Towards Secure Distance Bounding

Ioana Boureanu, Katerina Mitrokotsa, Serge Vaudenay

http://lasec.epfl.ch/

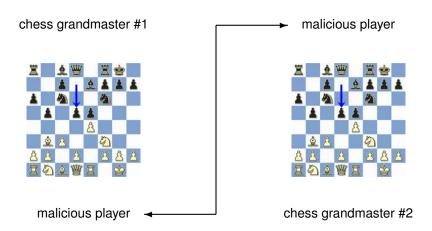
1 / 48

SV 2013 distance bounding FSE 2013

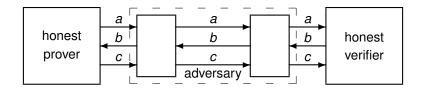
- Why Distance-Bounding?
- 2 Towards a Secure Protocol
- The SKI Protocol

- Why Distance-Bounding?
- 2 Towards a Secure Protocol
- The SKI Protocol

Playing against two Chess Grandmasters



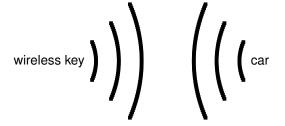
Relay Attacks



5 / 48

A Nice Playground for Relay Attacks

Wireless Car Locks



A Nice Playground for Relay Attacks

Corporate RFID Card for Access Control

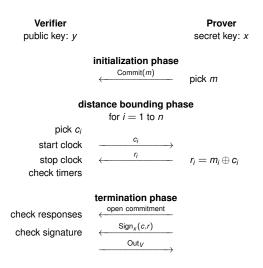
A Nice Playground for Relay Attacks

Contactless Credit Card Payment

wireless credit card payment

The Brands-Chaum Protocol

Distance-Bounding Protocols [Brands-Chaum EUROCRYPT 1993]



The Speed of Light

time error of $1\mu s$ = distance error of 300m

Distance Bounding

interactive proof for proximity
 a verifier (honest)
 a prover (may be malicious)
 a secret to characterize the prover (may be symmetric)
 concurrency: many provers and verifiers around, plus malicious
 participants

• completeness:

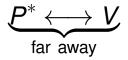
if the honest prover is close to the verifier, the verifier accepts

soundness:if the verifier accept, then a close participant must hold the secret

 secure: when honestly run, the secret must not leak

11 / 48

Distance Fraud



a malicious prover P^* tries to prove that he is close to a verifier V

SV 2013

Mafia Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

an adversary $\mathcal A$ tries to prove that a prover P is close to a verifier V

Terrorist Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

a malicious prover P^* helps an adversary $\mathcal A$ to prove that P^* is close to a verifier V without giving $\mathcal A$ another advantage

Impersonation Fraud

An Efficient Distance Bounding RFID Authentication Protocol [Avoine-Tchamkerten ISC 2009]

$$\mathcal{A} \longleftrightarrow V$$

an adversary $\mathcal A$ tries to prove that a prover P is close to a verifier V

FSE 2013

15 / 48

Distance Hijacking

Distance Hijacking Attacks on Distance Bounding Protocols [Cremers-Rasmussen-Schmidt-Čapkun IEEE S&P 2012]

$$\underbrace{P^* \longleftrightarrow P' \longleftrightarrow V}_{\text{far away}}$$

a malicious prover P^* tries to prove that he is close to a verifier V by taking advantage of other provers P'

A General Threat Model

distance fraud:

- P(x) far from all V(x)'s want to make one V(x) accept (interaction with other P(x') and V(x') possible anywhere)
- ullet ightarrow also captures distance hijacking

man-in-the-middle:

- learning phase: A interacts with many P's and V's
- attack phase: P(x)'s far away from V(x)'s, \mathcal{A} interacts with them and possible P(x')'s and V(x')'s \mathcal{A} wants to make one V(x) accept
- ullet ightarrow also captures impersonation

collusion fraud:

• P(x) far from all V(x)'s interacts with \mathcal{A} and makes one V(x) accept, but $View(\mathcal{A})$ does not give any advantage to mount a man-in-the-middle attack

