Layer

Smart contracts, chain code, and dApps are inside the application layer of BC and
are further divided into sub-layers, i.e., the presentation and execution layers. The user
interface, APIs, and scripts belong to the presentation layer, while chain code, smart
contract, and other underlying rules are part of the execution layer. The presentation and
execution layers work together, i.e., the presentation layer informs the execution layer to
execute transactions. Examples are Hyperledger Fabric receiving instructions in chain code
and smart contracts in Ethereum Virtual Machine. The components of the application layer
are discussed below.

3.1.3. Smart Contract

Smart contract [127], developed in the Ethereum runtime solidity language, is a
bytecode produced by the compiler and is run faster on EVM. The network is isolated from
the code executed on EVM, and after deploying on EMV bytecode, the smart contract is
assigned a unique address. A smart contract is business logic in several functions that
run when a transaction against those functions is issued. For example, a state change in a
decentralized ledger results in a transaction related to a smart contract.

3.1.4. Chaincode

The chain code of Hyperledger Fabric groups several smart contracts and deploy them
in the BC business network. For example, an insurance application in a chain code can
group multiple smart contracts such as claim, processing, liability, etc. Furthermore, the
chain code defines the schema of the ledger’s data based on the consensus that initiates it.
Finally, the chain code further governs packaging, deployment, and response to queries
for ledger data. The chain code is run on a secure docker container, and unlike EVM in
Hyperledger, the chain code is developed in many languages, such as Java, Go, and Node.js,
on peer nodes. The client applications use REST API or SDK to access the chain code.
According to his policy, it is initiated for a specific channel endorsed by an administrator.

3.1.5. dApps

A web application that runs on top of distributed BC technologies, such as Bitcoin,
Ethereum, and Hyperledger Fabric, can interact with BC using the chain code or a smart
contract known as dApp. dApp is not controlled by a single entity like a conventional app
once installed on the BC network.
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3.2. Performance Metrics of BC Application

Nowadays, many BC-based applications are being developed, and it is essential to
evaluate performance and success for several use cases. Therefore, a comprehensive survey
was conducted by Jamil et al. to assess BC performance parameters, metrics, and tools [128].
Figure 3 presents performance metrics and parameters for assessing BC-leveraged IOT
applications and decentralized transaction ledgers (DTLs).

Figure 3. Performance metrics used for BC applications evaluation.

Transactions are timestamped and checked before inserting into a cryptographically
protected block, using a hash technique by BC. Immutability is achieved with a chain of
connected blocks so that each block header has a hash value containing metadata of the
previous block [129].

4. Enabling Technologies for Secured IoHT

In 1999, the concept of IoT developed in the interconnected global network for the first
time. Through wireless communication, sensing, and information processing technologies,
which interacted with each other using their processing and communication capabilities,
the smart object was autonomously contained in the IoT core. These concepts developed in
recent years from sensing environmental data that provide applications, as well as services
for communications, analytics, and exchange of information [130]. Different interpretation
contexts are used for IoT depending on the application context, such as user-centric, things-
centric, semantic, and internet-centric [131].

4.1. IoHT

IoT can be explicitly applied to healthcare, such as monitoring vital signs in the
hospital ward. The IoHT consists of connected objects with the potential to transfer and
process data to enhance patient health. This patient-centric representation comprises four
different layers, described below.
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4.1.1. Acquisition

Smart health objects, such as medical devices and wearables, are used with communi-
cation technologies, such as Bluetooth and Wi-Fi to collect data associated with vital signs
or other physiological situations.

4.1.2. Storage

Cloud computing stores collected data that is profoundly interoperable and scalable,
given its fundamental characteristics, including on-demand self-service, broad network
access, resource pooling to attend to scalable demand, rapid elasticity, and metering capa-
bility. Another essential characteristic is a PHR with semantic interoperability using patient
information registration.

4.1.3. Processing

Intelligent algorithms are based on ML techniques instead of traditional heuristic
approaches that deal with patient data analysis. Advanced data fusion and predictive
analytics are expected to better infer patient health deterioration, optimizing resources.

4.1.4. Presentation

Results generated from the combination of previous layers can be used to take the
form of alerts, graphs, actions, and charts. In addition, de-identified data can be combined
from different PHRs within a particular context to obtain epidemiological views [132].

Figure 4 presents the perspective architecture of intelligent and secured IoHT. The
application of IoT to health assistance is still outset, but it has the potential to raise the
quality of life, enhance user experience, and decrease the cost of the resources [133]. IoHT,
from a healthcare provider’s view, can lessen service downtime, recognize the best time for
refining supplies, and allot insufficient resources efficiently [134].

Figure 4. The perspective architecture of intelligent and secured IoHT.

Nurses can assess the level of pain or consciousness by using manual sphygmo-
manometers and stethoscopes, or by conducting questionnaires or manually collecting vital
signs. Thus, IoHT can help achieve PCC and patient-related data using smartphones or
tablets and reduce errors in registering vital signs and elapsed time instead of conventional
manual annotation [135].

Another option is wearable technology, which can be used to collect vital signs [136].
One trend regarding smart health objects interconnection is to shift from manufacturing
standards to using IP-based protocols, such as the IPv6 over 6LoWPAN [137]. For example,
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Aung et al. introduced a solution to assess pain using sensors, including an accelerator
and location sensor for activity evaluation, audio analysis of speech, and facial expres-
sion identification based on image processing that uses self-reported data [138]. Many
commercial applications for pain evaluation exist for mobile devices, as highlighted by
the authors. Similarly, for assessing the level of consciousness, Aung and colleagues used
image processing to evaluate eye movement for assessing verbal responses and used an
accelerometer to help determine motor responses. From an IoHT viewpoint [139,140], pos-
sibilities are presented in the literature for monitoring blood pressure, body temperature,
heart rate, respiratory rate, and oxygen saturation. In addition, to monitor the urine output
of critical patients, a device was suggested by Otero and colleagues. Various proposals
employ sensors or other medical devices that communicate via RFID, NFC, or Bluetooth to
a smartphone and further transmit this information to a middleware, typically inside a fog
or cloud computing infrastructure. Figure 5 presents the healthcare applications of IoHT.

Figure 5. Healthcare applications of IoHT.

4.2. IoT-based Healthcare Applications
4.2.1. Monitoring Physiological and Pathological Signals

A framework resulting from the IoT paradigm with a combination of mobile com-
munication technologies subsidizes applications for monitoring, such as the generation
of statistical information and health records related to a health condition that can replace
conventional hospital information systems [141–148]. Furthermore, this automated system
lowers the risk of errors compared to manual intervention [149]. The system for remote
monitoring of patients consists of three main components [150]:

• Collecting movement and physiological data by data collection and sensing hardware;
• Relaying data to the remote center using communication hardware and software;
• Extracting clinically relevant information from movement and physiological data

using data analysis techniques.
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Sensors adopted by applications can be either in-body or on-body [151]. In addition,
the adoption of high-level environmental and medical sensors [152], such as gyroscopes,
humidity sensors, accelerometers, temperature, glucose, gas, blood pressure, and ECG,
enables continuous monitoring of a patient’s physical and physiological conditions. Fur-
thermore, these data are transmitted by IoT devices to remote data centers provided by
cloud computing [153–155], where processing is scalable, services are highly available, and
storage is infinite. However, this approach’s reliable network connection for processing,
remote storage, and retrieval of medical records imposes further network connectivity
challenges and traffic [156]. Indeed, among the applicative scenarios, 5G brought health
monitoring to the list of ultra-reliable communication requirements [157,158]. Others have
mitigated these challenges to enhance the health-monitoring system by using fog comput-
ing at smart gateways, distributed storage, notification services, and embedded data mining
at the edge of the network to alleviate inflicted challenges by adopting remote access cloud
services [159]. Furthermore, fog computing plays an essential role in latency-sensitive
applications of augmented reality; for instance, EEG-based brain-computer interfaces
are leveraged by pervasive brain monitoring applications [160] or cognitive assistance
systems [161]. In addition, medical devices implanted in human bodies to restore and
enhance human functions are expected by fog-based architectures. These include deep
brain stimulation and the heart muscle stimulation system [162].

4.2.2. Self-Management, Wellness Monitoring, and Prevention

Healthcare 4.0 highly advises a solution of self-management, which is very important.
Big data allows implementing a shift from cure to restraint [163], one of the characteristics
a P4 medicine proposes [164]. Researchers are designing an intelligent system rather than a
simple function that temporarily indicates measured and stored data but provides valuable
feedback to people. For instance, these solutions can implement algorithms that help stop
diseases by designing health interventions for health behavior changes and addressing
modifiable risk factors. In addition, chronic diseases, such as diabetes and obesity, are
examples of self-management for healthcare where the system needs to provide fitness plan
programs [165] and suggestions for empowering and educating nutritional habits [166,167].

4.2.3. Medication Intake Monitoring and Smart Pharmaceuticals

In the elderly, noncompliance with medication is expected, and medication monitoring
identifies related issues, an essential tool for clinicians to manage the disease. Therefore, in
the design of the early prototype, RFID and sensor networks were to be used for the elderly.
In addition, many mobile apps have medication intake tracking, scheduled reminders, and
prescription reminders that reduce unfavorable consequences and achieve effectiveness.
Wearable, intelligent, and integrated IoT connectivity devices are advanced solutions [168].
In this context, smart pharmaceuticals can be defined as electronic packages and delivery
systems for communication to a remote system allowed by internet communication that
can analyze, compile, and store the data [169].

