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Abstract—Modern electronic systems become evermore com-
plex, yet remain modular, with integrated circuits (ICs) acting as
versatile hardware components at their heart. Electronic design
automation (EDA) for ICs has focused traditionally on power,
performance, and area. However, given the rise of hardware-
centric security threats, we believe that EDA must also adopt
related notions like secure by design and secure composition
of hardware. Despite various promising studies, we argue that
some aspects still require more efforts, for example: effective
means for compilation of assumptions and constraints for security
schemes, all the way from the system level down to the “bare
metal”; modeling, evaluation, and consideration of security-
relevant metrics; or automated and holistic synthesis of various
countermeasures, without inducing negative cross-effects.

In this paper, we first introduce hardware security for the EDA
community. Next we review prior (academic) art for EDA-driven
security evaluation and implementation of countermeasures. We
then discuss strategies and challenges for advancing research and
development toward secure composition of circuits and systems.

I. INTRODUCTION

Electronic systems are at the heart of our modern societies

which are heavily reliant on ubiquitous information technology

(IT). Nowadays, however, an alarmingly large number of

security risks are associated with electronic systems. Ensuring

confidentiality, integrity, and availability—the three key pillars

for IT security—directly within the hardware of electronic

systems represents a wide-ranging task that is crucial, yet quite

challenging. The related field of hardware security has been

driven traditionally by the cryptography community, and right-

fully so; the formal security promises of any cryptographic

algorithm may fail relatively easily once the physical realities

of hardware come into play. For example, it is well known that

cryptographic algorithms leak sensitive information when sub-

jected to side-channel attacks [1] or fault-injection attacks [2].

While at least parts of the electronic design automation (EDA)

community have become aware of these and other threats over

the years, and also proposed some EDA measures to counter

them, we argue that more concerted efforts are required.

TABLE I
SECURITY THREATS FOR ICS AND RELATED ROLES OF EDA

Threat Vector Time of Attack Role of EDA

Side-channel attacks Runtime
Evaluation, mitigation

at design time

Fault-injection attacks Runtime
Evaluation, mitigation

at design time

Piracy of design
Manufacturing; Mitigation

intellectual property (IP);
in the field at design time

counterfeiting of ICs

Hardware Trojans
Design;

Mitigation, verification at

manufacturing
design time; preparing

for testing, inspection

In this paper, we aim to educate the broader EDA com-

munity on the different security threats arising for integrated

circuits (ICs) throughout their life cycle, i.e., during design,

manufacturing, and at runtime. In Table I, we list the threats

covered in this paper and the roles we see for EDA in general.

We motivate in Sec. II, we review the prior art in some

detail in Sec. III, and we discuss strategies and challenges for

advancements in Sec. IV. Overall, we call for paradigms like

secure by design and secure composition of hardware, i.e., for

efforts to account holistically for security notions along with

traditional notions of design optimization.

II. BACKGROUND AND MOTIVATION

A. Security Threats and Overview on Countermeasures

Next, we introduce briefly the security aspects we cover in

this paper. This section is an overview and not comprehensive;

we discuss related prior art in Sec. III in more detail.

1) Side-Channel Attacks (SCAs): SCAs exploit information

leakage from measurable physical channels and sensitivities of

(i) the circuitry itself or (ii) the architecture. For example, con-

cerning (i), advanced encryption standard (AES) implementa-

tions are well-known to be vulnerable to power SCAs when

unprotected [1]; concerning (ii), modern microprocessors leak
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information through timing behaviour of caches, also related

to speculative execution [3].

Most countermeasures apply some kind of “hiding” or

masking, i.e., diffusion of the information leakage, by var-

ious means taken across different levels, starting from the

system level and ranging down to gates/registers [4]. Formal

approaches to masking, e.g., [5], refer to splitting the com-

putation variables into sections or shares such that internal

computations are never performed jointly on all shares.

2) Fault-Injection Attacks (FIAs): FIAs induce faults to aid

in deducing sensitive information. This includes direct, inva-

sive fault injection, e.g., by laser light [6] or electromagnetic

waves [7], as well as indirect, architectural fault injection, e.g,.

by repetitive writing to particular memory locations [8].

