
Research Article

Towards Secure Network Computing Services for Lightweight
Clients Using Blockchain

Yang Xu ,1 Guojun Wang,2 Jidian Yang,1 Ju Ren,1 Yaoxue Zhang,1 and Cheng Zhang1

1School of Information Science and Engineering, Central South University, Changsha 410083, China
2School of Computer Science and Educational So�ware, Guangzhou University, Guangzhou 510006, China

Correspondence should be addressed to Yang Xu; xuyangcsu@csu.edu.cn

Received 27 July 2018; Revised 18 October 2018; Accepted 1 November 2018; Published 13 November 2018

Guest Editor: Constantinos Kolias

Copyright © 2018 Yang Xu et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e emerging network computing technologies have signi�cantly extended the abilities of the resource-constrained IoT devices
through the network-based service sharing techniques. However, such a 	exible and scalable service provisioning paradigm brings
increased security risks to terminals due to the untrustworthy exogenous service codes loading from the open network. Many
existing security approaches are unsuitable for IoT environments due to the high di
culty of maintenance or the dependencies
upon extra resources like speci�c hardware. Fortunately, the rise of blockchain technology has facilitated the development of service
sharing methods and, at the same time, it appears a viable solution to numerous security problems. In this paper, we propose a
novel blockchain-based secure service provisioningmechanism for protecting lightweight clients from insecure services in network
computing scenarios. We introduce the blockchain to maintain all the validity states of the o�-chain services and edge service
providers for the IoT terminals to help them get rid of untrusted or discarded services through provider identi�cation and service
veri�cation. In addition, we take advantage of smart contracts which can be triggered by the lightweight clients to help them check
the validities of service providers and service codes according to the on-chain transactions, thereby reducing the direct overhead on
the IoT devices. Moreover, the adoptions of the consortium blockchain and the proof of authority consensus mechanism also help
to achieve a high throughput.�e theoretical security analysis and evaluation results show that our approach helps the lightweight
clients get rid of untrusted edge service providers and insecure services e�ectively with acceptable latency and a�ordable costs.

1. Introduction

�e Internet of�ings (IoT) industry has evolved remarkably
in the last decade. Currently, there exist more than 13 billion
connected IoT devices and this number would increase to 30
billion in the near future [1]. Meanwhile, the emerging net-
work computing technologies, typically, fog/edge computing
[2, 3] and transparent computing [4, 5], have signi�cantly
extended the abilities of the existing resource-constrained
IoT devices, through the network-based service provisioning
and sharing mechanisms. For example, in the IoT-oriented
edge transparent computing scenario [6, 7], with the aid
of block-stream code loading and execution techniques [8],
the resource-constrained wearable devices (e.g., wristbands
and smartwatches) are enabled to alternately run numerous
applications obtained from either the cloud servers or close
edge servers (e.g., personal computers), which goes beyond

the original capabilities of these local devices (see Figure 1)
[9].

However, such 	exible and scalable service provisioning
paradigms bring increased security risks to terminal devices
unintentionally. Comparing to the traditional closed archi-
tectures, the attack surfaces of network computing systems
have inevitably increased due to the opening service sharing
over the network [10, 11]. �e frequent-changing exogenous
service codes loading on the clients from the remote servers
via the network can be unreliable, fragile, and even harmful
to the host terminals in absence of adequate security mecha-
nisms [12]. To make things worse, the various edge servers
intermingled with vulnerable and malicious ones certainly
heighten the risks.

Some early studies have already been done for protecting
the terminals from illegal services in network computing

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 2051693, 12 pages
https://doi.org/10.1155/2018/2051693

http://orcid.org/0000-0002-3194-8369
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2051693

2 Wireless Communications and Mobile Computing

Execution

Discard a�er running

Cloud Server

Edge Servers

IoT Devices

Block-stream
Loading

Figure 1: �e IoT-oriented edge transparent computing scenario.

scenarios [12–16]. Based on integrity veri�cation techniques,
these works equip the terminals with the abilities to check the
validities of the acquired service programs before executions
with the help of static information (e.g., hash checksum)
prestored in local trusted �rmware [12–15] or trusted plat-
form module (TPM) [16]. However, when it comes to IoT
scenarios [17] in which the vulnerable IoT devices are
threatened by distributed cyberattacks, the rigid prestored
information is technically less maintainable for updating,
while the spare �rmware space or speci�c hardware is usually
unavailable.

Recently, the rise of blockchain technologies [18, 19]
inspires researchers for brand new solutions. With the
excellent features of openness, decentralization, and tamper
resistance, the blockchain techniques have been used as the
underlying security fabric for a bunch of emerging service
provisioning and sharing systems [20–29]. �ese approaches
leverage the blockchain to release service information so
as to ensure that the clients can obtain services correctly.
Unfortunately, these blockchain-based schemes usually have
low throughput and high service latency problems and take
little consideration of necessary information updating as well
as the legality validation of the numerous service providers.
Even worse, few of them are designed for IoT scenarios and
thus bring about una�ordable computing and storage costs to
most existing IoT devices.

Motivated by the situations mentioned above, in this
paper, we proposed a novel blockchain-based secure service

provisioning mechanism to protect the lightweight clients
from insecure exogenous service codes from untrustworthy
edge servers in the edge transparent computing scenario. We
leverage the blockchain to maintain all the validity states of
the o�-chain services and edge servers dynamically updated
by the arbitration cloud merchants, to help the lightweight
clients get rid of untrusted or discarded services through
the provider identi�cation and service veri�cation. Besides,
the speci�c smart contracts [30] are introduced and can be
triggered to verify the validities of the edge servers and service
codes on behalf of the lightweight clients according to the on-
chain transactions, thereby reducing the direct costs of these
IoT devices. Furthermore, a consortium blockchain with the
proof of authority consensus mechanism [31, 32] is employed
to achieve a high throughput and low latency further. Finally,
we demonstrate the security of our approach and then test
it comprehensively. �e evaluation results show that our
approach protects the lightweight clients fromuntrusted edge
service providers and undependable service codes e�ectively
with acceptable latency and a�ordable costs.