4.2.4. Personalized Healthcare

All user-centric plans belong to personalized healthcare, such as making patient-
specific decisions [170,171]. Data collection from multiple sources is essential because
the analysis of these related data facilitates health and social care decision-making and
delivery. Typical sources of I4.0 vision, such as defibrillator vests, fall detectors, and
implantable insulin pumps, are wearable therapy delivery devices or sensors. These
sources are considered under the P4 medicine paradigm to profoundly highlight its reliance
on the genetic information of each individual [172–174]. Indeed, understanding the biology
of each individual comprehensively impacts diagnosis, pharmacogenomics, predisposition,
prognosis, predisposition, and surveillance [175]. Therefore, big data needs to implement
personalized healthcare for both individuals and populations [176].
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4.2.5. Telepathology, Telemedicine, and Disease Monitoring

In 1980, the first practical telepathology endeavored while integrating video imag-
ing. Moreover, the seminal availability of broadband communication and robotic mi-
croscopy was envisioned as the supporting infrastructure for telepathology services [177].
That resulted in how ICTs to support telepathology, disease monitoring applications, and
telemedicine [178]. The available studies can be classified into two classes: the generic
frameworks’ applicability use cases and the concentration of works on diabetes, cancer
detection, cardiovascular diseases, Parkinson’s, and Alzheimer’s. Thus, these monitoring
systems can adopt and feed informed treatments and large-scale studies tailored to specific
individuals’ results. Furthermore, video cameras integrated into the operating room are
expected in the future, seeing that it opens the door for open surgery and avoids the
physical presence of consultants, as well as allowing an unlimited number of observers to
watch the surgical procedure. Telesurgery is another application of this scenario in which
the surgeon in his cockpit is physically isolated from the operating room [179].

4.2.6. Assisted Living

The increasing aging population raises many issues and challenges for the world
population. The need for better nutrition and healthcare is concerned with increasing the
cost for elderly patients monitored with chronic health conditions [180]. The idea of aging in
place has been proposed to allow patients to remain in the home and avoid hospitalization;
this is called an enhanced living environment. Remotely monitoring patients is required
for safety and for facilitating the implementation of clinical medications. To better connect
older people without moving, robotic and telepresence video conferencing solutions have
been suggested [181]. To measure disabilities and health conditions, parameters that can be
used are heartbeat rate, blood pressure, accelerometer data, and wearable sensors. Thus,
WBAN technologies are most important for assisted-living facilities. To create an ambient-
assisted living, WBAN was used with ambient sensors, where parameters for a living
environment can be discerned using artificial intelligence techniques, such as automated
learning. In case of emergency, healthcare centers can be alerted if usual activities are
detected [182], while in less urgent emergencies, medical engagement is proposed [183].
Fog and cloud technologies provide the on-demand infrastructure that collects patient data
in real-time and processes it all, creating pervasive healthcare that is supportive [184].

4.2.7. Rehabilitation

Home-based rehabilitation with assisted living is expected to bring patients a better
quality of life and significant cost savings for the healthcare system. WBAN technologies
are a primary tool that detects and follows humans’ associated movements with rehabil-
itation practice. Unlike generic assisted living solutions, there are many requirements
and specific constraints in home-based rehabilitation. Solutions associated with home-
based rehabilitation are real-time patient feedback, multi-sensor data fusion, and virtual
reality integration [185,186]. The role of WBANs in home-based rehabilitation is associ-
ated with biofeedback. Users provide feedback with data from measuring a physiological
activity, enabling them to control their physiological activities to improve their health
performance [187,188].

4.3. Convergence Applications of IoT and BC

BC-based IoT applications were discussed in the literature, with a detailed analysis of
the essential aspects of the development of BC-based IoT applications and their current
challenges [189–193]. For instance, Imran et al. highlighted the advantages and challenges
of implementing BC into IoT applications. The surveys, as mentioned earlier, were extended
by analyzing the improvements and challenges of BC-based IoT applications, studying
different existing BC-based IoT platforms, and evaluating their performances. Contrary
to that, BC technologies can manage challenges associated with IoT. In addition, data
structure and consensus protocol enhancement that can fulfill the BC-based IoT application
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requirements alongside manipulating their challenges were discussed. Few studies have
reviewed the security specifications to develop BC-based IoT and IIoT solutions and
explored how the implementation of BC with its intrinsic properties can enhance better
security in IoT and IIoT applications. Finally, performance benefits of BC technologies and
BC-based IoT applications against IoT requirements were collected, highlighting practical
issues that result from the implementation of BC in IoT [194–199].

In this section, we discuss the scientific community’s perspective of BC-based solutions
and objectives for meeting the challenges of IoHT that were discussed in the earlier section
on the IoT background. Decentralization is a salient feature of BC that solves a single-point-
of-failure problem in IoT [200]. In addition, as the data are put into the blocks of a peer-
to-peer network, the BC system opposes malicious attacks and technological malfunction.
Therefore, the availability or security is not endangered even if any node goes offline, while
old databases use multiple servers and are highly prone to cyber-attacks and technological
failure. BC is more secure and reliable from many perspectives [201]. The transaction is
encrypted and linked to the previous transaction as approved. Information is put on a
network of computers rather than a single server, stopping attackers from jeopardizing
transaction data. Public and private key infrastructure is used to further strengthen security.
Authentication of assets, fraud prevention, historical data transactions to assist, and tracking
goods in a complex supply chain are easier in BC than in a conventional ledger. Transactions
history is transparent on the BC network as all transaction histories to all participants are
available on the distributed network. Every node keeps an identical copy rather than in a
conventional system in which each node keeps individual copies. In addition, a consensus
process is used, which means all nodes agree to approve modifications, and all users have
equal rights to link, track, and verify a transaction, which results in accuracy, robustness,
and transparency. The immutability feature in BC is a prominent feature that protects data
from alteration [202]. Therefore, BC uses immutable hash chains and digital signatures
to archive data transactions and events in a preserved, authenticity-guaranteed manner.
BC reduces operating costs by requiring no third parties and infrastructure deployment
that guarantees business operations [203]. Transactions are timestamped and checked
before inserting into a cryptographically protected block using a hash technique by BC.
Immutability is achieved with a chain of connected blocks so that each block header has a
hash value containing metadata of the previous block.

The IoT connects objects, goods, and individuals that allow data capture from em-
bedded processors, actuators, and sensors to centralized or cloud servers. IoT analytic
tools employ these data to contribute to new services and develop new business ideas.
However, the privacy and security of the IoT ecosystem is a paramount concern that, on
a large scale, affects its deployment, and it is vulnerable to security, such as malicious
attacks, distributed denial of service (DDoS), and ransomware attacks. Figure 6 depicts the
convergence applications of BC and IoT in a smart healthcare environment. Ensuring and
securing the trust of data shared between heterogeneous IoT devices met by the common
BC assures data immutability. Therefore, BC with decentralized architecture provides a
feasible solution for IoT systems.

BC can be used as an auditable log of events, security, and Txs as per the type of
IoT application, and the smart contract [204] can control and monitor access rights to the
sensor or user, set policies, and execute many actions on predefined conditions. An issue
related to bandwidth appeared in BC due to a complete replication mechanism where
every node stores copies of all the blocks [205]. Moreover, the quality of the decentralized
consensus process shows that BC nodes exchange BC-related information to join the process
of consensus, validate TXs, and create new blocks [206]. Bitcoin-derived BC protocol uses
a gossip protocol to broadcast all state modifications to the distributed ledger to all the
nodes joining the consensus process. Bitcoin BC is permissionless and public. Anyone
can participate and join the consensus process. Thus, the node with the smallest available
bandwidth will become the network bottleneck. Moreover, with the increase in BC size,
bandwidth, computing power, and storage requirements are required for participants who
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join the consensus process. Hence, the issue of centralization occurs if some nodes cannot
process BC.

Figure 6. Integrated healthcare applications of BC and IoT.

E-health framework-related state-of-the-art works are reviewed in this section. E-
health allows and offers medical benefits and hospital services to people to avail their
health services fast. Using BC in e-health can address critical privacy and security issues
and make e-health decentralized [207–209]. Research studies have used technologies
such as BC, IoT, cloud, and fog to share data, manage storage, and secure networks.
Using these technologies is the researchers’ primary purpose. Some of the applications use
patented blockchains developed for their appropriate requirements rather than open-source
blockchains similar to Ethereum and Hyperledger.

BC technology solved some issues of healthcare systems inherent in traditional client-
server data management systems, such as data stewardship, data privacy, and single
point of failure. MeDShare, a BC-based system, proposed to solve such problems as data
sharing among medical custodians by implementing access control and smart contracts
to trace the data behavior and revoke access from the offenders in case of permission
violations. In ref. [210], the authors implemented BC to simplify patient-centric operability
in healthcare. A parallel healthcare system (PHR) based on AI, computational experiments,
and parallel execution, relies on consortium BC to connect patients, health bureaus, and
hospitals to enable data sharing, careful inspection, and review of medical records [211].
Private BC and smart-contract-based protected health information systems proposed by
Griggs et al. achieve secure medical records storage by defining granular access rules.
The GuardHealth framework provides data sharing based on consortium BC to maintain
authentication, confidentiality, and efficient data preservation [212]. A summary of the
convergence applications of healthcare based on IoT and BC is given in Table 4.
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Table 4. Summary of convergence applications of IoT and BC for healthcare.

Application Contributions Year—References

BC for
Healthcare

“GuardHealth” framework based on
consortium BC for secure data sharing 2020—Wang et al. [212]

MeDShare for effective data sharing among
medical caregivers 2017—Xia et al. [209]

Patients direct clinical examination by using
IoT-enabled medical devices 2020—Celesti et al. [213]

Using BC technology simplifies patient-centric
interoperability in healthcare 2018—Gordon et al. [210]

The framework used to implement BC in EHRs 2019—Shahnaz et al. [214]
Consortium BC is used to connect patients and
health centers and enable healthcare audibility,

share data, and review medical records
2018—Wang et al. [211]

Patient pivotal healthcare system for
data management 2019—Omar et al. [211]

By utilizing Smart contracts and BC to
maintain PHI 2018—Griggs et al. [215]

In the current e-health system, most patients do not have access to their EMR system,
and the patients that have access do not want a duplicate of their medical data or unnec-
essary tests. Patients are enabled by BC to fully control and access their medical records,
which impacts efficiency and costs in healthcare and solves the issues for remote patients
that access their data from outside by providing authorization and integrity of data.

4.3.1. Hospital and Drug Management

A cloud-driven model that uses front-end technologies, such as HTML and JavaScript,
is based on a BC-based vital sign monitoring platform developed by Jamil et al. that helps
patients in hospitals equipped with wearable sensors to transfer vital signs to nodes on BC
networks [216].

Product-centered services are provided by BC using REST API, which is triggered by
web clients or IoT devices.