Countermeasures can be separated into detection of FIAs at

runtime versus FIA mitigation at design time (e.g., [9], [10]).

3) Piracy of Design IP, Counterfeiting of ICs: Such attacks

related to outsourced IC supply chains can be carried out by

various adversaries, ranging from designers, foundry or test

facility employees, and even to end-users.

Popular countermeasures against IP piracy are logic locking,

split manufacturing, and camouflaging [11]. Both split man-

ufacturing and camouflaging alter the manufacturing process

to protect against untrusted foundries and malicious end-users,

respectively. In contrast, logic locking works at the design level

to protect against untrusted foundries and malicious end-users

(although the latter relies on tamper-proof memories, which

can become targets themselves). Popular countermeasures

against counterfeiting include watermarking and physically-

unclonable functions (PUFs) [12].

4) Hardware Trojans: Given that IC supply chains are

outsourced, adversaries at various entities could also introduce

malicious hardware modifications, known as Trojans.1 The

notion of Trojans is wide-ranging [13]—it describes malicious

modifications that are (i) working at the system level, register-

transfer level (RTL), gate/transistor level, or the physical level;

(ii) seeking to leak information, reduce the IC’s performance,

or disrupt the IC’s working altogether; (iii) are always on,

triggered internally, or triggered externally; etc.

Countermeasures can be classified into Trojan detection,

conducted pre-silicon and/or post-silicon, and Trojan mitiga-

tion. The former relies on testing, verification, and inspection,

whereas the latter includes security features to improve testa-

bility/inspection [13] or information-flow tracking [14], etc.

B. Classical EDA Flows and Security Fallacies

In Fig. 1, a classical EDA flow is shown in overview. Vari-

ous EDA tools as well as design components and technology

libraries are involved, which are all provided by potentially

malicious third parties. This presents clearly one of the threats

for secure composition of ICs. For example, Trojans could be

1Although it has been projected traditionally as the main threat scenario,
the likelihood of Trojans being introduced at fabrication time is arguably very
low. That is because any such endeavour, once detected, would fatally disrupt
the reputation and business of the related foundry. Therefore, foundries can be
expected to employ all organizational and technical means available to hinder
unauthorized modifications by malign employees.

Fig. 1. Classical EDA flow, without security considered explicitly.

introduced directly by adversarial designers, indirectly through

untrustworthy third-party IP components, or even through

“hacks” of EDA tools or the IT environment [13].

State-of-the-art EDA tools provide powerful solutions for

simulation, verification, and testing, and they are also well-

tailored to optimize any design for power, performance, and

area (PPA). However, these tools are neither tailored yet to

account for, e.g., information leakage exploited by SCAs, nor

do they offer to incorporate countermeasures in a way that

maintains optimization and security guarantees.

Motivational example: Here we show how classical EDA

tools can undermine security. We consider the notion of

private circuits [15] as an example, a scheme that guarantees

confidentiality in the face of SCAs in a controllable and quan-

tifiable manner. Without loss of generality, a bit a of sensitive

information can be encoded as a vector (a1, a2, a3), where

a = a1 ⊕ a2 ⊕ a3 and ⊕ denotes bitwise XOR. Any regular

operations are implemented in encoded form and incorporate

random bits ri,j , where 1 ≤ i, j ≤ 3. For example, the AND

operation c = a ∧ b on such vectors is computed as: c1 =
a1b1⊕ r1,2⊕ r1,3 and c2 = a2b2⊕ (r1,2⊕ a1b2)⊕ a2b1⊕ r2,3
and c3 = a3b3 ⊕ (r1,3 ⊕ a1b3)⊕ a3b1 ⊕ (r2,3 ⊕ a2b3)⊕ a3b2.