Summarily, the major contributions of our work are
threefold:

(1) We design a blockchain system to maintain the
appendable and tamper-resistant validity states of the o�-
chain services and edge servers dynamically declared by the
arbitration cloud merchants, to help the lightweight clients
get rid of insecure or deprecated services by the means of
provider identi�cation or service veri�cation.

Wireless Communications and Mobile Computing 3

(2) We not only introduce smart contracts, which can be
triggered by the lightweight clients to help them check the
validities of the acquired services and edge servers according
to the transactions on chain for reducing the costs of these IoT
devices, but also employe the e
cient consortium blockchain
with the proof of authority consensus engine for ensuring the
high throughput and low latency of the entire system.

(3) We demonstrate the security of the proposed
approach, implement a prototype based on the Ethereum
project [33], and evaluate its e�ectiveness and e
ciency in the
IoT-oriented edge transparent computing environment.

�e rest of this paper is organized as follows. Section 2
gives an introduction to some related work and shores up
our choice of blockchain technique for protecting lightweight
clients from insecure service in network computing sce-
narios. In Section 3, we propose a blockchain-based secure
service provisioning mechanism for lightweight clients in
network computing scenarios. And then, we discuss the secu-
rity of the proposed approach and evaluate it in experiments
in Section 4. Finally, Section 5 concludes this paper and
describes possible enhancement.

2. Related Work

In this section, we introduce some existing approaches about
secure service sharing mechanisms which can be applied to
the network computing environments.

To defend against the threatening service codes loading
from the remote servers via the open network, Kuang et al.
[12] proposed a security-enhanced service sharing approach
for local terminals in network computing by using the
integrity checking technique. �is approach deploys the
checking procedures together with static hash results of
services on the local �rmware and checks the integrity of
acquired service codes from the Internet. �erefore, the
terminals are secured as any unmatched suspicious service
code would be discarded without execution. Furthermore,
the so�ware engineers of Intel Cooperation [13–16] proposed
a series of integrity-checking-based secure methods on the
UEFI (Uni�ed Extensible Firmware Interface) �rmware col-
laborating with the dedicated TPMhardware. However, these
security approaches become unpractical in the IoT scenarios.
For one thing, the static information prestored in local device
is rigid and technically less updatable, especially in IoT
scenarios. For another, the requirements of extra supports
of �rmware or speci�c hardware are usually unavailable for
lightweight IoT devices.

In recent years, the emergence and fast growth of
blockchain technologies [18, 19] also contribute to the devel-
opment of service sharing techniques andmeanwhile indicate
a new way to secure the local terminals from the threats of
untrusted extraneous services. As a decentralized ledger built
upon peer-to-peer (P2P) structure, blockchain eliminates
the need of trusted third parties and has the features of
decentralization, trustworthiness, and anonymity. According
to the permissions of blockchain nodes, current blockchains
can be divided into three types: the public blockchain (which
is an open public system that can be partaken by any entities),
the private blockchain (which is totally controlled by a single

entity), and the consortium blockchain (which is maintained
by several privileged entities with limited permissions to
normal participants). As the soul of blockchain techniques,
there exist several consensus algorithms; typically, the Proof
of Work (PoW) is a very fair but costly hashrate-based
algorithm �tting for public blockchains, while the Proof of
Stake (PoS) is a stake-based algorithm, and the Proof of
Authority (PoA) is an e
cient and economical authority-
determined algorithm o�en used in consortium blockchains.
Besides, the smart contract is another important part of
the blockchain. It is a set of promise codes that may be
triggered for automatic execution when deployed on the
blockchain. And the transactions of execution results will be
generated and veri�ed by all blockchain miners so that they
will be appended on the blockchain trustworthily. Obviously,
the booming of smart contracts makes the blockchain a
functionally rich technology. Based on the outstanding fea-
tures of blockchain technologies, some people started to use
blockchain for content sharing. Kishigami et al. [20] proposed
a digital content distribution system based on the blockchain.
�e content owner named licensor shares the data content
with licensees over the Internet and all the transactions are
recorded on the blockchain. Using blockchain for content
distribution can guarantee certain security. With the sup-
port of such blockchain-based platforms, users can obtain
rich services, while service developers can also control the
deliveries of content-sharing services. �is is the purpose
of most schemes using blockchains for content distribution
because a decentralized platform always gives users more
freedom. Fotiou and Polyzos [21] presented a decentral-
ized name-based security mechanism that aims to secure
content distribution on the blockchain architecture. �ey
leveraged Hierarchical Identity Based Encryption (HIBE)
to solve the problem of content storage and veri�cation.
And the data content was divided into many small parts
for 	exible management. Similarly, Decent [22] also uses a
similar method for managing data in chunks. It splits the
data into multiple pieces before sending it to consumers.
However, this system does not take the rationality of data into
account, such as whether the data is tampered or not. �ese
approaches that utilize the decentralization characteristics of
the blockchain for service sharing ignored the importance of
service reliability. Apparently, due to the lack of appropriate
security mechanism, the clients are exposed to risks as they
may receive unexpected malicious services. Some relevant
solutions based on blockchain techniques were proposed
to improve the reliability of service sharing. Xu et al. [23]
proposed an integrity-checking-based blockchain approach
to improve the security of data sharing. �ey transmitted
the personal data in an o�-chain manner and stored the
corresponding hash value on the blockchain. However, it
depends onusers’ own subjective judgment to decidewhether
the obtained services are secure or not, thereby causing
many subjective controversies. Zhou et al. [24] proposed a
protocol named CSSP (cleanroom security service protocol)
based on the consortium blockchain to provide network
so�ware services. Instead of using the PoW algorithm, it
uses an arbitration node to mediate and record transactions
which saves a lot in mining. However, these approaches are

4 Wireless Communications and Mobile Computing

only imperfect mitigations for security problems. When it
comes to our blockchain-based service provisioning scheme,
it implemented an o�-chain service delivery, dynamic on-
chain veri�cation mechanism, to help the lightweight IoT
clients get rid of insecure services and service providers,
without the participation of traditional trusted third party.