The system ensures patient vital sign information confidentiality and consistency with
data and a hosted BC ledger. Vital sign transactions are stored in a couch database installed
on the nodes in the P2P network of BC. Hyperledger Caliper is used to evaluate system
performance [217] in terms of several matrices, such as transaction latency (TL), transaction
read latency (TRL), read throughput (RT), and transaction read throughput (TRT). The
cloud of federated hospitals is connected with an e-health system by using Ethereum BC to
make a telemedical laboratory, and the proposed healthcare system is only described while
performance analysis is not performed to measure the feasibility of a system. In healthcare,
patients are forced to perform tests and purchase medicine from clinics that physicians
prefer due to inappropriate regulations and national policies. In addition, patients’ health
data and medical tests are mainly controlled by physicians who do not allow patients and
irrelevant persons to access them. Therefore, the patients perform those tests outside twice.
To overcome this issue, a composite system for concocting multimedia generated from IoT
healthcare based on BC has two types of nodes, executing nodes and miner nodes, and NS2
is used for simulation [218].

BC can track and secure the entire drug distribution process in the supply chain to
avoid diluted drugs. In a drug delivery system, BC records every transaction generated
in the drug production process in a permissioned BC, which archives traceability and
transparency and avoids drug dilution, thus allowing authorities to trust the method.
A cloud-based framework combined with BC and IoT connects a data-sharing platform
with a data management system by decentralizing the mobile BC network. Still, scalability
and communication cost were not examined; however, privacy and integrity are guaranteed.
Researchers have tremendous interest in making data storage stable and secure using BC
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technologies in healthcare. Still, few countries, such as Peru and Estonia, used BC for
managing health data. A private health management system based on BC was introduced
in Peru. The system used the cloud services of Amazon to control the medical supply chain
and ensure security between clients, sales managers, and manufacturers. The drawback of
the system is the lack of consideration for the confidentiality of the data [219].

4.3.2. Privacy Preservation in E-Health

In e-health, it is essential to preserve privacy between patient and physician to achieve
quality treatment, avoid embarrassment, and tackle economic damage [220]. BC-based
IoT e-health was designed to ensure the confidentiality of healthcare providers and pa-
tients [221]. The IoT network and cloud storage are integrated for privacy preservation. In
BC, indexing the records is used to secure medical records, while a smart contract is used
to secure electronic medical records (EMR) [222]. A privacy-preserved cloud health data
platform was proposed by Uddin et al. to encrypt health records based on the BC smart
contract and store them in the BC ledger on a cloud, while data confidentiality is solved
by encrypting it into BC, which enhances the transparency and security of data storage on
the cloud [223]. The drawback of this model is that the comparison of smart contracts and
traditional techniques are not made for the performance evaluation.

Similarly, a related study presented by Tariq et al. developed a cloud-based BC EHR
platform that timestamps data before storing it in BC, increasing the traceability and validity
of medical records. However, the system’s weakness is that a smart contract has not been
implemented to manage data storage. In addition, the BC ledger is transparent to all
entities, and before writing the contents of the block, miners verify it first. Therefore, it
is a significant threat to patients’ privacy in the e-health system. The BC peer-to-peer
network is restructured using attribute-based encryption to classify BC nodes for cluster
head miners based on their roles and attribute authorities in the BC network. As a result,
IoT devices and cluster heads are connected to collect IoT data in the BC network and
perform computation-intensive operations, while an attribute authority (AA) provides
nurses, doctors, and other professionals related to health acts as a miner that decrypts data.
Table 5 summarizes IoHT applications based on integrating IoT, ML, and BC, along with
challenges and solutions.

Table 5. Summary of IoHT applications based on IoT, ML, and BC.

Pillars Challenges Solutions/Benefits

IoT
Scalability [149,151,224]
Energy constraints [20]

Security [224–226]

Interoperability, evolvability thanks to open
communication standards [151]

Enhanced electromedical devices based on
closed-loop design and predictive

maintenance [19]

Big Data The opacity of analytics [227,228]
Extreme heterogeneity [229]

New insights and actionable information from
new data sources [230]

Natural transformation of descriptive research
into predictive and prescriptive one [231]

Cloud/Fog
Computing

Infrastructure availability [45]
Performance monitoring

Data privacy [45]
The opacity of the infrastructure

Paradigmatic model for an offering of services
to patients or healthcare operators themselves
Infrastructure for high-level functions such as
data analysis and information systems [232]

4.3.3. mHealth Based on BC

Mobile devices in IoT enhance how patients engage in the treatment process using a
patient app, secure text messaging, and telemedicine. Many researchers [233,234] secure
mobile apps using BC to capture data safely from the wearable sensors of patients and
deliver health services fast. mHealth is a mobile app based on JavaScript object notation
(JSON) as the primary language. mHealth is based on BC to secure health data by modifying
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the collected data from wearable sensors. The BC used is a private BC developed using
Hyperledger Fabric [235]. mHealth does not adapt to security issues not examined between
mobile apps and sensors.

4.3.4. Access Control in E-Health

An essential issue in e-health is security, which can cause the endangerment of pa-
tients’ privacy by maliciously changing diagnostic data [236]. Access control is a security
feature that ensures that only authorized users, groups, or organizations with correct
privileges can access health services in an organization. Various techniques presented in
the literature solve issues related to access controls and authentication in the BC e-health
system [237–239].

The BC ledger was used to store access policies of medical records using many algo-
rithms in the patient-centric framework that defined access policies [240]. In addition, tools
such as Composer, Hyperledger Caliper, Hyperledger Fabric, Docker, and Wireshark were
used to check performance in terms of latency and throughput.

Attribute-based encryption (ABE) and Ethereum BC used an interplanetary file system
(IPFS) combined with decentralized cloud architecture to form decentralized storage. In
addition, an access control management system based on a smart contract was used to
handle keyword searches and improve the privacy of the framework and quality of service
(QoS). However, delays arising from ABE, data security, and access control approach are
drawbacks that are not analyzed.

A framework named HPA is a health prescription framework privileged for medical
IoT devices provided with the security access token (SAT), representing that the IoT device
is authenticated and can request services from the system [241]. Although performance
analysis was not performed, the model is conceptually based on OpenID. Privacy laws
in Europe, such as the drafted DGPR health regulations, enforce service providers to
provide a report on the request of users and provide all the data in a readable format on
a computer [242]. A conceptual e-health framework based on cloud and BC technology
efficiently shares health data with authorized users and complies with regulations, such as
GDPR [243]. The technological solution of BC can solve current storage methods, such as
conventional cloud IoT-enabled healthcare systems and electronic health records (EHR) for
health data that is sensitive to data attacks, to be more secure and effective. On-chain storage
is another method to store records, but it is costly to insert a block on-chain [244]. This
method is also not technologically or financially feasible. Off-chain is another technique
with a hash code, a piece of tiny data stored in the BC ledger while the data are stored
in conventional repositories. A conceptual model was presented for sharing personal
health data continuously using BC-based decentralized cloud storage [245]. Off-chain in
traditional cloud storage stores encrypted health datasets, while BC stores hash values to
decrease storage load in the BC framework. Data sharing in e-health is based on BC.

BC has decentralization and manipulation resistance characteristics that resolve patient
privacy issues effectively [246]. BC and smart contracts, used by MeDShare, are used to
transmit data amongst untrusted cloud services providers (CSP), trace data access behavior
of users, and identify breaches in data. Without confidentiality of data, BC-based CSPs
facilitate such auditing without jeopardizing it. Access control of confidential data is an
issue in cloud-based data processing that can solve user authentication for transferring
data in the cloud layer. For instance, a secure cryptographic approach ensures efficient
access control [247].

Usually, physicians who have medication and care expertise for a particular disease
need cross-border medical experience from many worldwide medical practitioners. BC
can play an essential role in facilitating global knowledge exchange for medical care, treat-
ment, and personal diagnosis. Artificial intelligence and parallel execution are adopted
for precision medical care and treatment in a hybrid healthcare system [248]. Descrip-
tive intelligence or artificial healthcare systems simulate and model doctor and patient
dynamic and static characteristics. The phase in which various disease scenarios assess the
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applicability of an appropriate therapeutic regimen in AHS by computational experiments
implementation is called predictive intelligence. Furthermore, specialists endorsed a list of
the final regimen in both the current health care system and AHS to provide prescriptive
intelligence. The system includes hospitals, healthcare institutions, patients, health officials,
medical researchers, and BC-powered smart contracts to enable electronic health records
(EHRs) to be inspected and reciprocated and is based on consortium BC.

BC-based decentralized data security techniques were introduced, including health-
care providers, patients, overlay networks, smart contracts, and cloud servers [249]. First,
cloud storage stores medical records in block form connected to BC and stores its hash
values, which facilitates the tracking of all changes in the cloud data, and a dual encryption
technique is used to secure data. However, the drawback is that the simulations on the
proposed security technique have not been performed. Second, Medchain is a platform for
sharing medical records with BC P2P and typical P2P networks. Whereas the BC network
stores session, data, and fingerprints operations, such as immutable data digests, the regu-
lar P2P network stores sessions and not mutable data [250]. A BC-based medical sharing
system collects medical summaries by provincial hospitals from EMRs of regional hospi-
tals [251]. A block contains medical data provided by local hospitals and then transfers
data to the consensus nodes. Thus, verifying and validating blocks and initiating queries is
the role of hospitals.

4.3.5. E-Health Based on BC Smart Contract

With the development of BC, a smart contract is one of the most demanded technolo-
gies due to its automated nature. Computer programming encodes rules and agreements
stored in a public ledger running automatically when a related event occurs on the BC
without a third party. For example, accessing medical records and permission management
systems are based on the timed smart contract [252]. By implementing suitable user policies,
computations on the EMRs can be monitored by introducing an agreement in the research
control transactions. Furthermore, an incentive-based mining process was introduced to
eradicate the need for a digital currency where nodes with low ratings create the block.

In contrast, nodes with higher ratings approve the blocks on the BC network that
ensure consistency. Ethereum BC was used to carry out experiments, while the drawbacks
of the system are the security and privacy of health data, which were not addressed. The
healthcare professionals and patients used remote patient monitoring systems based on
BC to provide wearable sensors and other medical service licenses [253]. In addition, the
emergency alert system triggers an alert to inform consumers and healthcare professionals
that they are remotely monitoring patients. Remix, an open-source web environment,
was used for debugging, implementing, and testing their smart contract. Ethereum and
smart-contract-based data retrieval have no security and privacy.