The security promise by private circuits is based on the fact

that all components of one such vector are never processed

at the same time. Thus, an adversary cannot learn it from

power measurements (or other side channels). Now, it is

important to note that the order of computation, as indicated

by parentheses, is critical for suppressing information leakage,

even though it is irrelevant for correctness (as ⊕ is commu-

tative). For the example of the AND operation, let us assume

the synthesis tool implements c3 such that the expression

a3b1 ⊕ a3b2 ⊕ a3b3 = a3(b) is derived first and the random

bits rij are added only later, then the computation will leak the

value of b (Fig. 2). Regular, security-unaware tools may take

such decisions easily, e.g., when it helps to improve timing.

Note that leakage can occur even when private circuits

are synthesized in a security-aware manner, e.g., then due to

delays and glitches for the random variables. An effective and

well-known, yet limited, approach for leakage evaluation is

test vector leakage assessment (TVLA) [16]; see Sec. III.
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Insecure Netlist of Private Circuit

Fig. 2. Motivational example for the insecure nature of classical EDA tools.

C. Challenges and Tasks for Security-Centric EDA

As listed in Table I, we see potential for EDA tools to

evaluate and mitigate various threats already at design time.

Considering though the vastly different nature of these threats,

it may seem impossible to provide comprehensive security-

centric EDA flows. However, to make progress towards this

ultimate goal, we argue that the EDA community should

(continue to) focus on key challenges which are, among others:

• Evaluation and consideration of security-relevant metrics,

with varying level of detail for different EDA stages;

• Effective means for compilation of assumptions and con-

straints for security schemes, all the way from the system

level down to the “bare metal”;

• Automated and holistic synthesis of various countermea-

sures, without inducing negative cross-effects.

We believe that the community is actually well-positioned to

address these challenges. EDA tools are driven by metrics and

heuristics and also have to tackle trade-offs continuously while

step-wise refining the design quality—these principles can

certainly be extended towards secure composition of ICs [17].

For any security scheme, it is essential to first define the

threat model, which describes the adversary’s assets, capabil-

ities, constraints, and goals, along with the proposed counter-

measures. Depending on the type and time of attack, doing

so can become quite complex; e.g., for SCAs and FIAs at

runtime, many physical aspects come into play, like means of

fault injection, temperature, voltage, power-supply impedance,

glitches, etc. Even once threat models are defined properly—

and translated into specific metrics and countermeasures which

can be handled by EDA tools—they can still have significant

weak spots. For one, it is impossible to hinder an adversary

from taking further efforts going beyond the modeled means

of attack. For another, incorporating the threat model into the

EDA tools will be subject to inaccuracies, not only due to

limitations on computational cost when exploring the design

space of complex ICs with all regular components and various

security features, but also due to limitations of metrics and

evaluation techniques themselves.

It is understood that EDA tools cannot provide perfect

security but it is an essential task to formulate and explore

the practical bounds for security schemes when embedded in

hardware. EDA tools should assist the designer with automated

integration of security features and countermeasures but also

needs to formulate the related limitations and remaining risks

clearly, to enable effective risk management.

III. DISCUSSION OF PRIOR ART

Table II summarizes security schemes that could be (and

partially are already) supported by EDA tools, categorized into

design stages versus threat vectors.2 Some schemes are based

on a “red team versus blue team” approach, i.e., they leverage

the relevant attack(s) internally, with the objective to inform

the designer how to address remaining vulnerabilities or, more

challenging, to demonstrate the absence of vulnerabilities. For

example, to demonstrate whether an error-detecting scheme

can detect all faults means to search for other (types of) faults

that are possibly missed. A different approach is to quantify

threats through evaluation of metrics, but without considering

an explicit attack scenario. For example, countermeasures

against SCAs are often assessed by information leakage via

statistical or information-theoretical procedures.

In the following, we provide a brief overview and discussion

of prior art for each row of Table II.