Known Protocols and Security Results

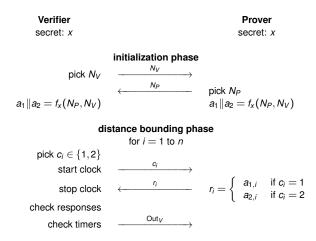
success probability of best known "regular" attacks (TF with no tolerance to noise + no malicious PRF)

Protocol	Success Probability		
	Distance-Fraud	MiM	Collusion-Fraud
Brands & Chaum	$(1/2)^n$	$(1/2)^n$	1
Bussard & Bagga	1	$(1/2)^n$	1
Čapkun <i>et al.</i>	$(1/2)^n$	$(1/2)^n$	1
Hancke & Kuhn	$(3/4)^n$	$(3/4)^n$	1
Reid et al.	$(3/4)^n$	1	(3/4) ^v
Singelée & Preneel	$(1/2)^n$	$(1/2)^n$	1
Tu & Piramuthu	$(3/4)^n$	1	(3/4) ^v
Munilla & Peinado	$(3/4)^n$	$(3/5)^n$	1
Swiss-Knife	$(3/4)^n$	$(1/2)^n$	(3/4) ^v
Kim & Avoine	$(7/8)^n$	$(1/2)^n$	1
Nikov & Vauclair	1/ <i>k</i>	$(1/2)^n$	1
Avoine et al.	$(3/4)^n$	$(2/3)^n$	(2/3) ^v

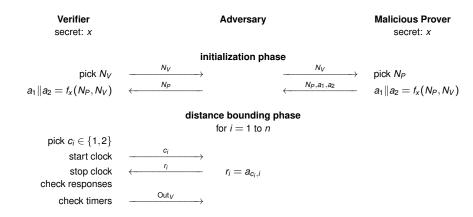
- Why Distance-Bounding?
- 2 Towards a Secure Protocol
- The SKI Protocol

The Hancke-Kuhn Protocol

An RFID Distance-Bounding Protocol [Hancke-Kuhn SECURECOMM 2005]



A Terrorist Fraud against The Hancke-Kuhn Protocol



The Reid et al. Protocol (DBENC)

Detecting Relay Attacks with Timing-based Protocols [Reid-Nieto-Tang-Senadji ASIACCS 2007]

Verifier secret: x		Prover secret: <i>x</i>
$\begin{aligned} \operatorname{pick} N_V \\ a_1 &= f_x(N_P, N_V) \\ a_2 &= a_1 \oplus x \end{aligned}$	$\underbrace{\stackrel{N_V}{\longrightarrow} \stackrel{N_P}{\longrightarrow}}_{N_P}$	pick N_P $a_1 = f_X(N_P, N_V a_2 = a_1 \oplus x$
dis	stance bounding pha	se
	for $i = 1$ to n	
pick $c_i \in \{1,2\}$		
start clock	$\xrightarrow{c_i}$	
stop clock check responses	< r _i	$r_i = a_{c_i,i}$
check timers	$\xrightarrow{Out_{V}}$	

resist to terrorist fraud: if a_1 and a_2 leak, then x as well!

A Man-in-the-Middle against DBENC

The Swiss-Knife RFID Distance Bounding Protocol [Kim-Avoine-Koeune-Standaert-Pereira ICISC 2008]

Verifier secret: x	Adversary	Prover secret: x
$pick N_V$ $a = f_X(N_P, N_V)$		pick N_P $a = f_x(N_P, N_V)$
	distance bounding phase for $i = 1$ to n	
pick $c_i^* \in \{1,2\}$		
start clock		
stop clock check responses	$\leftarrow \qquad \qquad r_i^* = r_i \oplus b.1_{i=j} \qquad \leftarrow \qquad \qquad r_i$	$r_i = a_i \oplus x_i.1_{c_i=2}$
check timers	$\xrightarrow{Out_V}$	

fact 1: r_i is the correct response to c_i

fact 2: Out_V = 1 iff r_j^* is the correct response to $c_j \oplus 1$ consequence: the adversary deduces a_i and $a_j \oplus x_i$, so x_i as well