�e approaches mentioned above are mainly designed
for the desktop environment. When it comes to the IoT sce-
narios, although blockchain and smart contracts have been
introduced for improving the security of IoT systems [34–
36], there are few practices using blockchains for achieving
secure service sharing due to the limitations on the hardware
and so�ware in IoT environments. Boudguiga et al. [25] used
blockchain as a platform to provide service updates for IoT
devices. �ere are three entities in this system: manufac-
turer node, user node, and innocuousness checking node.
Before manufacturers providing update service for clients,
the innocuousness checking nodeswill download the updates
from the blockchain to check the innocuousness. And then
they will respond with a message indicating whether the
update is problematic or innocuous. �e clients will not be
allowed to download the update until more than half of the
checking points prove that the current update is innocuous.
�is approach also makes use of an arbitrator node to ensure
the reliability of services. Usually, these authority-determined
consensus algorithms (i.e., the PoA algorithm) are used in
the consortium blockchain which is maintained by several
privileged entities. �ere also exist some typical studies
which used the PoA-based consortium blockchain in the IoT
scenarios [26]. Undoubtedly, the success of the PoA-based
consortium blockchain is quite inspiring.

Except for security, e
ciency is another important issue
for service sharing on the IoT platform.Due to the limitations
of hardware resources, IoT devices are not capable of per-
forming toomany service tasks.We can refer to some e�ective
desktop methods in the IoT scenarios. �e works [21, 22]
reduced the pressure on a single data transfer by delivering
content in chunks. Herbaut and Negru [27] divided regions
on the blockchain by smart contracts; each contract manages
a part of the edge users and content providers.�is approach
reduces the burden of content transfer on a single service
node. Sharma et al. [28] proposed an edge-cloud architecture
implemented as the blockchain system for service sharing in
IoT environment. In this approach, the close fog nodes are
responsible for service delivery for IoT devices. And all the
services are stored in the blockchain cloud, thereby achieving
the low-cost service access control. A similar approach is also
proposed by Dorri et al. [29]. However, these architectures
did not improve the performance from the perspectives of
blockchain itself as well as the consensus mechanism. On
the contrary, our platform took advantage of the PoA-based
blockchain which achieves the high throughput and low
latency of the entire system.

In conclusion, comparing with the existing solutions, our
blockchain-based service provisioning scheme implements
an o�-chain service delivery and dynamic on-chain veri�-
cation mechanism to help the lightweight IoT clients get
rid of insecure services and service providers, without the
participation of traditional trusted third party. Our approach

uses smart contracts to help the lightweight IoT clients check
the validities of the acquired services and corresponding edge
serverswhich signi�cantly reduces the costs on the side of IoT
devices. Besides, our system employs the e
cient consortium
blockchain with the PoA consensus engine which achieves
the high throughput and low latency of the entire system.

3. Blockchain-Based Secure Service
Provisioning System

In this section, we provide an overview of the secure service
provisioning framework and then detail it in terms of its
validity management and veri�cation businesses.

3.1. Overview of the Model. �e blockchain-based secure ser-
vice provisioning framework builds on the edge transparent
computing model and is working in on-chain and o�-chain
collaboration mode, as shown in Figure 2.

It consists of both the legacy entities of edge transparent
computing and several new entities of blockchain system.

�e Legacy Entities of Edge Transparent Computing

(i) Cloud Service Provider (CSP):�eCSP is the powerful
cloud-tier service providerwhich provides the trusted
service codes to ESPs in an o�-chain manner. �ere
exist several CSPs which belong to di�erent organi-
zations in the system and each CSP may consist of
several cloud servers.

(ii) Edge Service Provider (ESP): �e ESP is the o�-chain
weak service provider close to the LCs. It is able to
cache the service programs from the CSPs and deliver
them to the LCs when requested. �e ESPs and their
services are not always dependable. Devices such as
laptops and routers are usually acting as the ESPs in
practice.

(iii) Lightweight Client (LC):�e LC is the terminal which
is eager to request and execute the service codes from
the service providers. �e LCs are abstractions of the
physical IoT devices.

�e Entities of Blockchain System

(i) Arbitration Node (AN):�e ANs are privileged nodes
in the consortium blockchain and maintain a dis-
tributed ledger together which records smart con-
tracts and transactions of the validities of ESPs and
service codes. �e ANs are responsible for initiat-
ing transactions of validities, verifying the candidate
block, and executing smart contracts. All the ANs
work in the PoA consensus mode in which each AN
packages and broadcasts new block in turn while the
others vote to reach a consensus according to the
plurality (more than 50%) rule. In our approach, each
CSP acts as an AN in the blockchain network (the
ANs are deployed on legacy cloud servers in practice).