A. Security-Driven High-Level Synthesis

High-level synthesis (HLS) allocates IP blocks and func-

tional units, binds tasks to these components, and schedules the

task execution. An HLS tool would ideally allocate IP blocks

automatically as needed for various security-related tasks: (i)

secure random number generators (RNGs) [41] for key gener-

ation or masking, (ii) PUFs for circuit identification, authen-

tication, and metering [19], [42], (iii) self-authentication logic

[20] or wrapper architectures [43] to complicate insertion of

Trojans, (iv) error-detecting or shielding architectures against

FIAs [10], [18], etc. Another simple countermeasure against

SCAs could be to instruct HLS to randomly flush/overwrite

registers holding critical data after their use.

While there are works on automated synthesis of masking

for software [44], EDA-centric approaches for hardware are

still in development. Towards this end, formalized security

requirements are an important input for security-centric HLS

tools. These can be specified in secure hardware languages

like Caisson [45] or SecVerilog [46]. Another language called

QIF-Verilog [47] provides the techniques of quantitative in-

formation flow (QIF) tracking [48] in the hardware domain.

In general, techniques for information-flow tracking developed

in the context of software engineering [49] can also be used

to validate the resilience of RTL code resulting from HLS

tools [14]. The method reported in [49] leverages approximate

model counting in order to handle large program state spaces,

a concept which is also useful in the context of information-

flow tracking for practical EDA use cases.

2There is a significant number of studies for most of the table’s entries, but
we can focus only on selected works within the page limits.
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TABLE II
SECURITY SCHEMES SUITABLE FOR INCORPORATION INTO EDA TOOLS

Design Stage
Threat Vectors

Side-Channel Attacks Fault-Injection Attacks IP Piracy and Counterfeiting Trojans

Information-flow tracking [14];
Error-detecting architectures [10]; Metering IP

High-level synthesis Integration of masking [5];
Infective countermeasures [18] (including PUFs) [19]

Self-authentication [20]

Register flushing

Logic synthesis
Gate-level protections [21];

Automatic fault analysis [22]
Camouflaging [23]; Automatic insertion of

Identification of leaking gates Logic locking [24] security monitors [25]

Physical synthesis Low-level information leakage Embedding sensors [9], [26]; Split manufacturing [27];
Embedding sensors [28]

(place and route) analysis (TVLA [16], etc.) Shielding [29] Entropy primitives [30]

Functional Identification of architectural Validation of error-detection Correctness of locked logic; Proof-carrying

validation covert channels [31] properties [32] De-obfuscation attacks [33] hardware [34]

Timing and power Pre-silicon power/timing Detailed modeling of Validation of low-level
Fingerprinting [35]

verification simulation [36], [37] fault injections [38] properties of PUFs

Testing (ATPG, Securing DFT against read-out DFX architecture to handle IP protection integrated Pattern generation for

DFT, BIST) (scan-chain attacks [39], etc.) malicious/natural failures into DFX infrastructure Trojan detection [40]

B. Security-Driven Logic Synthesis

Logic synthesis is the step of compiling the high-level RTL

into an actual netlist, mapping it to the technology of choice.

This can be combined with gate-level security schemes, e.g.,

to reduce information leakage exploited by SCAs following

the wave dynamic differential logic (WDDL) paradigm [21].

Such “hiding” schemes represent alternatives or complements

to formal masking approaches. Methods for automatic fault

analysis, some also suitable for logic synthesis, are reviewed

in [22]. Moreover, logic synthesis can be tasked to instantiate

security monitors to help detecting Trojans at runtime [25].

Concerning IP protection, two approaches are applicable

here, camouflaging and logic locking. Logic synthesis has

to employ camouflaging according to the scale desired by

the designer, where synthesis is constrained to the Boolean

functionalities covered by the multi-functional but obfuscated

primitives—this is similar to regular but constrained synthesis

and is well supported. For locking, however, there is a need

to support security requirements formulated at the behavioral

level. Currently, locking is implemented directly at the gate-

level netlist. Similar to the example for private circuits in

Sec. II-B, synthesis is unaware of the security notion for lock-

ing. Thus, among others, locking is prone to structural attacks

targeting at the synthesized (or layout-level) netlist [50], [51].

C. Security-Driven Physical Synthesis

Physical synthesis is the step of generating an optimized

design from the gate-level netlist, through means of place and

route (PnR), clock-tree design, timing closure, etc.