The BC-based medical platform protects the management of EMRs of different hospital
departments, working by using smart contracts to store record logs, health data, and access
to medical data of varying health organization’s regulations [254]. The framework was
tested on a network of hospitals to show systems’ performance in terms of effectiveness,
efficiency, and real-time validation. In addition, Hyperledger was used to develop a smart
contract. A forensic-enabled framework for a medical device based on BC technology uses
smart contacts for fine-grained authorization techniques [255]. Smart contracts define poli-
cies to ensure the confidentiality and integrity of transaction logs, while the PoS consensus
technique validates BC transactions. API is used to query data by clinicians, healthcare
professionals, patients, and researchers from a database at any given time. BC was used in
the traditional biomedical database to ensure integrity and non-repudiation in retrieving
information. The system was implemented in Ethereum BC using the Solidity language.
The system has three primary parts:

• To record all user queries in the BC, a smart contract between the user interface and
database is needed.

• An interface is used for communicating with the biomedical interface.
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• The front-end interface is used to make health-based queries by third parties on
lightweight BC.

Researchers have presented different ideas to enhance current BC technology. Cur-
rently, it requires much computational power due to its mathematical principles, such as
the Merkel Hash tree, cryptographic key systems, and PoW [256].

Healthcare architecture based on lightweight BC is geographically divided into differ-
ent roles in which the cluster head, called the head BC manager (HBM), is responsible for
handling transactions and making a block. To avoid a fork, it maintains a single copy of the
ledger for its members [257]. However, it cannot guarantee the tamperproof feature of the
ledger, but it can reduce communication and computational delay. The system simulation
was done in NS3, while the performance was compared to Bitcoin BC. BC-based healthcare
improved power consumption using lightweight cryptographic techniques, such as the
Ring Signature and the ARX, to improve privacy [258]. For instance, IoBHealth systems
based on IoT, eHealthcare, and BC can access and manage EHR data securely, robustly,
and effectively. A graphical user interface was implemented to visualize dashboards and
display data of the network users. Furthermore, remote patient monitoring based on
advanced, scalable BC used the GHOSTDAG protocol that examines each transaction as a
node rather than a single large chain of blocks [259].

The integration of BC with wearable sensors and its challenges are addressed by
many entities, such as cloud storage, smart contracts, BC networks, health providers, and
patients with wearable IoT devices provided for healthcare achievements [260]. A node
with high computational power in the BC algorithm is selected as a cluster head among the
hierarchical topology of the network for a group of nodes to check and process blocks as
representative of its members. A proof of familiarity (PoF) is a novel consensus technique
for executing the e-health BC that requires collaborative medical decision-making to provide
medical services to a patient [261]. A cured patient experience is asked of a new patient,
giving him similar symptoms and disease. The medical opinion from many physicians,
the strategic policies from insurance providers, and a favorable joint medical decision are
developed from collecting these parties’ feedback. On-chain is used to store findings and
hash of the medical data, while off-chain is used to store medical data. The disadvantage of
this study is the lack of practical implementation to study the feasibility [262].

4.4. Convergence Applications of IoT, BC, and ML

In the context of health informatics, big data means dealing with structured and
unstructured data, real-time imaging, data generated from IoHT devices, and point-of-
care-diagnostic devices [263]. In addition, social media and environmental factors can be
considered essential sources of health information [264]. Big data analysis uses intelligent
algorithms to process massive vital signs to identify risks and take corrective decisions
to avoid risks. Researchers who report big data analysis applications demonstrate the
importance of this field of study.

The ML-based approach that deals with data-driven models have three phases, data
acquisition and preprocessing extraction of features, selection, and learning [265,266].
Data acquisition is obtained through IoHT devices and any device with registration and
synchronization abilities in the hospitals. Before selecting and extracting features, data
are preprocessed. Classifier or regressor algorithms then use the extracted features to map
the relationship between the collected data and the venture of health degeneration [267].
Finally, in the case of the deep learning technique, features are selected using an algorithm
rather than the manual feature selection approach used recently.

Various ML approaches are used in the literature to integrate vital signs. A support
vector machine (SVM) is one of them. It creates a risk score in a multimodal way where
the data are collected at the admission time and the remainder of the admission time
[81static]. Another method that gained attraction is the decision tree that classifies the
diseases. Furthermore, neural networks (NNs) combined with other artificial intelligence
approaches have been used in medical-related research. A set of widely used techniques
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are based on the long-short-term memory (LSTM) recurrent neural network (RNN) for
pattern recognition in the EHR data [268]. In addition, gated recurrent units (GRU) is a
new RNN mechanism used to create a deep model [269].

The deep learning technique consists of many NNs with several hidden layers and
neurons [270]. A massive quantity of neurons covers a lot of raw data, while the chance of
cascading different layers allows for higher abstraction and bypassing manual interven-
tion [271]. The methodology that has a vital role in health informatics is the convolutional
neural network (CNN) [272]. Many studies about CNN concentrate on medical images,
while some up-to-date work uses it for vital sign analysis [273].

IoT allows providers to utilize assets to reduce costs and provide new revenue oppor-
tunities that impact patient care. In addition, IoT can maintain individual well-being and
alter and improve health care delivery [274]. As a result, many IoT applications have been
developed for healthcare services based on the DL technique, including dietary assessment,
disease prediction, and elderly care.

4.4.1. Elderly Care

Recently, in the United Kingdom, the number of older people above 75 years has
reached 2376 [154]. Thus, living alone in homes increased, and it is difficult for the elderly to
take care of themselves. However, these people cannot take care of themselves to maintain
a healthy lifestyle. Therefore, ML-based solutions have been introduced to monitor patients’
positions and activities. For instance, a DL-based model called fall detection was used to
analyze the smart home environment for some posture detection. The system triggers an
alarm when it detects a human falling and helps fallen people get support from others
fast [275]. DL uses RBF and DBN models to classify the posture of the human body with
86% accuracy. DL classifier is trained with the extracted human body position data with
threshold values of different body positions. For example, if a body position threshold of a
person resting on the floor is more than the defined threshold, the person is considered to
have fallen.

In another work [276], CNN detects human falls by extracting images from a video
sequence to learn the human body fall characteristics, showing 99.98% correctness in real-
time. Using CNN for human fall detection in the fog computing environment, using smart
device training, data were collected and fed to a model to extract relevant features from
the collected data and detect the fall [277]. A vision-based tracking technique using the
CNN model was presented by Adhikari et al. [278]. In contrast, others have used time-
sequential mobile data with a recurrent network to accurately and quickly detect falls. The
fall detection system used embedded software based on RNN within wearable devices
to detect the falls of users and inform the monitoring system by notification through a
wireless network, which achieves 98% accuracy [279]. Another android application, named
SmartFall, collects data from wearable smartwatch users connected to a smartphone where
the application is installed [280]. The RNN model is used for real-time detection with low
latency and high privacy, as the computation on a smartphone is directly executed. The
feature can be extracted from camera depth, and it notifies the family by triggering an
alarm when a human fall is detected. The proposed system’s fall detection accuracy is 93%.

Moreover, another fall detection system was developed by implementing LSTM and
CNN combined, named the “ConvLSTM” model. Integrated LSTM and 3D CNN tech-
niques demonstrated 100% accuracy for fall detection. During the preprocessing, features
are extracted from the temporal sequence in each video. Many DL models were used for
disease prediction based on analyzing health data and treatment history. For example, the
CNN model was used for disease prediction of a patient with ductal carcinoma [281]. The
model extracts deep features from digital mammograms and is pretrained on non-medical
images. A CNN model was adopted in the healthcare system to identify the early disease of
Parkinson’s and the problem with the nervous system that affects human movement using
image analysis and classification [282]. A CNN model with 12 layers was used to identify
the cardiovascular disease and detect the disease from breast arterial calcification (BAC)
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and mammograms, which is the method of detection to identify abnormal heartbeats [283].
Similarly, the RNN model, which uses GRU and LSTM models applied to the dataset,
contains the sound of the heart that can identify abnormal heartbeats.

4.4.2. Dietary Assessment

An automatic system for dietary assessment is needed to solve the obesity problem.
A CNN-based system for image recognition was developed to use mobile devices to capture
food images and analyze them to estimate dietary intake [284]. The UEC-256 dataset gives
81.5%, and the Food-101 dataset shows an accuracy of 73.9%. Another food recognition
system based on a CNN model was developed to classify food images using a mobile
system based on the real-time data collected from the IoT [285].

A summary of smart healthcare applications developed and leveraged for IoHT is
presented in Table 6.

Table 6. Summary of Smart Healthcare Applications based on ML in IoHT.

Scenario/Use Cases IoT Based Application Input Datasets DL Models Infrastructures

Smart Healthcare

Dietary assessment

UEC-100/UEC-256/Food-101
datasets [286] CNN

UEC-256/UEC-100
datasets [285] CNN Edge computing

Elderly care

SisFall dataset [279] RNN Cloud computing
Sports-1M/Cameras

fall/FDD/URFD datasets [287] 3D CNN + LSTM Cloud computing

Authors create their data [275] DBN + RBM Cloud computing
[288] CNN + LSTM Cloud computing

URFD dataset [276] CNN Cloud computing
NTU RGB-D dataset [289] LSTM Cloud computing

URFD dataset [277] CNN Fog computing
Smartwatch, Notch, and
Farseeing datasets [280] RNN Edge computing

Coco dataset [278] CNN Cloud computing

Disease prediction

HandPD dataset [290] CNN Cloud computing
PhysioNet/Cardiology
Challenge dataset [291] RNN Cloud computing

ImageNet dataset [281] CNN Cloud computing
Authors use 840 digital

mammograms images collected
from medical systems [283]

CNN Cloud computing

5. Future Research Directions and Relative Demerits of Existing Solutions

Issues in developing secured IoHT include interoperability, security vulnerability, lack
of data analysis and transmission, and the absence of IT and OT convergence. However, the
biggest issue to be solved is a security vulnerability. Connected computing devices in the
information network share information directly with the cloud and therefore cause security
threats and attacks. Distributed Denial of Service attacks based on IoT has shown their
power to threaten business [292]. BC is a perfect solution for IIoT security. A BC platform
for IIoT with deployed smart contracts enabled the development of various distributed
applications for manufacturing using a decentralized, trustless, peer-to-peer network for
IIoT applications.