(ii) Lightweight Node (LN): �e LN is the less privileged
entity which is only allowed to read the information
on the blockchain and trigger the smart contract

Wireless Communications and Mobile Computing 5

Services

Transaction

(Tx):

Tx:

Tx:

Tx:

Approved Service

Forbidden Service

Approved ESP

Forbidden ESP

Cloud Service Provider

(CSP)

Edge Service Provider

(ESP)

Lightweight Client

(LC)

Lightweight Node

(LN)

Consortium blockchain with the PoA consensus engine

Arbitration Node

(AN)

Service Request

Service Response

Inquiry

Validity Result

Figure 2: �e secure service provisioning in edge transparent computing.

to query the validity states about the ESPs or the
acquired service codes. Each LC is also an LN in our
blockchain network.

In this framework, the LCs mainly request and obtain service
codes from close ESPs. For protecting the LCs fromuntrusted
ESPs and undependable services, they are allowed to trigger
the smart contract (oracle smart contract, SCO) deployed on
the blockchain to �gure out the validity states of the current
serving ESPs or the acquired service codes according to
existing validity transactions, so that the LCs can determine
whether to execute the service programs or not. Besides, to
keep the validity states of the ESPs and service codes updated,
the ANs would continually append the new transactions of
validity into the blockchain.

In our approach, the service business is o�-chain while
the security business is on-chain, which helps to achieve
the security with low-performance overheads. Additionally,
the blockchain is implemented as a consortium blockchain
with the PoA consensus engine for performance reasons as
well.

Next, we describe the major businesses of our approach,
namely, the validity maintenance and veri�cation in detail.

3.2. ValidityMaintenance Business. �eANs keep the validity
states of the ESPs and service codes updated by contin-
ually appending the new transactions of validity into the
blockchain. �e transaction structures are given as follows:

(i) �e validity transaction of ESP: TxE = ⟨���ID; V;
C; T⟩,
where ���ID is the MAC address of the ESP, V is
the validity state, C is the comments, and T is the
timestamp.

(ii) �e validity transaction of service: TxS = ⟨SNAME;
SHASH; V; C; T⟩,
where SNAME is the service name, SHASH =
hashKeccak-256 (service codes), V is the validity
state, C is the comments, and T is the timestamp.

By appending new TxE and TxS with corresponding validity
states to the blockchain, the ANs can declare new legal ESPs
and service programs, discard the existing ESPs and service
programs when necessary (e.g., bugs discovered), update the
service version, or even declare malicious ESPs and service
programs. In addition, all the transactions and corresponding
addresses will also be stored into the public database of a
maintainer smart contract (SCM) synchronously to make the
transactions e
ciently searchable for the smart contract SCO

(the on-chain address of SCM is embedded in SCO).
Notice that we reasonably assume that all the ANs

can obtain service codes and necessary information about
ESPs which are engaged in the transactions; meanwhile, the
ESP authentication and service security testing are out of
the scope of this work. Besides, the MAC address-based
identi�cation used in our case is an exemplary method

6 Wireless Communications and Mobile Computing

which can be replaced or combined with other identi�cation
mechanisms. And defending against identi�cation spoo�ng
attacks such as MAC spoo�ng are complementary to our
work.

3.3. Validity Veri�cation Business. For security purpose,
when LCs request and obtain service codes from ESPs,
they can trigger the oracle smart contract (SCO) with
the corresponding indices of the current ESPs or the
service codes, to query the corresponding validity states.
�e work	ow of the secure service provisioning is as
follows:

(1) LC initiates an o�-chain service request ⟨SNAME⟩ to a
close ESP.

(2) �e ESP returns service codes to the LC in an o�-
chain manner.

(3) LC (i.e., LN) calculates the hash value of the service
codes by the Keccak-256 algorithm and then triggers
SCO with a vector ⟨SNAME; SHASH; ���ID⟩.

(4) SCO invokes SCM for corresponding on-chain records
about ⟨SNAME⟩ and ⟨���ID⟩ and then compares them
with the received ones. Matching a valid record
means the corresponding ESP or service codes are
secure while matching an invalid record means the
opposite. Note that an invalid result will also be given
if there is no record related to ⟨SNAME⟩ or ⟨���ID⟩.
Finally, SCO outputs the result in the form of the
on-chain transaction so that LC can make decisions
accordingly.

�e process of validity veri�cation is shown in Figure 3.

3.4. Case Study. �is section demonstrates an example of
our approach to help people understand how it works
concretely.

Assume there exists a blockchain-based secure service
provisioning system which includes the following validity
transactions in the blockchain:

TxE1 = ⟨00-50-56-C0-00-08; 1; Legitimate node; 1539450834⟩ ,

TxS1 = ⟨Servie 1.3; 7d7b084c0e330d734986a3a5884ad2c2af23a72e90ea06e8691849c64bbc64f9; 0; Legitimate service;

1539454312⟩ .

(1)

�en, we assume that LC initiates an o�-chain service request
<Servie 1.3> to a close ESP. �en, the ESP returns service
codes to LC in an o�-chain manner. A�er receiving the

service codes from the ESP, the LC calculates the hash value of
the service codes by Keccak-256 algorithm and then triggers
SCO with a vector before execution:

⟨Servie 1.3; 7d7b084c0e330d734986a3a5884ad2c2af23a72e90ea06e8691849c64bbc64f9; 00-50-56-C0-00-08⟩ . (2)

SCO invokes SCM for the latest on-chain records about
<Servie 1.3> and <00-50-56-C0-00-08> and then compares
them with the received vector from the LC. Since the valid
records TxE1 and TxS1 are found in the blockchain, SCO

outputs the valid result in the form of on-chain transaction
(cf. Figures 4(a) and 5(a)). Finally, the LC �nds the result
transaction and believes that corresponding ESP and service
codes are secure.