SV 2013 distance bounding FSE 2013

23 / 48

A Man-in-the-Middle against Other DBENC

The Bussard-Bagga and Other Distance-Bounding Protocols under Attacks [Bay-Boureanu-Mitrokotsa-Spulber-Vaudenay Inscrypt 2012]

set
$$a_2 = \operatorname{Enc}_{a_1}(x)$$

- one-time pad: $\operatorname{Enc}_{a_1}(x) = x \oplus a_1$
- addition modulo q: $\operatorname{Enc}_{a_1}(x) = x a_1 \mod q$
- modular addition with random factor:

$$\operatorname{Enc}_{a_1}(x; u) = (u, ux - a_1 \mod q)$$
 for a random invertible u

all instances broken

The TDB Protocol

How Secret-Sharing can Defeat Terrorist Fraud [Avoine-Lauradoux-Martin ACM WiSec 2011]

Verifier secret: x		Prover secret: x
	$\underbrace{\stackrel{N_P}{\longleftarrow}_{N_P}}_{N_V}$	pick N_P $a_1 \ a_2 = f_X(N_P, N_V)$

distance bounding phase

$$\begin{array}{c} \text{for } i=1 \text{ to } n \\ \\ \text{pick } c_i \in \{1,2,3\} \\ \\ \text{start clock} & \xrightarrow{c_i} \\ \\ \text{stop clock} & \longleftarrow & r_i \\ \end{array} \qquad \begin{array}{c} r_i = \left\{ \begin{array}{ccc} a_{1,i} & \text{if } c_i = 1 \\ a_{2,i} & \text{if } c_i = 2 \\ x_i \oplus a_{1,i} \oplus a_{2,i} & \text{if } c_i = 3 \end{array} \right. \\ \\ \text{check responses} \end{array}$$

FSE 2013

25 / 48

resist to man-in-the-middle: two answers to c_i don't leak x_i !

check timers

Security Proofs Based on PRF

- if the adversary can break the scheme with a PRF, then he can break an idealized scheme with the PRF replaced by a truly random function
- this argument is valid when both these conditions are met:
 - the adversary does not have access to the PRF key
 - the PRF key is only used by the PRF
- as far as distance fraud is concerned, condition 1 is not met!
- for most of terrorist fraud protections, condition 2 is not met!

Programming a PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

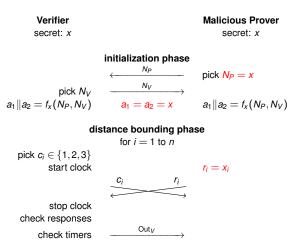
given a PRF g, let

$$f_x(N_P, N_V) = \begin{cases} x || x & \text{if } N_P = x \\ g_x(N_P, N_V) & \text{otherwise} \end{cases}$$

f is a PRF!

Distance Fraud with a Programmed PRF against the TDB Protocol

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]



FSF 2013

28 / 48

Using PRF Masking

Verifier secret:
$$x$$
 secret: x secret:

a is now chosen by the verifier

Man-in-the-Middle Attack with a Programmed PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

- take a PRF g
- define a predicate trapdoor_x $(\bar{\alpha}||t) \Longleftrightarrow t = g_x(\bar{\alpha}) \oplus \text{right_half}(x)$,

$$f_{\scriptscriptstyle X}(N_{\scriptscriptstyle P},N_{\scriptscriptstyle V}) = \left\{ \begin{array}{ll} a_1 \| a_2 = \alpha \| \beta \| \gamma \| \beta \oplus g_{\scriptscriptstyle X}(\alpha) & \text{if } \neg \text{trapdoor}_{\scriptscriptstyle X}(N_{\scriptscriptstyle V}) \\ & \text{where } (\alpha,\beta,\gamma) = g_{\scriptscriptstyle X}(N_{\scriptscriptstyle P},N_{\scriptscriptstyle V}) \\ a_1 = a_2 = x & \text{otherwise} \end{array} \right.$$

f is a PRF!