Forming the key step towards the “bare metal,” it is crucial

that physical synthesis considers security notions that are

primarily subject to physical phenomena. For example, an

important task here is to quantify the information that is leaked

through the various side-channels of an IC. The most rele-

vant approach for such evaluation is TVLA [16]. In general,

TVLA uses Welch’s t-test statistics to quantify the differences

between the means of two data sets describing some physical

phenomena. The validity of TVLA for evaluating SCA re-

silience is subject to the assumptions made in the threat model,

like the noise distribution assumed for the measurements

taken by the attacker. Information-theoretic procedures can

bound that error using fewer statistical assumptions, but they

require careful characterization of the side-channel probability

distribution, which is computationally costly (since Maxwell’s

equations are to be tackled). In any case, most of these metrics

and procedures are challenged by the fact that information

leakage is multi-dimensional and multi-variate.

Physical design could also be tailored to employ security

primitives like RNGs [41] or PUFs [19], [42], shields to protect

against FIAs [29], sensors to detect FIAs [9], [26], or Trojan

detection circuitry [28]. Since the entropy harnessed by on-

chip RNGs and PUFs comes from physical circuit structures,

layout-level optimization of their properties is required [30].

As for IP protection, split manufacturing is to be supported

at this stage. The security promise of split manufacturing—

foremost to hinder IP piracy, but also Trojan insertion, both

conducted by foundry adversaries—relies on providing a

“meaningless sea of gates with dangling wires” to the un-

trusted foundry (the higher metal layers are manufactured

subsequently by another, trusted facility). Classical EDA flows

work holistically on the IC stack, leaving layout-level hints for

adversaries, e.g., equipped with machine learning [52]. Thus,

it is essential for split manufacturing that physical synthesis

is tailored to dissolve such hints (yet optimize for PPA). This

can be achieved, e.g., by selective “pushing” of wires to the

higher metal layers [53] or by placement perturbation [54].

D. Security-Driven Functional Validation

Validation covers simulation and formal techniques, includ-

ing equivalence and property checking. Especially the latter

is helpful for analysis of security properties and proving their

effectiveness. For one, a recent study uses formal methods

to identify architectural vulnerabilities in advanced micropro-

cessors [31]. For another, when verifying an error-detection

architecture, i.e., when checking for fault coverage, formal

analysis developed for transient faults can play a role [32].

For IP protection, verification serves to check the correct-

ness of logic modifications introduced by locking or cam-

ouflaging. More importantly even, verification can be used

to mimic attackers leveraging satisfiability-based tools (i.e.,
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SAT and SMT solvers), and to demonstrate the resilience of

protected ICs against such powerful attacks [33].

Finally, concerning Trojans, security properties can be em-

bedded directly in the HDL/RTL to obtain “proof-carrying

hardware” [34]. Such schemes should be integrated into

property-checker flows and tools.

E. Security-Driven Timing and Power Verification

Timing and power verification serves to achieve design

closure. One distinguishes between simulation of timing/power

artifacts and “vectorless” analytical approaches, e.g., proving

that IR-drop will not exceed a given limit. Simulation ap-

proaches are particularly useful for analysis of information

leakage through side channels; it is desirable to identify such

leakage (or demonstrate its absence) through pre-silicon sim-

ulations rather than belatedly measure the final, manufactured

ICs. Pre-silicon simulations may also point to the origin of

information leakage in the circuitry, thus enabling the designer

to fix the underlying problem.

Existing simulation tools work on different abstraction

levels and support different degrees of accuracy, from de-

tailed SPICE analysis to fast gate-level approaches. A critical

detail for simulation is timing and gate delays; it has been

reported that glitches (i.e., transient signals within a clock

cycle) influence information leakage [55]. Whether glitches

remain present in the actual IC, however, depends on physical-

synthesis results, manufacturing variability, and also ambi-

ent conditions. It seems an open question how accurate the

timing/power models used for simulation must be to obtain

reliable prediction about the expected information leakage.