On the contrary, if the vector submitted to SCO from
the LC is <Servie 1.3; 56608f2ed0cdcf51ba6a99b2718aab4d2-
e74�78acdfa64ee8290 37be50b2cef; E0-94-67-D4-1C-7D>,
SCO outputs the invalid result in the form of on-chain
transaction (cf. Figures 4(c) and 5(b)) because no valid record
can be found in the blockchain. �erefore, the LC �nds this
result transaction and then denies the service codes from the
unreliable ESP.

4. Analysis and Evaluation

�is section demonstrates the security of our approach and
then analyzes the experimental results in terms of e�ective-
ness and e
ciency.

4.1. Security Analysis

4.1.1. �reat Model. We assume that the adversary can set
illegal ESPs to provide malicious or vulnerable service codes
for attacking clients. Besides, the benign ESPs may also
provide illegal services, e.g., outdated unpatched codes, due
to the improper maintenance, thereby putting clients at risks.
However, the adversary can neither compromise the majority
of arbitration nodes to tamper the blockchain system nor
forge digital signatures without corresponding private keys,
which is the basic security assumption of general blockchain
network commonly accepted. Note that defending against
identi�cation spoo�ng attacks such as MAC spoo�ng attacks
on ESPs are out of the scope of this work as the MAC-based
identi�cation used in this approach is only an exemplary
method which can be replaced or combined with other
advanced mechanisms.

4.1.2. Analysis. Since the ESPs and service codes are not
always reliable, our security mechanism makes use of the
smart contract to check the latest validity states of edge

Wireless Communications and Mobile Computing 7

request service

return result

request recordrequest validation

return record

return service codes

calculate hash

value

compare hash value

LC ESP SCo SCm

Figure 3: �e work	ow of validity veri�cation.

(a) Legal service (b) Invalid version (c) Illegal service

Figure 4: �e checking results of service given by the smart contract.

servers and service codes recorded in the formof transactions
on the blockchain, so as to help the lightweight clients
get rid of illegal service providers and avoid running the
unknown or discarded service codes, thereby mitigating the
risks. Obviously, the security of our approachmainly depends
on the correctness of validity transactions and the proper
executions of smart contracts.

For the validity transactions, since every transaction
is publicly checked and maintained by all the distributed
arbitration nodes, according to the basic security assumption
of blockchain network, it is almost impossible to tamper
existing transactions in blocks or package incorrect transac-
tions into new blocks because, in the PoA consensus mech-
anism, the adversary can hardly compromise the majority
of arbitrators (more than 50% ANs), which are deployed on
well-maintained cloud servers. Besides, with the aid of the
digital signature technique integrated into the blockchain,
the adversary is unable to add malicious transactions with
forged digital signatures of legal arbitration nodes because
the adversary does not have corresponding private keys.

�erefore, the validity transactions are trustworthy in our
approach.

When it comes to the smart contracts, just like the
ordinary transactions in the blockchain, they are also publicly
veri�ed and will be executed by all the arbitration nodes.
Since the codes of the smart contracts are designed to be
immutable, they cannot be modi�ed a�er deployment even
by the creators. Besides, all the execution results given by
smart contracts are veri�ed and packaged as transactions
within the blocks by all arbitration nodes; therefore, these
results are tamper-proof as well.

Consequently, according to the analysis above, the valid-
ity transactions of service codes and ESPs are trusted, and
the smart contracts would be executed correctly. �erefore,
the IoT clients can obtain the trusted results for security
decisions, thereby getting rid of illegal service providers and
insecure service codes e�ectively.

Additionally, as a blockchain-based approach, our secu-
rity facilitates work in a decentralized P2P manner without
relying on a single trusted third party and thus is more robust

8 Wireless Communications and Mobile Computing

(a) Legal ESP (b) Illegal ESP (c) Revoked ESP

Figure 5: �e checking results of the ESPs given by the smart contract.

Table 1: �e speci�cations of the testing devices.

Parameter
Cloud (arbitration) node Edge node IoT node

(Virtual cloud server) (Virtual laptop) (Virtual IoT client)

CPU frequency 3.4 GHz 2.6 GHz 512 MHz

CPU core Quad-core Dual-core Single-core

Network 100 Mbps 100 Mbps 100 Mbps

RAM 16 G 8 G 256 M

ROM 1 T 512 G 4 G

OS CentOS 6.0 Fedora 12 Ubuntu Mate

against security problems like the single point of failurewhich
can be caused by distributed denial of service attacks that
o�en happen in IoT scenarios [17].

4.2. Experimental Evaluations. In this section, we conducted
experiments to evaluate the e�ectiveness and e
ciency of
our system. We simulated cloud nodes on a single physical
machine; each of them acts as an arbitration node in the
consortium blockchain, and they have the highest power as
miners. Also, we simulated several edge nodes to serve client
nodes. �ere also exists virtual IoT client to request service.
�e details of the arbitration node, edge service node, and
client node are listed in Table 1.

We use the Ethereum Geth 1.8.11 which supports the
PoA consensus mechanism to implement the consortium
blockchain-based approach.

4.2.1. E�ectiveness. To test the e�ectiveness, we simulated 20
edge nodes and 6 of them are set to provide the wrong service
to the clients. Besides, we simulated 10 arbitration nodes
on the consortium blockchain. When receiving the service
codes, the client will calculate the corresponding hash value
and then submit the result together with the identi�cation of
the edge node to the oracle smart contract SCO for checking.
�en, SCO will query the corresponding service hash in
SCM. Finally, it puts the result on the block which can be
referred by the LC. �erefore, the IoT device can decide
to abandon the service or start to use it. For visualization
purpose, we use Ethereum-Wallet’s graphical interface to
show the feedback from the smart contract, and Figure 4
consists of the screenshots of corresponding information of
the service. As we can see, SCO returns the query result with
the help of SCM, which includes the service name (version),
the check result, and the comments. Figure 4(a) shows that
the service is a legitimate service, because the hash value of

the service is consistent with what the IoT device provides.
And the contract will return “1” to con�rm the legitimacy of
the service. Figure 4(b) shows that the version of the service
is invalid, and the IoT device �nds “0” as the result. �e edge
nodemay not be malicious, but it has not updated the service
so that the contract will identify this service as an expired
service. Figure 4(c) indicates that the service provided by
the edge node is completely unreliable because the integrity
checking failed, and the data being transmitted is likely to be
malicious and must be deprecated by the IoT node.