- attack:
 - 1: play with P and send c = (1, ..., 1, 3, ..., 3) to obtain from the responses $\bar{\alpha} || t$ satisfying trapdoor.
 - 2: play with P again with $N_V = \bar{\alpha} || t$ and get x!

Other Results based on Programmed PRFs

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

protocol	distance fraud	man-in-the-middle attack
TDB Avoine-Lauradoux-Martin	\checkmark	\checkmark
[ACM WiSec 2011]		
Dürholz-Fischlin-Kasper-Onete [ISC 2011]		-
Hancke-Kuhn [Securecomm 2005]	$\sqrt{}$	_
Avoine-Tchamkerten [ISC 2009]		_
Reid-Nieto-Tang-Senadji [ASIACCS 2007]		\checkmark
Swiss-Knife Kim-Avoine-Koeune-Standaert-	_	\checkmark
Pereira [ICISC 2008]		

Using Circular-Keying Security

VerifierProversecret:
$$x$$
secret: x initialization phasepick a, N_V $\stackrel{N_P}{\longrightarrow}$ pick N_P $M = a \oplus f_X(N_P, N_V)$ $a = M \oplus f_X(N_P, N_V)$ distance bounding phasefor $i = 1$ to n pick $c_i \in \{1, 2, 3\}$ c_i start clock c_i stop clock r_i $r_i = \{$ $a_{1,i}$ if $c_i = 1$ $a_{2,i}$ if $c_i = 2$ $x_i \oplus a_{1,i} \oplus a_{2,i}$ if $c_i = 3$ check timersOut V

f is a PRF with circular-keying security

Circular Keying Security

 \bullet if $\mathcal A$ makes queries

$$y_i, a_i, b_i \mapsto (a_i \cdot x') + (b_i \cdot f_x(y_i))$$

 \mathcal{A} cannot distinguish if x = x' or x and x' are independent

caveat: queries must be such that

$$\forall i_1,\ldots,i_q,c_1,\ldots,c_q \qquad egin{array}{c} y_{i_1}=\cdots=y_{i_q} \ \sum_{j=1}^q c_j b_{i_j}=0 \end{array}
ight\} \Longrightarrow \sum_{j=1}^q c_j a_{i_j}=0$$

• sanity check: easily constructed in the random oracle model

Problem with Noise

Verifier Prover secret: x secret: x

initialization phase

distance bounding phase

$$\begin{array}{c} \text{for } i=1 \text{ to } n \\ \\ \text{pick } c_i \in \{1,2,3\} \\ \\ \text{start clock} \end{array} \qquad \begin{array}{c} c_i \\ \\ \\ \text{stop clock} \end{array} \qquad \begin{array}{c} r_i = \left\{ \begin{array}{c} a_{1,i} & \text{if } c_i = 1 \\ a_{2,i} & \text{if } c_i = 2 \\ x_i \oplus a_{1,i} \oplus a_{2,i} & \text{if } c_i = 3 \end{array} \right. \\ \\ \text{check at least τ correct responses} \\ \\ \text{check timers} \qquad \begin{array}{c} Out_V \\ \\ \end{array} \qquad \begin{array}{c} Out_V \\$$

Terrorist Fraud based on Tolerance to Noise

Distance Bounding for RFID: Effectiveness of Terrorist Fraud [Hancke IEEE RFID-TA 2012]

Verifier secret: x	Adversary	Malicious Prover secret: <i>x</i>
$pick a, N_V$ $M = a \oplus f_x(N_P, N_V)$	$ \begin{array}{c} \text{initialization phase} \\ \longleftarrow & \stackrel{N_P}{\longrightarrow} & \longleftarrow \\ \hline \longrightarrow & \stackrel{M,N_V}{\longrightarrow} & \longleftarrow \end{array} $	$ \frac{N_{P}}{M.N_{V}} \qquad \text{pick } N_{P} $ $ \frac{M.N_{V}}{F_{i}, i \in I} \qquad a = M \oplus f_{X}(N_{P}, N_{V}) $ $ I = g(x) $