Timing/power verification is also the stage to run detailed

analysis of fault injections using accurate electrical models

[38], or to verify the behavior of PUFs in terms of entropy,

reliability, and uniqueness. Simulation also serves well for

fingerprinting [35], a countermeasure against Trojans, which

is based on checking consistency of path delays.

F. Security-Driven Testing

Testability is crucial, yet contradictory to security to some

degree [56]. That is because test, diagnosis, and debug features

enable comprehensive access to IC internals, providing an

attacker the opportunity to read out sensitive information (e.g.,

via scan-based attacks [39]). As a consequence, emerging test

standards will also incorporate security measures [57].

More complex ICs incorporate a “design for X” (DFX)

infrastructure, which combines classical scan-based testing

with build-in self test (BIST) features for logic and memory,

transient-fault detection and re-configuration logic, circuitry

for yield management, and debug and diagnostic features [58].

To integrate FIA detection into the same DFX infrastructure

seems only logical. However, distinguishing between natural

and malicious faults is non-trivial [59], and the responses

should be different: fastest possible recovery and resumption

of regular operation upon a natural fault, but re-keying or

even discontinuation of service upon a tampering attempt.

Therefore, future security-aware DFX infrastructures should

enable such distinction. Besides, they may also manage IP

protection techniques, e.g., for key management for locking.

There is extensive prior art for detecting Trojans through

means of testing. This covers (i) functional tests that aim

at triggering Trojans [40] and (ii) parametric tests that aim

at detecting Trojans’ fingerprints through side-channels [60].

While such tests can be included into automatic test pattern

generation (ATPG) tools, their effectiveness in reliably iden-

tifying strategically hidden Trojans in large and complex ICs

remains to be proven.

IV. STRATEGIES AND CHALLENGES TOWARDS SECURE

COMPOSITION USING EDA TOOLS

Security of any system is subject to its weakest link, and

ICs form no exception here. We have covered, in overview, the

large variety of hardware-related threats and countermeasures,

along with some discussion of current limitations.

It is known that not all types or implementations of

countermeasures are composable, e.g., adding error-detecting

logic can deteriorate resilience against SCAs [61]. Thus, tools

for joint compilation of countermeasures and, even more

importantly, for verifying their effectiveness are required. Ide-

ally, once the security-enforcing designers have implemented

yet another countermeasure, they can re-run the envisioned

security-centric EDA flow which then covers all threats, also

seemingly unrelated ones, to hinder that any countermeasure

has become inadvertently compromised.

To become a reality, such security-centric EDA tools require

effective and efficient security metrics and evaluation tech-

niques. The whole EDA domain is metrics-driven, and EDA

tools are well positioned to balance between, e.g., a circuit’s

area and testability, all quantified by meaningful metrics.

While several security metrics and evaluation techniques

are known [12], as also outlined in this paper, the necessary

assumption of an intelligent and strategic attacker complicates

their definition and usage. For example, a transient fault

that leads to a critical system failure can be ignored during

reliability analysis in case it is extremely unlikely to occur.

When it comes to resistance against FIAs, however, the

attacker may put extra effort into injecting precisely this fault;

it cannot be ignored anymore. Having to account for such

“unlikely but possible” events poses a significant burden for

security analysis and on appropriate strategies to incorporate

such analysis into EDA tools. This also implies that one can

expect some security metrics to act more like step functions,

where certain efforts must be spent to reach a security level,

but spending more will not provide additional benefits. This

is fundamentally different from classical metrics like area or

power consumption and should be considered accordingly for

security-aware design space exploration.

V. CONCLUSION

EDA tools are traditionally a key enabler for complex

ICs and electronic systems. Nowadays, an increasing number

of applications becomes security-critical and ICs must offer

protection against hardware-oriented attacks, yet the support
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by EDA tools is lacking for this matter. We outlined short- to

medium-term potentials for security-driven design methods to

be integrated into EDA tools. We also identified conceptual

challenges for secure composition of countermeasures against

various threat vectors and for security metrics.
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