�e contract will also check the information of the edge
node. Figure 5(a) shows that the edge node is legitimate, and
the result is “1.” And we can see that the MAC address is also
recorded. Figure 5(b) shows an illegal edge node that has not
been registered on the blockchain. If the registration of an
edge node is past due, it cannot be accepted and Figure 5(c)
shows such information in this case.

According to the results of the experiments, our smart
contracts correctly record and send back the details of the
ESPs and service codes.�e system is considered e�ective and
the security is assured.

4.2.2. Performance. To measure the performance of our
system, we conducted comparative experiments on the
blockchain using the consensus algorithm of the PoA and
the PoW (with the mining di
culty 0x131072), respectively.
We simulated 100 IoT devices to request services from edge
servers. To be more practical, we enforced the IoT clients
following the Poisson probability distribution (= 0.2 × n)
to initiate requests. �ere are 20 edge nodes to provide 87
kinds of services with corresponding information recorded
in the blockchain. We also simulated 10 cloud servers (i.e.,
arbitration nodes) whose major tasks are mining blocks and
updating the validity states of various services. �rough the
experiment, we recorded experimental results to show the

Wireless Communications and Mobile Computing 9

a b c d e f

0

100

200

300

400

500

600

A
ve

ra
g

e
P

ac
k

ag
in

g
 T

im
e

(
s)

Event

Average Packaging Time
PoA PoW

a
b
c

d
e
f

Add new address on SCO
SCO

SCM

Add new transaction and synchronize SCM

Deploy new SCO

Deploy new SCM

Execution

Execution

Figure 6: �e average packaging time of each transaction.

5 10 15 20 25

0

20000

40000

60000

80000

A
ve

ra
g

e
T

ra
n

sa
ct

io
n

 �
ro

u
g

h
p

u
t

(a
m

o
u

n
t/

h
)

Concurrent requests (amount/s)

Average Transaction �roughput

 PoA

 PoW

Figure 7: �e throughput of transactions.

performance of the system in terms of system delays (see
Figure 6), throughput (see Figure 7), and gas consumption
(see Figures 8 and 9).

�e packaging time is a measure of the speed of block
output; to some extent, it determines how fast the system can
complete transactions. As shown in Figure 6, the packaging
time delay for each event is almost the same (about 500us
when using the PoW and 300uswhen using the PoA).We can
see that the packaging time under the PoAmechanism is only
about 60% of that under the PoW, which shows the bene�t of

a b c d e f
0

100000

200000

300000

Event

Average Gas Consumption
PoA PoW

a
b
c

d
e
f

Add new address on SCO
SCO

SCM

Add new transaction and synchronize SCM

Deploy new SCO

Deploy new SCM

A
ve

ra
g

e
G

as
 C

o
n

su
m

p
ti

o
n

 (
g

as
)

Execution

Execution

Figure 8: �e average gas cost of each process.

200 400 600 800 1000
0

100

200

300

400

500

600

G
as

 C
o

n
su

m
p

ti
o

n
 (

m
il

li
o

n
 g

as
 u

n
it

s/
m

o
n

th
)

�e number of clients

Gas Consumption

PoA

PoW

Figure 9: �e gas cost under the di�erent numbers of LCs in one
month.

the adoption of the PoA in our approach. In the case of large
scale throughout, the platform based on the PoAmechanism
will have better performance. �e experiment result shows
that, in general, the packaging time for each event is small
and acceptable. In particular, it is negligible to the clients in
the service provisioning process.

We also conducted an experiment to measure system
throughput by studying the relationship between concurrent
service requests and transaction output speed. As shown
in Figure 7, below a certain amount of concurrent service

10 Wireless Communications and Mobile Computing

requests, given a �xed period of time, the output speed
of transactions increases at a certain rate along with the
increase of concurrent service requests. But when the amount
of concurrent requests is over 22 per second, the curve
starts to converge, and the output speed of the transaction
gradually tends to a stable value. �e system throughput
cannot increase inde�nitely because it is limited by the
speed of blocks creations and the capability of each block.
And our maximum transaction throughput is approximately
80000 per hour. At its best, the platform can complete about
80000 transactions per hour, i.e., about 22 transactions per
second, which is a relatively high and stable throughput large
enough for service business. When it comes to the PoW-
based approach, the transaction throughout curve converges
earlier (since the concurrent request amount is 16 per second)
and themaximum throughput is about 55000 per hour, which
is obviously inferior to our PoA-based approach.

In the Ethereum-based blockchain, each mining node
(i.e., ANs in our case) participating in the network will
perform the blockchain protocol. With the creation of a
transaction, a certain amount of gas will be charged. �e gas
price is the unit price of gas (e.g., 1 ether ≈ 210 USD) set
by the initiator of the transaction, and the total cost of the
transaction is cost (ether) = gas× gas price.�erefore, we also
logged the average gas consumption of all the events in our
approach, seen as shown in Figure 8. When using the PoA
mechanism, event (a) costs about 33800 gas units. Events (b),
(c), (e), and (f) cost about 21000 gas units per transaction.
Event (d) costs around 257000 gas units. Similar results were
observed from the experiment using the PoW mechanism.
As we can see, the gas usage of each execution event is almost
the same. But the deployment of SCO costs much gas units
than other events. We believe the reason is that the codes of
SCO are more complex than those of the others. Besides, as
for the setup events, events (a) and (d) only happen once in
the initialization while events (b) and (e) occur when new
validity state of service codes or an ESP is appended. �e gas
price in this experiment is 0.02 ether per million gas units;
therefore, it costs about 0.0058 ethers (≈ 1.2 USD) to deploy
the smart contracts which are necessary to make our system
functional. And as for normal transactions, we can record
1000 transactions with the cost of only 0.042 ethers (≈ 8.8
USD). We can see that the cost of our platform is relatively
small and acceptable.