Autonomous algorithms on smart gateway have been adopted with BC in IoT net-
works. Smart gateway is used as BC nodes to implement BC networks with low-energy IoT
devices, facilitating an event-based messaging system and proof of concept to access BC
networks using resource constraint IoT devices. Two issues are related to using IoT devices
with BC: connectivity issues, which are resolved by the researchers, while the other issue
is related to power and bandwidth consumption needed for BC and is not solved in the
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literature. A privacy-preserving IoT framework developed using a BC-connected gateway
uses the BC network to manage privacy as the underlying infrastructure [293]. The BC
gateway cannot address user privacy but can track and secure user privacy preferences.
However, proposals are conceptual and need to enhance IoT e-health data management
and the BC algorithm. Figure 7 presents the body area sensors network with BC.

Figure 7. Body area sensors network with BC.

BC technology has been used by BC gateway to track and secure the privacy preference
of users, but it cannot address user privacy concerns. However, proposals are conceptual
and still considered to improve IoT e-health data management and the BC algorithm. For a
hacker, health data are easy and fruitful targets, and researchers are the reason to misuse
the storage and secure transmission of protected health information (PHI). Some research
proposals used smart contracts and smart agents as a smart gateway to implement BC
in a body area sensor network (BASN) to build a secure e-health system, for instance,
the wireless body area sensor (WBAN). However, research about IoT, e-health, and BC
regarding privacy and security of end devices related to patients, storage management
of health data, and mining management for BC has very little knowledge to cover this
gap. Similarly, the e-health framework was implemented for the patient agent-assisted
end-to-end decentralized BC [294].

5.1. Integration Challenges and Solutions

• The sensor’s streaming rate is higher than that of a miner that can process blocks in
BC, particularly in Bitcoin;

• Patient’s privacy is at stake as miner nodes process plain text data;
• Sensors cannot enforce access control and perform data encryption due to their limited

processing and memory capacities;
• Different kinds of medical data require extra security, privacy, and QoS. In addition,

sensors or miners cannot determine health data repositories because the choice of
storage is subjective.

Generally, IoT is beginning in healthcare with many smart objects connected, despite
many issues with communication technologies and smart objects. Energy is the central
issue, and research is needed on energy conservation, energy harvesting, and usage to
design and develop zero-entropy systems. Due to potentially drastic escalation, architecture
scalability is an issue among the main concerns. In addition, organizations in hierarchical
subdomains would profit from manageability and performance—BANs deployment and
adoption record-specific design problems.
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As IoT systems cannot fulfill functional design requirements and afford privacy and
security risks, security solutions for IoT design are needed. Currently, there are unreliable
security solutions to heterogeneous and extensive networks. For example, there is a
need for secure and effective architecture to process data from health monitoring sensors,
which generate a large amount of data. A cybersecurity framework presented by Obaidat
et al. covers platform boundaries and the abstraction layer of heterogeneous systems.
Furthermore, connected devices, such as wearables, are more vulnerable to security risks
and need extra security. Devices with limited resources need lightweight algorithms to
secure data management systems. Problems with cloud storage are that it hides the entire
infrastructure, allows the customer to manage operations related to cloud resources, and
provides economies of scale-grade prices [295]; these are the desired properties that limit
the performance when required.

Network performance, the efficiency of communication protocol [296,297], and com-
puting performance are the barriers that are still present. On the other hand, cloud technolo-
gies in the literature report are scalable, and scalability is the primary concern. Furthermore,
adopting a public-cloud network increases researchers’ focus on performance [298,299].
According to the discussion above, data-intensive applications need different stakeholders
to work on service performance, manage, and troubleshoot [300]. Furthermore, as bil-
lions of small devices need to be configured, fog intensifies scalability issues, requiring a
decentralized and scalable management system to be tested. Other issues are flexibility,
power and efficiency, reliability, safety, availability, and maintainability. However, using
third-party hardware for the cloud and fog applications raises concerns about data pri-
vacy [301]. Providers that store sensitive information in their infrastructure encounter
issues that often lose control over data due to low confidence in the provider [302]. An
identity management architecture proposed by Sánchez-Guerrero et al. enables patient-
controlled partial disclosure of her to selected recipients. The system provides solutions
to problems using external services rather than in-house solutions. Unlike the previous
solutions, the proposed system does not require advanced security [303,304]. Moreover,
these services increase availability that provides uninterrupted services with minimum
downtime [305]. Among its characteristics, a significant challenge for Healthcare 4.0 is the
formats, heterogeneity of sources, and attributes of data. Jirkovsky et al. concentrated on
semantic heterogeneity and introduced a framework to encourage interoperability.

There are many advantages IIoT carries, such as the closed-loop design [306]. Patient
feedback from physicians about product effectiveness and usability, health operators, and
a patient can be returned to the design phase. The designers can better realize how the
products can be improved and utilized by collecting these data. Predictive maintenance, the
ability to continuously collect data, enables IoT devices to predict and maintain fault before
failure occurs to provide the opportunity to avoid downtime of the machine. In addition,
new service lines are used by manufacturers, allowing them to continuously monitor and
maintain services through devices so that the service can be constantly improved. Electro-
medical device communication systems have reliability and robustness requirements and
are often tightly bound to jitter and latency. The continuous development and broad
adoption of open standards for protocol design with constraints, such as IEEE 802.15.6
and IEEE 802.15.4, means that a type of non-mutually exclusive solutions will be possible,
improving interoperability in components and devices from different vendors. In the IT
world, the interoperability and pervasiveness of the TCP/IP communication stack have
presented the adoption of wireless local area networks (Wi-Fi). Furthermore, real-world
testing and their interconnection to the internet are growing from small offices or home
offices to much more demanding industrial procedures [307].

The big data technique satisfies the selection of a value from the previously incompre-
hensible data. Operators can examine their processes in the healthcare sector by looking for
new opportunities in consecutively and extensively collected data. Understanding big data
procedures gives valuable in-time information. Furthermore, medical researchers can use
big data technologies to transform descriptive research questions into predictive ones to
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reach the authoritarian ones. Table 7 summarizes the convergence challenges and solutions
of BC in IoHT.

Table 7. Convergence challenges and solutions of BC in IoHT.

Challenges Solutions

Handling Big Data The off-chain technique is used to overcome big data issues in an IoT system by many researchers
using it in an IoT system by integrating BC storage with cloud storage.

Data Concurrency and
Throughput Challenge

This issue is resolved by using the sharding technique by a researcher in which the peer-to-peer
network of BC is divided into different groups. Members of that sharding handle the transactions

because authentication and processing of transactions are generated here in the sharding.

Connectivity Challenges Multi-access edge computing (MEC) is used in literature to host a side-chain for solving
connectivity issues. The side-chain is used to connect IoT devices with the main chain.

Trust BlockBDM is a technique used to handle IoT big data management trust and security issues.

Privacy The privacy issues can be solved by using Ring signature BC, which is encrypted technology
commonly used.

Single Point of Failure The peer-to-peer architecture of BC technology can solve a single point of failure issue in IoT.

5.2. Technical Limitations of BC

Implementation of BC in IoT has many challenges that need to be identified in terms
of security and privacy, scalability, and computational cost [308].

Due to some bottlenecks, there is poor scalability with limited throughput, efficiency,
and high computational cost in current BC. The rapid increase in block time reduces overall
system performance. In addition, the ledger will become notably large if all transactions
are stored in BC [309]. Big data generated by complex systems, such as smart healthcare
in smart cities, leads to complications in data processing based on the BC environment.
Therefore, the realization of BC as an alternative solution to the current systems for large
IoT systems is a viable issue [310]. For example, in their study, Wood et al. stated that
transaction is the computational cost of BC [311]. Transaction processing combines several
steps that consume high computing power, such as heavy security, mining, validating, and
storing it across multiple participants. In addition, there is some consensus process that
also needs an amount of energy, such as PoW, PoS, and pBFT.

6. Conclusions

Healthcare environments are revolutionized using the advancements in computing
and communication technologies. This support and encourage medical practitioners and
researchers to implement their expertise to handle new ideas productively and efficiently
to improve the health diagnosis and monitoring of patients. IoHT lies in the field of
research that raises the use of biosensors, wearables, and other medical devices to improve
patient data management in hospitals, decrease hospitalization times, and enhance patient
healthcare delivery. However, the realization of IoHT has many challenges, such as privacy,
security, safety, and trust. BC technology revolutionized the existing IoT-based healthcare
applications by integrating the promising features for data protection and sharing in
a distributed fashion. Studies show that BC aims to enhance the traditional IoT-based
healthcare applications to provide a safe and transparent environment for patients and
healthcare practitioners. Industrial revolution technologies for the health sector include fog
and cloud computing, IoT, and big data analytics. The traditional IoT-based EHR systems
cannot deal with these paradigms because of inconsistent security policies and data access
structures. BC comes in handy in storing patient data and encountering data integrity and
confidentiality challenges. Therefore, it is a viable solution for addressing existing IoT data
security and privacy challenges. The scientific community has shown a variety of healthcare
applications based on ML to improve health diagnosis and monitoring practices. This
study aimed to present a comprehensive survey to illustrate the implication of integrated
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technologies based on BC, IoT, and AI to meet growing healthcare challenges. First, this
research study examined the background of enabling technologies such as IoT, BC, and
ML to leverage these innovative paradigms in the healthcare sector. Second, we presented
a detailed survey on enabling technologies for intelligent and secure internet of health
things. Third, the peculiarities of the IoHT environment and the security, performance, and
progression of the enabling technologies were discussed. Lastly, we discussed the research
gaps, future directions, and limitations of the enabling technologies.

In future work, we aim to develop and propose an architecture for BC-based secure
and intelligent IoT architecture for patient health monitoring based on predictive and
optimization techniques to enhance the performance efficiency of healthcare systems. This
BC-enabled IoT-based patient health monitoring system will revolutionize the health sector
by integrating unique capabilities to enhance data privacy, security, transparency, and
accountability. In addition, it will consider a viable and robust solution to revolutionize the
health sector by providing a distributed, decentralized, and secured environment for both
patients and health practitioners.