distance bounding phase for i = 1 to n

$$\begin{array}{ccc} \operatorname{pick} \ c_i \in \{1,2,3\} & & & & \\ & \operatorname{start} \ \operatorname{clock} & & & & \xrightarrow{r_i} & & \\ & \operatorname{stop} \ \operatorname{clock} & \longleftarrow & & & \\ \operatorname{check} \ge \tau \ \operatorname{responses} & & & & \\ \operatorname{check} \ \operatorname{timers} & & & & & \\ \end{array} \qquad r_i = F_i^*(c_i)$$

$$F_i(c) = \left\{ \begin{array}{ll} a_{1,i} & \text{if } c = 1 \\ a_{2,i} & \text{if } c = 2 \\ x_i \oplus a_{1,i} \oplus a_{2,i} & \text{if } c = 3 \end{array} \right. \quad \left. \begin{array}{ll} \#I = \tau \\ F_i^* = F_i \text{ if } i \in I \\ F_i^* = \text{random otherwise} \end{array} \right.$$

SV 2013 distance bounding FSE 2013

35 / 48

- Why Distance-Bounding?
- 2 Towards a Secure Protocol
- The SKI Protocol

Why SKI?

- Symmetric Key Infrastructure?
- Sheffield Kidney Institute?
- Serial Killers Incorporated?

Serge Katerina Ioana

The SKI Protocol

VerifierProversecret: xsecret: x

initialization phase

distance bounding phase

$$\begin{array}{c} \text{for } i=1 \text{ to } n \\ \\ \text{pick } c_i \in \{1,2,3\} \\ \\ \text{start clock} \end{array} \xrightarrow{c_i} \\ \\ \text{stop clock} \qquad \leftarrow \qquad \begin{matrix} c_i \\ \\ r_i \end{matrix} \qquad \qquad r_i = \left\{ \begin{array}{ccc} a_{1,i} & \text{if } c_i = 1 \\ a_{2,i} & \text{if } c_i = 2 \\ x_i' \oplus a_{1,i} \oplus a_{2,i} & \text{if } c_i = 3 \end{array} \right. \\ \\ \text{check } \geq \tau \text{ responses} \\ \\ \text{check timers} \qquad \longrightarrow \\ \end{array}$$

f is a circular-keying secure PRF, $L_{\mu}(x) = (\mu \cdot x, \dots, \mu \cdot x)$

Completeness of SKI

$$B(n,\tau,q) = \sum_{i=\tau}^{n} {n \choose i} q^{i} (1-q)^{n-i}$$

- assume honest execution of the protocol
- let p_{noise} be the probability that one round is incorrect
- probability to pass is $B(n, \tau, 1 p_{\text{noise}})$
- (Chernoff) for $\frac{\tau}{n} < 1 p_{\text{noise}} \epsilon$, this is more than $1 e^{-2\epsilon^2 n}$

Best Distance Fraud against SKI

Verifier secret: x

Malicious Prover

secret: x

initialization phase

distance bounding phase for i = 1 to n

$$\begin{array}{c} \text{pick } c_i \in \{1,2,3\} \\ \text{start clock} \end{array}$$

pick r_i with largest preimage by F_i

$$\begin{array}{c} \text{stop clock} \\ \text{check} \geq \tau \text{ responses} \\ \text{check timers} \end{array}$$

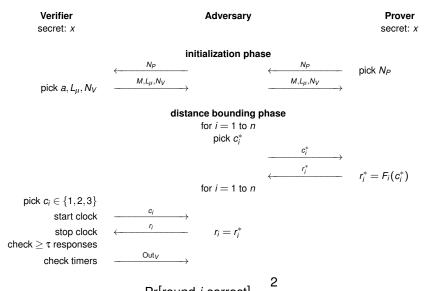
$$Pr[round i correct] = \frac{3}{4}$$

Best Distance Fraud against SKI

Pr[round *i* correct] = Pr[
$$F_i$$
 constant] + $\frac{2}{3}$ (1 - Pr[F_i constant])
 = $\frac{1}{4} + \frac{2}{3} \times \left(1 - \frac{1}{4}\right)$
 = $\frac{3}{4}$