Besides, we also simulated n (n = 100, 200, 300, . . ., 1000)
IoT devices to request services from edge servers within a
month and recorded the gas consumption. We also enforced
the IoT devices following the Poisson probability distribution
(= 0.2 × n) to initiate requests. In Figure 9, the x-coordinate
represents the number of LCs increasing from 100 to 1000
with the increment of 100. �e y-coordinate represents the
monthly gas consumption in the certain number of LCs. As
shown in Figure 9, when the number of clients is 100, the
monthly gas consumption is about 125 million gas units (≈
5.25 USD per client) under the PoA, compared with 130
million gas units (≈ 5.46 USD per client) under the PoW.
We can see that the gas consumption maintains a slow and
stable growth along with the increase of clients. When the
number of clients is 1000, the monthly gas consumption of

the system under the PoA consensus mechanism is about 400
million gas units (≈ 1.68 USD per client), compared with 580
million gas units (≈ 2.436 USD per client) in the PoW-based
one. Besides, the gas consumption of both the PoA and PoW
relies on a stable growth, which means adding IoT devices
does not impose a great overhead; therefore, our system has
a low consumption and su
cient scalability.

5. Conclusions

In this paper, we proposed a novel blockchain-based secure
service provisioning mechanism to protect the lightweight
clients from insecure exogenous service codes from untrust-
worthy edge servers in the edge transparent computing
scenario. We introduce the blockchain to keep all the validity
states of the o�-chain services and edge service providers for
helping the IoT terminals get rid of undependable services
through edge servers’ identi�cation and service veri�cation.
Besides, we develop and deploy the smart contracts that can
be triggered by the lightweight clients to check the validities
of both the service codes and edge servers according to the
transactions on chain, thereby reducing the direct overheads
of these resource-constrained IoT devices. Additionally, to
ensure the high throughput and low latency, we adopt the
e
cient permissioned blockchain together with the PoA con-
sensus engine.�e security analysis and the evaluation results
show that our approach protects the lightweight clients from
untrusted edge service providers and undependable service
codes e�ectively, and the validation latency is acceptable
while the overheads are a�ordable to IoT devices.

Next, we would like to establish a blockchain-based
reputation system for the service providers according to
the feedbacks from IoT terminals, so as to achieve a better
trade-o� among 	exibility, availability, and security of service
provisioning. Besides, service auditing and charging are also
interesting issues that can be further studied.

Data Availability

�e data used to support the �ndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

�e authors declare that there are no con	icts of interest
regarding the publication of this paper.

Acknowledgments

�is work was supported by the National Natural Sci-
ence Foundation of China [Grant nos. 61632009, 61702561,
61702562, and 61472451], the Hunan Provincial Innova-
tion Foundation for Postgraduate [Grant no. CX2015B047],
and the Guangdong Provincial Natural Science Foundation
[Grant no. 2017A030308006].

References

[1] C.MacGillivray and P. Gorman, “Connecting the IoT:�eRoad
to Success,” InternationalData Corporation (IDC)Report, 2018.

Wireless Communications and Mobile Computing 11

[2] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing:
A Taxonomy, Survey and Future Directions,” in Internet of
Everything, Internet of�ings, pp. 103–130, Springer Singapore,
Singapore, 2018.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of �ings Journal, vol. 3,
no. 5, pp. 637–646, 2016.

[4] Y. Zhang, K. Guo, J. Ren et al., “Transparent Computing:
A Promising Network Computing Paradigm,” Computing in
Science & Engineering, vol. 19, no. 1, pp. 7–20, 2017.

[5] J. He, Y. Zhang, J. Lu, M. Wu, and F. Huang, “Block-Stream as
a Service: A More Secure, Nimble, and Dynamically Balanced
Cloud Service Model for Ambient Computing,” IEEE Network,
vol. 32, no. 1, pp. 126–132, 2018.

[6] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the Edge: A
Scalable IoT Architecture Based on Transparent Computing,”
IEEE Network, vol. 31, no. 5, pp. 96–105, 2017.

[7] H. Guo, J. Ren, D. Zhang, Y. Zhang, and J. Hu, “A scalable and
manageable IoT architecture based on transparent computing,”
Journal of Parallel and Distributed Computing, vol. 118, no. 1, pp.
5–13, 2017.

[8] X. Peng, J. Ren, L. She, D. Zhang, J. Li, and Y. Zhang, “BOAT:
A Block-Streaming App Execution Scheme for Lightweight IoT
Devices,” IEEE Internet of �ings Journal, vol. 5, no. 3, pp. 1816–
1829, 2018.

[9] W. Li, B. Wang, J. Sheng, K. Dong, Z. Li, and Y. Hu, “A
Resource Service Model in the Industrial IoT System Based on
Transparent Computing,” Sensors, vol. 18, no. 4, pp. 981–1022,
2018.

[10] Y. Zhang, L. T. Yang, Y. Zhou, and W. Kuang, “Information
security underlying transparent computing: Impacts, visions
and challenges,” Web Intelligence and Agent Systems, vol. 8, no.
2, pp. 203–217, 2010.