Author Contributions: I. and J.K. conceived the idea for this paper, designed the methodology, and
assisted in write-up of the paper. U.Z. Write the original article and assisted in the design and paper
write-up. F.M., N.I. and M.I. assisted in review and editing. I. and J.K. supervised and proofread this
study. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Research Foundation of Korea grant (NRF-
2022R1A2C1012037).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qayyum, F.; Afzal, T. Worldwide Knowledge Dissemination in Chemistry. J. Intell. Pervasive Soft Comput. 2022, 1. Available online:

https://scirep.institute/journals/index.php/jipsc/article/view/4 (accessed on 24 April 2022).
2. Germanakos, G.P.; Mourlas, C.; Samaras, G. A Mobile Agent Approach for Ubiquitous and Personalized Ehealth Information

Systems. In Proceedings of the Workshop on ‘Personalization for e-Health’ of the 10th International Conference on User Modeling
(UM 2005), Edinburgh, Scotland, UK, 24–29 July 2005; Available online: https://cgi.csc.liv.ac.uk/~{}floriana/UM05-eHealth/
Germanakos.pdf (accessed on 24 April 2022).

3. Imran; Qayyum, F.; Kim, D.-H.; Bong, S.-J.; Chi, S.-Y.; Choi, Y.-H. A Survey of Datasets, Preprocessing, Modeling Mechanisms,
and Simulation Tools Based on AI for Material Analysis and Discovery. Materials 2022, 15, 1428. [CrossRef] [PubMed]

4. Imran; Iqbal, N.; Kim, D.H. IoT Task Management Mechanism Based on Predictive Optimization for Efficient Energy Consumption
in Smart Residential Buildings. Energy Build. 2022, 257, 111762. [CrossRef]

5. Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A Survey on Privacy Protection in Blockchain System. J. Netw. Comput. Appl.
2019, 126, 45–58. [CrossRef]

6. Zhu, Q.; Loke, S.W.; Trujillo-Rasua, R.; Jiang, F.; Xiang, Y. Applications of Distributed Ledger Technologies to the Internet of
Things: A Survey. ACM Comput. Surv. 2019, 52, 1–34. [CrossRef]

7. Miglani, A.; Kumar, N.; Chamola, V.; Zeadally, S. Blockchain for Internet of Energy Management: Review, Solutions, and
Challenges. Comput. Commun. 2020, 151, 395–418. [CrossRef]

8. Alladi, T.; Chamola, V.; Parizi, R.M.; Choo, K.-K.R. Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE
Access 2019, 7, 176935–176951. [CrossRef]

9. Vangala, A.; Das, A.K.; Kumar, N.; Alazab, M. Smart Secure Sensing for IoT-Based Agriculture: Blockchain Perspective. IEEE
Sens. J. 2020, 21, 17591–17607. [CrossRef]

10. Marwah, K.; Hajati, F. A Survey on Internet of Things in Telehealth. In Proceedings of the Complex, Intelligent and Software
Intensive Systems, Asan, Korea, 1–3 July 2021; Barolli, L., Yim, K., Enokido, T., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 235–248.

11. Borthakur, D.; Dubey, H.; Constant, N.; Mahler, L.; Mankodiya, K. Smart Fog: Fog Computing Framework for Unsupervised
Clustering Analytics in Wearable Internet of Things. In Proceedings of the 2017 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 472–476.

12. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards
Multi-Layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and
Interoperability of IoT Systems; Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G., Eds.; Internet of Things; Springer
International Publishing: Cham, Switzerland, 2018; pp. 199–232. ISBN 978-3-319-61300-0.

13. Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for Smart Cities: A Review of
Architectures, Integration Trends and Future Research Directions. Sustain. Cities Soc. 2020, 61, 102360. [CrossRef]

https://scirep.institute/journals/index.php/jipsc/article/view/4
https://cgi.csc.liv.ac.uk/~{}floriana/UM05-eHealth/Germanakos.pdf
https://cgi.csc.liv.ac.uk/~{}floriana/UM05-eHealth/Germanakos.pdf
http://doi.org/10.3390/ma15041428
http://www.ncbi.nlm.nih.gov/pubmed/35207968
http://doi.org/10.1016/j.enbuild.2021.111762
http://doi.org/10.1016/j.jnca.2018.10.020
http://doi.org/10.1145/3359982
http://doi.org/10.1016/j.comcom.2020.01.014
http://doi.org/10.1109/ACCESS.2019.2956748
http://doi.org/10.1109/JSEN.2020.3012294
http://doi.org/10.1016/j.scs.2020.102360


Electronics 2022, 11, 1893 32 of 43

14. Luo, T.; Huang, J.; Kanhere, S.S.; Zhang, J.; Das, S.K. Improving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation
Approach. IEEE Internet Things J. 2019, 6, 5651–5664. [CrossRef]

15. Hassan, M.M.; Gumaei, A.; Huda, S.; Almogren, A. Increasing the Trustworthiness in the Industrial IoT Networks Through a
Reliable Cyberattack Detection Model. IEEE Trans. Ind. Inform. 2020, 16, 6154–6162. [CrossRef]

16. Yamada, Y.; Shinkuma, R.; Iwai, T.; Onishi, T.; Nobukiyo, T.; Satoda, K. Temporal Traffic Smoothing for IoT Traffic in Mobile
Networks. Comput. Netw. 2018, 146, 115–124. [CrossRef]

17. Radhakrishnan, G.; Gopalakrishnan, V. Applications of Internet of Things (IOT) to Improve the Stability of a Grid Connected
Power System Using Interline Power Flow Controller. Microprocess. Microsyst. 2020, 76, 103038. [CrossRef]

18. Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv.
Tutor. 2019, 21, 1636–1675. [CrossRef]

19. Ahmad, S.; Jamil, F.; Iqbal, N.; Kim, D. Optimal Route Recommendation for Waste Carrier Vehicles for Efficient Waste Collection:
A Step Forward Towards Sustainable Cities. IEEE Access 2020, 8, 77875–77887. [CrossRef]

20. Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT Security: Challenges and Solution Using Machine Learning,
Artificial Intelligence and Blockchain Technology. Internet Things 2020, 11, 100227. [CrossRef]

21. Iqbal, N.; Khan, A.-N.; Imran; Rizwan, A.; Qayyum, F.; Malik, S.; Ahmad, R.; Kim, D.-H. Enhanced Time-Constraint Aware Tasks
Scheduling Mechanism Based on Predictive Optimization for Efficient Load Balancing in Smart Manufacturing. J. Manuf. Syst.
2022, 64, 19–39. [CrossRef]

22. Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Commun.
Surv. Tutor. 2020, 22, 616–644. [CrossRef]

23. Bhushan, B.; Sahoo, C.; Sinha, P.; Khamparia, A. Unification of Blockchain and Internet of Things (BIoT): Requirements, Working
Model, Challenges and Future Directions. Wirel. Netw. 2021, 27, 55–90. [CrossRef]

24. Huh, S.; Cho, S.; Kim, S. Managing IoT Devices Using Blockchain Platform. In Proceedings of the 2017 19th International
Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2017; pp. 464–467.

25. Si, H.; Sun, C.; Li, Y.; Qiao, H.; Shi, L. IoT Information Sharing Security Mechanism Based on Blockchain Technology. Future Gener.
Comput. Syst. 2019, 101, 1028–1040. [CrossRef]

26. De Filippi, P.; Mannan, M.; Reijers, W. Blockchain as a Confidence Machine: The Problem of Trust & Challenges of Governance.
Technol. Soc. 2020, 62, 101284. [CrossRef]

27. Tariq, N.; Qamar, A.; Asim, M.; Khan, F.A. Blockchain and Smart Healthcare Security: A Survey. Procedia Comput. Sci. 2020, 175,
615–620. [CrossRef]

28. Karafiloski, E.; Mishev, A. Blockchain Solutions for Big Data Challenges: A Literature Review. In Proceedings of the IEEE
EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 763–768.

29. Iqbal, N.; Jamil, F.; Ahmad, S.; Kim, D. A Novel Blockchain-Based Integrity and Reliable Veterinary Clinic Information Manage-
ment System Using Predictive Analytics for Provisioning of Quality Health Services. IEEE Access 2021, 9, 8069–8098. [CrossRef]

30. Rehman, M.; Javaid, N.; Awais, M.; Imran, M.; Naseer, N. Cloud Based Secure Service Providing for IoTs Using Blockchain.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–7.

31. Srivastava, G.; Parizi, R.M.; Dehghantanha, A. The Future of Blockchain Technology in Healthcare Internet of Things Security.
In Blockchain Cybersecurity, Trust and Privacy; Choo, K.-K.R., Dehghantanha, A., Parizi, R.M., Eds.; Advances in Information
Security; Springer International Publishing: Cham, Switzerland, 2020; pp. 161–184. ISBN 978-3-030-38181-3.

32. Atlam, H.F.; Wills, G.B. Chapter One—Technical Aspects of Blockchain and IoT. In Advances in Computers; Kim, S., Deka, G.C.,
Zhang, P., Eds.; Role of Blockchain Technology in IoT Applications; Elsevier: Amsterdam, The Netherlands, 2019; Volume 115,
pp. 1–39.

33. Agrawal, R.; Verma, P.; Sonanis, R.; Goel, U.; De, A.; Kondaveeti, S.A.; Shekhar, S. Continuous Security in IoT Using
Blockchain. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 6423–6427.

34. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A Survey on the Adoption of Blockchain in IoT: Challenges and
Solutions. Blockchain Res. Appl. 2021, 2, 100006. [CrossRef]

35. Lamba, A.; Singh, S.; Balvinder, S.; Dutta, N.; Rela, S. Mitigating IoT Security and Privacy Challenges Using Distributed Ledger Based
Blockchain (Dl-BC) Technology; Social Science Research Network: Rochester, NY, USA, 2017.

36. Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On Blockchain and Its Integration with IoT. Challenges and Opportunities.
Future Gener. Comput. Syst. 2018, 88, 173–190. [CrossRef]

37. O’Donoghue, O.; Vazirani, A.A.; Brindley, D.; Meinert, E. Design Choices and Trade-Offs in Health Care Blockchain Implementa-
tions: Systematic Review. J. Med. Internet Res. 2019, 21, e12426. [CrossRef]

38. de Vries, A. Bitcoin’s Growing Energy Problem. Joule 2018, 2, 801–805. [CrossRef]
39. Kim, S.-K.; Huh, J.-H. A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective.