- F_i is a 3-to-2 mapping
 so, the largest preimage has 3 (if F_i is constant) or 2 elements
- it is constant iff $a_{1,i} = a_{2,i} = x_i$, i.e. with probability $\frac{1}{4}$
- probability to pass is $B(n, \tau, \frac{3}{4})$
- (Chernoff) for $\frac{\tau}{n} > \frac{3}{4} + \varepsilon$, this is less than $e^{-2\varepsilon^2 n}$

Best Mafia Fraud against SKI



Pr[round *i* correct]

Best Mafia Fraud against SKI

Pr[round i correct] = Pr[
$$c_i = c_i^*$$
] + $\frac{1}{2}$ (1 - Pr[$c_i = c_i^*$])
= $\frac{1}{3}$ + $\frac{1}{2}$ × $\left(1 - \frac{1}{3}\right)$
= $\frac{2}{3}$

- probability to pass is $B(n, \tau, \frac{2}{3})$
- (Chernoff) for $\frac{\tau}{n} > \frac{2}{3} + \varepsilon$, this is less than $e^{-2\varepsilon^2 n}$

Best Terrorist Fraud against SKI

Verifier Adversary Malicious Prover secret: x secret: x initialization phase pick N_P M, L_{u}, N_{V} M, L_u, N_V pick a, L_u, N_V pick c_1^*, \ldots, c_n^* $F_i^*(c) = F_i(c)$ if $c \neq c_i^*$ $F_i^*(c) = \text{rnd else}$

distance bounding phase

for
$$i = 1$$
 to n

$$\begin{array}{c} \text{for } i=1 \text{ to } r\\ \\ \text{pick } c_i \in \{1,2,3\}\\ \\ \text{start clock} \\ \\ \text{stop clock} \\ \\ \text{check} \geq \tau \text{ responses}\\ \\ \text{check timers} \end{array} \xrightarrow{C_i} r_i = F_i^*(c_i)$$

$$Pr[round i correct] = \frac{5}{6}$$

Best Terrorist Fraud against SKI

Pr[round i correct] =
$$\Pr[c_i \neq c_i^*] + \frac{1}{2}(1 - \Pr[c_i \neq c_i^*])$$

 = $\frac{2}{3} + \frac{1}{2} \times \left(1 - \frac{2}{3}\right)$
 = $\frac{5}{6}$

- probability to pass is $B(n, \tau, \frac{5}{6})$
- (Chernoff) for $\frac{\tau}{n} > \frac{5}{6} + \varepsilon$, this is less than $e^{-2\varepsilon^2 n}$

Summary

for

$$p_{\mathsf{noise}} < \frac{1}{6} - 2\varepsilon$$

we can adjust τ and have completeness up to $e^{-2\varepsilon^2 n}$, and security up to $e^{-2\varepsilon^2 n}$

- completeness
- resistance to distance fraud
- resistance to mafia fraud
- resistance to terrorist fraud

SKI Security

Theorem

If f is a circular-keying secure PRF and V requires at least τ correct rounds,

- there is no DF with $Pr[success] \ge B(n, \tau, \frac{3}{4})$
- there is no MiM with $\Pr[\text{success}] \ge B(n, \tau, \frac{2}{3})$
- for all CF such that $\Pr[\text{CF succeeds}] \ge B(\frac{n}{2}, \tau \frac{n}{2}, \frac{2}{3})^{1-c}$ there is an assosiated MiM with P^* such that $\Pr[\text{MiM succeeds}] \ge (1 B(\frac{n}{2}, \tau \frac{n}{2}, \frac{2}{3})^c)^n$

$$B(n,\tau,\rho) = \sum_{i=\tau}^{n} {n \choose i} \rho^{i} (1-\rho)^{n-i}$$

Conclusion

- several proposed protocols from the literature are insecure
- several security proofs from the literature are incorrect
- SKI offers provable security