[11] G. Wang, Q. Liu, Y. Xiang, and J. Chen, “Security from
the transparent computing aspect,” in Proceedings of the 2014
International Conference on Computing, Networking and Com-
munications, ICNC 2014, pp. 216–220, USA, February 2014.

[12] W. Kuang, Y. Zhang, Y. Zhou, and H. Yang, “RBIS: Security
Enhancement for MRBP and MRBP2 Using Integrity Check,”
Journal of Chinese Computer Systems, vol. 28, no. 02, pp. 251–
254, 2007.

[13] M. Wu, “Analysis and a Case Study of Transparent Computing
Implementation with UEFI,” International Journal of Cloud
Computing, vol. 1, no. 4, pp. 312–328, 2012.

[14] M.Wu, “How toMakeTransparent Computing Secure –Several
Security Considerations in Transparent Computing Design and
Implementation,” in Proceedings of the Workshop on Trusted
Computing (Guangzhou) Presentation, 2018.

[15] V. J. Zimmer and D. Wei, “UEFI Technical Updates and Plat-
form Innovations,” in Proceedings of the Transparent Computing
Summit (Shanghai) Presentation, 2010.

[16] V. J. Zimmer, “Platform trust beyond BIOS using the Uni�ed
Extensible Firmware Interface,” in Proceedings of the 2007
International Conference on Security andManagement, SAM’07,
pp. 400–405, USA, June 2007.

[17] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in
the IoT: mirai and other botnets,” IEEE Computer Society, vol.
50, no. 7, pp. 80–84, 2017.

[18] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system,
2008.

[19] Z. Zheng, S. Xie, H. Dai et al., “Blockchain Challenges and
Opportunities: A Survey,” International Journal of Web & Grid
Services, 2016.

[20] J. Kishigami, S. Fujimura, H. Watanabe, A. Nakadaira, and A.
Akutsu, “�e Blockchain-Based Digital Content Distribution
System,” in Proceedings of the 5th IEEE International Conference
on Big Data and Cloud Computing, BDCloud 2015, pp. 187–190,
China, August 2015.

[21] N. Fotiou and G. C. Polyzos, “Decentralized name-based secu-
rity for content distribution using blockchains,” in Proceedings
of the 35th IEEE Conference on Computer Communications
Workshops, INFOCOMWKSHPS 2016, pp. 415–420, USA, April
2016.

[22] M. Michalko and J. Sevcik, DECENT Whitepaper, DECENT
Foundation Documentation, 2015.

[23] X. Xu, C. Pautasso, L. Zhu et al., “�e blockchain as a so�ware
connector,” in Proceedings of the 13th Working IEEE/IFIP Con-
ference on So�ware Architecture,WICSA 2016, pp. 182–191, Italy,
April 2016.

[24] L. Zhou, G. Wang, T. Cui, and X. Xing, “Cssp: �e Consor-
tium Blockchain Model for Improving the Trustworthiness of
Network So�ware Services,” in Proceedings of the 2017 IEEE
International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference on
Ubiquitous Computing and Communications (ISPA/IUCC), pp.
101–107, Guangzhou, December 2017.

[25] A. Boudguiga, N. Bouzerna, L. Granboulan et al., “Towards
better availability and accountability for IoT updates by means
of a blockchain,” in Proceedings of the 2nd IEEE European
Symposium on Security and Privacy Workshops, EuroS and PW
2017, pp. 50–58, France, April 2017.

[26] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, andY. Zhang, “Consortium
Blockchain for Secure Energy Trading in Industrial Internet of
�ings,” IEEE Transactions on Industrial Informatics, vol. 14, no.
8, pp. 3690–3700, 2018.

[27] N. Herbaut and N. Negru, “A Model for Collaborative
Blockchain-Based Video Delivery Relying on Advanced Net-
work ServicesChains,” IEEECommunicationsMagazine, vol. 55,
no. 9, pp. 70–76, 2017.

[28] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A So�ware De�ned
FogNode BasedDistributed BlockchainCloud Architecture for
IoT,” IEEE Access, vol. 6, pp. 115–124, 2018.

[29] A.Dorri, S. S.Kanhere, andR. Jurdak, “Blockchain in Internet of
�ings: Challenges and Solutions,” https://arxiv.org/abs/1608
.05187.

[30] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of the 23rd
ACM Conference on Computer and Communications Security,
CCS 2016, pp. 254–269, Austria, October 2016.

[31] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the
security of blockchain systems,” Future Generation Computer
Systems, In press, corrected proof, Available online 23 August
2017.

[32] S. D. Angelis, L. Aniello, R. Baldoni et al., “PBFT vs Proof-
of-authority: Applying the CAP �eorem to Permissioned
Blockchai,” in Proceedings of the Italian Conference on Cyberse-
curity, pp. 1–11, 2018.

[33] https://www.ethereum.org/.

[34] E. F. Jesus, V. R. L. Chicarino, C.V.N. deAlbuquerque, andA.A.
Rocha, “A Survey of How to Use Blockchain to Secure Internet
of �ings and the Stalker Attack,” Security and Communication
Networks, vol. 2018, Article ID 9675050, 27 pages, 2018.

https://arxiv.org/abs/1608.05187
https://arxiv.org/abs/1608.05187
https://www.ethereum.org/

12 Wireless Communications and Mobile Computing

[35] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy,
“Towards blockchain-based auditable storage and sharing of iot
data,” in Proceedings of the 8th ACM Cloud Computing Security
Workshop, CCSW 2017, pp. 45–50, ACM, TX, USA.

[36] K. Christidis and M. Devetsikiotis, “Blockchains and Smart
Contracts for the Internet of �ings,” IEEE Access, vol. 4, pp.
2292–2303, 2016.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