Energies 2018, 11, 1973. [CrossRef]
40. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. An Efficient Selective Miner Consensus Protocol in Blockchain

Oriented IoT Smart Monitoring. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT),
Melbourne, VIC, Australia, 13–15 February 2019; pp. 1135–1142.

http://doi.org/10.1109/JIOT.2019.2904704
http://doi.org/10.1109/TII.2020.2970074
http://doi.org/10.1016/j.comnet.2018.08.020
http://doi.org/10.1016/j.micpro.2020.103038
http://doi.org/10.1109/COMST.2018.2874978
http://doi.org/10.1109/ACCESS.2020.2988173
http://doi.org/10.1016/j.iot.2020.100227
http://doi.org/10.1016/j.jmsy.2022.05.015
http://doi.org/10.1109/COMST.2019.2953364
http://doi.org/10.1007/s11276-020-02445-6
http://doi.org/10.1016/j.future.2019.07.036
http://doi.org/10.1016/j.techsoc.2020.101284
http://doi.org/10.1016/j.procs.2020.07.089
http://doi.org/10.1109/ACCESS.2021.3049325
http://doi.org/10.1016/j.bcra.2021.100006
http://doi.org/10.1016/j.future.2018.05.046
http://doi.org/10.2196/12426
http://doi.org/10.1016/j.joule.2018.04.016
http://doi.org/10.3390/en11081973


Electronics 2022, 11, 1893 33 of 43

41. Sharma, P.K.; Kumar, N.; Park, J.H. Blockchain Technology Toward Green IoT: Opportunities and Challenges. IEEE Netw. 2020,
34, 263–269. [CrossRef]

42. Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to Scalability of Blockchain: A Survey. IEEE Access 2020, 8, 16440–16455.
[CrossRef]

43. Dwivedi, A.D.; Malina, L.; Dzurenda, P.; Srivastava, G. Optimized Blockchain Model for Internet of Things Based Healthcare
Applications. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP),
Budapest, Hungary, 1–3 July 2019; pp. 135–139.

44. Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture,
Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [CrossRef]

45. Ermakova, T.; Erek, K.; Huenges, J.; Zarnekow, R. Cloud Computing in Healthcare—A Literature Review on Current State of
Research. In Proceedings of the Americas Conference on Information Systems, Chicago, IL, USA, 15–17 August 2013.

46. Shailaja, K.; Seetharamulu, B.; Jabbar, M.A. Machine Learning in Healthcare: A Review. In Proceedings of the 2018 Second
International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March
2018; pp. 910–914.

47. Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic Survey. Sensors 2018,
18, 2575. [CrossRef] [PubMed]

48. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep Learning for Healthcare Applications Based on Physiological
Signals: A Review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [CrossRef] [PubMed]

49. Kuo, T.-T.; Zavaleta Rojas, H.; Ohno-Machado, L. Comparison of Blockchain Platforms: A Systematic Review and Healthcare
Examples. J. Am. Med. Inform. Assoc. 2019, 26, 462–478. [CrossRef]

50. Ahmadi, H.; Arji, G.; Shahmoradi, L.; Safdari, R.; Nilashi, M.; Alizadeh, M. The Application of Internet of Things in Healthcare:
A Systematic Literature Review and Classification. Univers. Access Inf. Soc. 2019, 18, 837–869. [CrossRef]

51. Aggarwal, S.; Chaudhary, R.; Aujla, G.S.; Kumar, N.; Choo, K.-K.R.; Zomaya, A.Y. Blockchain for Smart Communities: Applica-
tions, Challenges and Opportunities. J. Netw. Comput. Appl. 2019, 144, 13–48. [CrossRef]

52. Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the
Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [CrossRef]

53. AbuNaser, M.; Alkhatib, A.A.A. Advanced Survey of Blockchain for the Internet of Things Smart Home. In Proceedings of the
2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan,
9–11 April 2019; pp. 58–62.

54. Wang, Y.; Cang, S.; Yu, H. A Survey on Wearable Sensor Modality Centred Human Activity Recognition in Health Care. Expert
Syst. Appl. 2019, 137, 167–190. [CrossRef]

55. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of
Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [CrossRef]

56. Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Rev. Biomed.
Eng. 2021, 14, 156–180. [CrossRef]

57. Karthick, G.S.; Pankajavalli, P.B. A Review on Human Healthcare Internet of Things: A Technical Perspective. SN Comput. Sci.
2020, 1, 198. [CrossRef]

58. Sworna, N.S.; Islam, A.K.M.M.; Shatabda, S.; Islam, S. Towards Development of IoT-ML Driven Healthcare Systems: A Survey.
J. Netw. Comput. Appl. 2021, 196, 103244. [CrossRef]

59. Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y. Blockchain for Healthcare Data Management: Opportunities, Challenges,
and Future Recommendations. Neural Comput. Appl. 2021. [CrossRef]

60. Haghi Kashani, M.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A Systematic Review of IoT in Healthcare:
Applications, Techniques, and Trends. J. Netw. Comput. Appl. 2021, 192, 103164. [CrossRef]

61. Imran; Ahmad, S.; Kim, D.H. A Task Orchestration Approach for Efficient Mountain Fire Detection Based on Microservice and
Predictive Analysis in IoT Environment. J. Intell. Fuzzy Syst. 2021, 40, 5681–5696. [CrossRef]

62. Varshney, T.; Sharma, N.; Kaushik, I.; Bhushan, B. Architectural Model of Security Threats Amp; Their Countermeasures in IoT.
In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater
Noida, India, 18–19 October 2019; pp. 424–429.

63. Kumar, S.A.; Vealey, T.; Srivastava, H. Security in Internet of Things: Challenges, Solutions and Future Directions. In Proceedings
of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 5772–5781.

64. Khari, M.; Kumar, M.; Vij, S.; Pandey, P.; Vaishali. Internet of Things: Proposed Security Aspects for Digitizing the World.
In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New
Delhi, India, 16–18 March 2016; pp. 2165–2170.

65. Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How Can Heterogeneous Internet of Things Build Our Future: A Survey.
IEEE Commun. Surv. Tutor. 2018, 20, 2011–2027. Available online: https://ieeexplore.ieee.org/abstract/document/8286847
(accessed on 21 August 2021). [CrossRef]

66. Imran; Kim, D.H. Artificial Intelligence-Based Modeling Mechanisms for Material Analysis and Discovery. J. Intell. Pervasive Soft
Comput. 2022, 1. Available online: https://scirep.institute/journals/index.php/jipsc/article/view/2 (accessed on 24 April 2022).

http://doi.org/10.1109/MNET.001.1900526
http://doi.org/10.1109/ACCESS.2020.2967218
http://doi.org/10.1109/ACCESS.2017.2689040
http://doi.org/10.3390/s18082575
http://www.ncbi.nlm.nih.gov/pubmed/30082633
http://doi.org/10.1016/j.cmpb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29852952
http://doi.org/10.1093/jamia/ocy185
http://doi.org/10.1007/s10209-018-0618-4
http://doi.org/10.1016/j.jnca.2019.06.018
http://doi.org/10.1016/j.rser.2018.10.014
http://doi.org/10.1016/j.eswa.2019.04.057
http://doi.org/10.1109/COMST.2020.2973314
http://doi.org/10.1109/RBME.2020.3013489
http://doi.org/10.1007/s42979-020-00205-z
http://doi.org/10.1016/j.jnca.2021.103244
http://doi.org/10.1007/s00521-020-05519-w
http://doi.org/10.1016/j.jnca.2021.103164
http://doi.org/10.3233/JIFS-201614
https://ieeexplore.ieee.org/abstract/document/8286847
http://doi.org/10.1109/COMST.2018.2803740
https://scirep.institute/journals/index.php/jipsc/article/view/2


Electronics 2022, 11, 1893 34 of 43

67. Iqbal, N.; Khan, A.N.; Khan, M.A.; Rizwan, A.; Kim, D.-H. Semantic Situation Reporting Mechanism Based on 4W’H Ontology
Modeling in Battlefield. J. Intell. Pervasive Soft Comput. 2022, 1. Available online: https://scirep.institute/journals/index.php/
jipsc/article/view/3 (accessed on 24 April 2022).

68. SAM: The Ultimate Internet Connected Electronics Kit. Available online: https://www.kickstarter.com/projects/1842650056
/sam-the-ultimate-internet-connected-electronics-ki (accessed on 24 April 2022).

69. Miladinovic, I.; Schefer-Wenzl, S. A Highly Scalable Iot Architecture through Network Function Virtualization. Open J. Internet
Things OJIOT 2017, 3, 127–135.

70. Sobin, C. A Survey on Architecture, Protocols and Challenges in IoT. Wirel. Pers. Commun. 2020, 112, 1383–1429. [CrossRef]
71. ICore. Available online: http://icore-online.org/ (accessed on 24 April 2022).
72. Taylor, M. Why Elastic Scalability Matters in Network Functions Virtualization. Metaswitch, 24 February 2015.
73. Mahapatra, T. Composing High-Level Stream Processing Pipelines. J. Big Data 2020, 7, 1–28. [CrossRef]
74. Home—FIWARE. Available online: https://www.fiware.org/ (accessed on 24 April 2022).
75. Heath, N. How IBM’s Node-RED Is Hacking Together the Internet of Things. TechRepublic, 13 March 2014.
76. dweet.io. Share Your Thing—Like It Ain’t No Thang. Available online: https://dweet.io/ (accessed on 24 April 2022).
77. Particle. Connect Your Internet of Things (IoT) Devices. Available online: https://www.particle.io/ (accessed on 24 April 2022).
78. Ahmad, M.; Alowibdi, J.S.; Ilyas, M.U. VIoT: A First Step towards a Shared, Multi-Tenant IoT Infrastructure Architecture.

In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–23
May 2017; pp. 308–313.

79. Sandor, H.; Genge, B.; Sebestyen-Pal, G. Resilience in the Internet of Things: The Software Defined Networking Approach.
In Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2015; pp. 545–552.

80. Moon, J.-H.; Shine, Y.-T. A Study of Distributed SDN Controller Based on Apache Kafka. In Proceedings of the 2020 IEEE
International Conference on Big Data and Smart Computing (BigComp), Daegu, Korea, 19–22 February 2020; pp. 44–47.

81. Dwivedi, Y.K.; Janssen, M.; Slade, E.L.; Rana, N.P.; Weerakkody, V.; Millard, J.; Hidders, J.; Snijders, D. Driving Innovation
through Big Open Linked Data (BOLD): Exploring Antecedents Using Interpretive Structural Modelling. Inf. Syst. Front. 2017, 19,
197–212. [CrossRef]

82. Kwon, D.; Hodkiewicz, M.R.; Fan, J.; Shibutani, T.; Pecht, M.G. IoT-Based Prognostics and Systems Health Management for
Industrial Applications. IEEE Access 2016, 4, 3659–3670. [CrossRef]

83. Iqbal, N.; Imran; Ahmad, S.; Ahmad, R.; Kim, D.-H. A Scheduling Mechanism Based on Optimization Using IoT-Tasks Orchestra-
tion for Efficient Patient Health Monitoring. Sensors 2021, 21, 5430. [CrossRef]

84. Wahyudi, A.; Pekkola, S.; Janssen, M. Representational Quality Challenges of Big Data: Insights from Comparative Case Studies.
In Proceedings of the Challenges and Opportunities in the Digital Era; Al-Sharhan, S.A., Simintiras, A.C., Dwivedi, Y.K., Janssen, M.,
Mäntymäki, M., Tahat, L., Moughrabi, I., Ali, T.M., Rana, N.P., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 520–538.

85. Amanullah, M.A.; Habeeb, R.A.A.; Nasaruddin, F.H.; Gani, A.; Ahmed, E.; Nainar, A.S.M.; Akim, N.M.; Imran, M. Deep Learning
and Big Data Technologies for IoT Security. Comput. Commun. 2020, 151, 495–517. [CrossRef]

86. Brous, P.; Janssen, M.; Schraven, D.; Spiegeler, J.; Can Duzgun, B. Factors Influencing Adoption of IoT for Data-Driven Decision
Making in Asset Management Organizations. In Proceedings of the 2nd International Conference on Internet of Things, Big
Data and Security, Porto, Portugal, 24–26 April 2017; SCITEPRESS—Science and Technology Publications: Porto, Portugal, 2017;
pp. 70–79.

87. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security
Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]

88. Calvillo-Arbizu, J.; Román-Martínez, I.; Reina-Tosina, J. Internet of Things in Health: Requirements, Issues, and Gaps. Comput.
Methods Programs Biomed. 2021, 208, 106231. [CrossRef]

89. Sinha, P.; Rai, A.K.; Bhushan, B. Information Security Threats and Attacks with Conceivable Counteraction. In Proceedings of the
2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India,
5–6 July 2019; Volume 1, pp. 1208–1213.

90. Bhushan, B.; Sahoo, G.; Rai, A.K. Man-in-the-Middle Attack in Wireless and Computer Networking—A Review. In Proceedings
of the 2017 3rd International Conference on Advances in Computing, Communication Automation (ICACCA) (Fall), Dehradun,
India, 15–16 September 2017; pp. 1–6.

91. Gope, P.; Sikdar, B. Lightweight and Privacy-Preserving Two-Factor Authentication Scheme for IoT Devices. IEEE Internet Things
J. 2019, 6, 580–589. [CrossRef]

92. Xiong, J.; Ren, J.; Chen, L.; Yao, Z.; Lin, M.; Wu, D.; Niu, B. Enhancing Privacy and Availability for Data Clustering in Intelligent
Electrical Service of IoT. IEEE Internet Things J. 2019, 6, 1530–1540. [CrossRef]

93. Amini, M.R.; Baidas, M.W. Availability-Reliability-Stability Trade-Offs in Ultra-Reliable Energy-Harvesting Cognitive Radio IoT
Networks. IEEE Access 2020, 8, 82890–82916. [CrossRef]

94. Gazis, V. A Survey of Standards for Machine-to-Machine and the Internet of Things. IEEE Commun. Surv. Tutor. 2017, 19, 482–511.
[CrossRef]

https://scirep.institute/journals/index.php/jipsc/article/view/3
https://scirep.institute/journals/index.php/jipsc/article/view/3
https://www.kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki
https://www.kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki
http://doi.org/10.1007/s11277-020-07108-5
http://icore-online.org/
http://doi.org/10.1186/s40537-020-00353-2
https://www.fiware.org/
https://dweet.io/
https://www.particle.io/
http://doi.org/10.1007/s10796-016-9675-5
http://doi.org/10.1109/ACCESS.2016.2587754
http://doi.org/10.3390/s21165430
http://doi.org/10.1016/j.comcom.2020.01.016
http://doi.org/10.1109/JIOT.2019.2935189
http://doi.org/10.1016/j.cmpb.2021.106231
http://doi.org/10.1109/JIOT.2018.2846299
http://doi.org/10.1109/JIOT.2018.2842773
http://doi.org/10.1109/ACCESS.2020.2991861
http://doi.org/10.1109/COMST.2016.2592948


Electronics 2022, 11, 1893 35 of 43

95. Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and
Frameworks. IEEE Commun. Surv. Tutor. 2020, 22, 1168–1190. [CrossRef]

96. Benkhelifa, E.; Welsh, T.; Hamouda, W. A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT:
Toward Universal and Resilient Systems. IEEE Commun. Surv. Tutor. 2018, 20, 3496–3509. [CrossRef]

97. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies.
IEEE Internet Things J. 2017, 4, 1–20. [CrossRef]

98. Hamad, S.A.; Sheng, Q.Z.; Zhang, W.E.; Nepal, S. Realizing an Internet of Secure Things: A Survey on Issues and Enabling
Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1372–1391. [CrossRef]

99. Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H. Internet of Things Security: A Top-down Survey. Comput. Netw. 2018, 141, 199–221.
[CrossRef]

100. Imran; Jamil, F.; Kim, D. An Ensemble of Prediction and Learning Mechanism for Improving Accuracy of Anomaly Detection in
Network Intrusion Environments. Sustainability 2021, 13, 10057. [CrossRef]

101. Bhushan, B.; Sahoo, G. Recent Advances in Attacks, Technical Challenges, Vulnerabilities and Their Countermeasures in Wireless
Sensor Networks. Wirel. Pers. Commun. 2018, 98, 2037–2077. [CrossRef]

102. Xu, R.; Wang, R.; Guan, Z.; Wu, L.; Wu, J.; Du, X. Achieving Efficient Detection Against False Data Injection Attacks in Smart Grid.
IEEE Access 2017, 5, 13787–13798. [CrossRef]

103. Khan, M.A.; Salah, K. IoT Security: Review, Blockchain Solutions, and Open Challenges. Future Gener. Comput. Syst. 2018, 82,
395–411. [CrossRef]

104. Zha, X.; Zheng, K.; Zhang, D. Anti-Pollution Source Location Privacy Preserving Scheme in Wireless Sensor Networks. In Proceed-
ings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, UK,
27–30 June 2016; pp. 1–8.

105. Sicari, S.; Rizzardi, A.; Miorandi, D.; Coen-Porisini, A. REATO: REActing to Denial of Service Attacks in the Internet of Things.
Comput. Netw. 2018, 137, 37–48. [CrossRef]

106. Huang, K.; Yang, L.-X.; Yang, X.; Xiang, Y.; Tang, Y.Y. A Low-Cost Distributed Denial-of-Service Attack Architecture. IEEE Access
2020, 8, 42111–42119. [CrossRef]

107. Restuccia, F.; D’Oro, S.; Melodia, T. Securing the Internet of Things in the Age of Machine Learning and Software-Defined
Networking. IEEE Internet Things J. 2018, 5, 4829–4842. [CrossRef]

108. El Ioini, N.; Pahl, C. A Review of Distributed Ledger Technologies. In Proceedings of the On the Move to Meaningful Internet
Systems. OTM 2018 Conferences, Valletta, Malta, 22–26 October 2018; Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A.,
Roman, D., Meersman, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 277–288.

109. A Decentralized Scalable Security Framework for End-to-end Authentication of Future IoT Communication—Sheron—2020—
Transactions on Emerging Telecommunications Technologies—Wiley Online Library. Available online: https://onlinelibrary.
wiley.com/doi/abs/10.1002/ett.3815 (accessed on 22 August 2021).

110. Bdiwi, R.; de Runz, C.; Faiz, S.; Cherif, A.A. A Blockchain Based Decentralized Platform for Ubiquitous Learning Environment.
In Proceedings of the 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT), Mumbai, India,
9–13 July 2018; pp. 90–92.

111. Tatschner, S.; Jarisch, F.; Giehl, A.; Plaga, S.; Newe, T. The Stream Exchange Protocol: A Secure and Lightweight Tool for
Decentralized Connection Establishment. Sensors 2021, 21, 4969. [CrossRef] [PubMed]

112. Singh, S.K.; Kumar, S. Blockchain Technology: Introduction, Integration and Security Issues with IoT. arXiv 2021, arXiv:2101.10921.
113. Kwon, J.H. Tail Behavior of Bitcoin, the Dollar, Gold and the Stock Market Index—ScienceDirect. J. Int. Financ.Mark. Inst.

Money 2020, 67, 101202. Available online: https://www.sciencedirect.com/science/article/pii/S104244312030086X (accessed on
22 August 2021). [CrossRef]

114. Dasgupta, D.; Shrein, J.M.; Gupta, K.D. A Survey of Blockchain from Security Perspective. J. Bank. Financ. Technol. 2019, 3, 1–17.
[CrossRef]

115. Soni, S.; Bhushan, B. A Comprehensive Survey on Blockchain: Working, Security Analysis, Privacy Threats and Potential
Applications. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control
Technologies (ICICICT), Kannur, India, 5–6 July 2019; Volume 1, pp. 922–926.

116. Pilkington, M. Blockchain Technology: Principles and Applications. In Research Handbook on Digital Transformations; Edward Elgar
Publishing: Cheltenham, UK, 2016.

117. Iqbal, N.; Jamil, F.; Ahmad, S.; Kim, D. Toward Effective Planning and Management Using Predictive Analytics Based on Rental
Book Data of Academic Libraries. IEEE Access 2020, 8, 81978–81996. [CrossRef]

118. Review of Blockchain Technology: Types of Blockchain and Their Application|Andreev|Intellekt. Sist. Proizv. Available online:
http://izdat.istu.ru/index.php/ISM/article/view/4030 (accessed on 22 August 2021).
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