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SUMMARY

The Web is increasingly being accessed by portable, multi-touch wireless devices.
Despite the popularity of platform-specific (native) mobile apps, a recent study of
smartphone usage shows that more people (81%) browse the Web than use native
apps (68%) on their phone [79]. Moreover, many popular native apps such as BBC
depend on browser-like components (e.g., Webview) for their functionality [48]. The
popularity and prevalence of web browsers on modern mobile phones warrants charac-
terizing existing and emerging threats to mobile web browsing, and building solutions
for the same. Although a range of studies have focused on the security of native apps
on mobile devices, efforts in characterizing the security of web transactions originating
at mobile browsers are limited.

This dissertation presents three main contributions: First, we show that porting
browsers to mobile platforms leads to new vulnerabilities previously not observed in
desktop browsers. The solutions to these vulnerabilities require careful balancing be-
tween usability and security and might not always be equivalent to those in desktop
browsers. Second, we empirically demonstrate that the combination of reduced screen
space and an independent selection of security indicators not only make it difficult
for experts to determine the security standing of mobile browsers, but actually make
mobile browsing more dangerous for average users as they provide a false sense of
security. Finally, we experimentally demonstrate the need for mobile specific tech-
niques to detect malicious webpages. We then design and implement kAY O, the first

mobile specific static tool to detect malicious webpages in real-time.

xviii



CHAPTER I

INTRODUCTION

Internet connected mobile devices are going to outnumber humans in the year 2013 [88,
152]. Moreover, global mobile data traffic is expected to increase 13-fold between 2012
and 2017 [49]. Both platform-specific applications (“native apps”) and browser-based
applications (“web apps”) enable mobile device users to perform security sensitive
operations such as online purchases, bank transactions and accessing social networks.
The distinction between native apps and web apps on mobile devices is increasingly
being blurred. Many popular native apps, such as BBC, depend on browser-like com-
ponents (e.g., Webview) for their functionality [48]. Moreover, as HTML5 becomes
universally deployed and mobile web apps directly take advantage of device features
such as the camera, microphone and geolocation, the difference between native and
web apps will vanish almost entirely. A recent study of smartphone usage [79] shows
that more people (81%) browse the Web than use native apps (68%) on their phone.
Over 85% of handsets shipped globally in 2011 included some form of browser and it
is expected that over 2.1 billion mobile devices will have a web browser component
by 2016 [33]. This trend and the increasing use of web browsers on modern mobile
phones warrant characterizing existing and emerging threats to mobile web browsing,
and building solutions for the same. Although a range of studies have focused on the
security of native apps on mobile devices, efforts in characterizing the security of web
transactions originating at mobile browsers are limited.
Mobile web browsers have long underperformed their desktop counterparts. Whether

by implementing limited alternative standards such as WAP [200] or incomplete ver-

sions of HTML, the first mobile browsers provided a meager set of capabilities and



attracted only a small number of early adopters. However, recent improvements in
processing power and bandwidth have spurred significant changes in the ways users
experience the mobile web. Modern mobile browsers provide rich functionality equiv-
alent to their desktop counterparts using web technologies such as HTML, JavaScript,
and CSS. Furthermore, browsers on mobile platforms now build on the same or sim-
ilarly capable rendering engines used by many desktop browsers [40,42]. Other fea-
tures of mobile browsers include support for cryptographic tools including SSL/TLS
and the corresponding user interfaces to convey SSL/TLS security implemented by
websites to the end user. All these features have allowed mobile users to become
increasingly reliant upon browsers to enable sensitive personal, social and financial
exchanges.

Despite the apparent similitude between functionality offered by desktop and mo-
bile browsers, the browsing experience on mobile devices is considerably different.
This difference can be largely attributed to the dramatic reduction of screen size
and the ability of invoking mobile specific functionality (e.g., SMS) through the web
browser. These differences impact the design of web browsers and webpages built
specifically for mobile devices, which in turn might lead to a number of security con-
sequences. First, due to the limitations in the screen real estate, existing desktop
browser software was not directly ported to mobile devices. Accordingly, while many
mobile browsers bear the name of related desktop applications, their internal compo-
nents might differ. The impact of these changes on security has not previously been
evaluated. Second, in spite of the availability of SSL/TLS, mobile users are regularly
becoming the target of malicious behavior. A 2011 report indicates that mobile users
are three times more likely to access phishing websites than desktop users [80]. Secu-
rity indicators (i.e., certificate information, lock icons, cipher selection, etc.) in web
browsers offer one of the few defenses against such attacks. A user can view different

security indicators and related certificate information presented by the browser to



offer signals or clues about the credibility of a website. Although mobile and tablet
browsers appear to support similar security indicators when compared to desktop
browsers, the reasons behind the increasing number of attacks on mobile browsers
are not immediately clear. Finally, reduced screen size and availability of rich func-
tionality also impacts the structure of webpages built specifically for mobile platforms.
The content, functionality and layout of webpages have regularly been used to per-
form static analysis to determine maliciousness in the desktop space [84,147,176].
Features such as the frequency of iframes and the number of redirections have previ-
ously served as strong indicators of malicious intent. Due to the significant changes
made to accommodate mobile devices, such assertions may no longer be true. For
example, whereas such behavior would be flagged as suspicious in the desktop setting,
many popular benign mobile webpages require multiple redirections before users gain
access to content. Previous techniques also fail to consider mobile specific webpage
elements such as calls to mobile APIs. For instance, links that spawn the phone’s
dialer (and the reputation of the number itself) can provide strong evidence of the
intent of the page. New tools are therefore necessary to identify malicious pages in
the mobile web.

To begin the effort of making mobile browsing secure, it is essential to understand
the state-of-the-art of security in mobile browsers, and analyze the similarities be-
tween desktop and mobile browsers. This analysis can assist browser vendors with
decisions of reusing security features from the desktop environment into the mobile
environment to avoid duplication of effort. Browser vendors can also evade repeating
already solved errors in desktop browsers in the corresponding mobile versions. Sec-
ond, it is vital to understand the similarities and differences across the diverse browser
software on popular mobile platforms. This evaluation can provide insight into the

security impact of similar vulnerabilities in web browsers built by different vendors.



Furthermore, identifying similarities between different browsers can also facilitate for-
mulating mobile specific standards for prevalent security problems. Third, studying
the structural differences in mobile and desktop webpages will help build robust tools
that consider the impact of changes in mobile webpages on security. Finally, stronger
permission systems are necessary to manage the dynamic nature of mobile web apps

and multiple access requests to sensitive information and hardware.

1.1 Thesis Statement

The goal of this thesis is to investigate the factors affecting security of the mobile
web to improve the design and implementation of mechanisms for securing mobile
web browsing. We argue that mobile web is different from the desktop web and thus
demands independent evaluation and new techniques to protect sensitive information.
Based on our evaluation of popular mobile browsers and mobile specific webpages,
we propose the following thesis statement.

Mobile browsers, webpages and user interfaces significantly differ from those in
the desktop environment thereby profoundly impacting security. Making the impact of
limited display and mobile specific functionality integral to the design of web security

solutions for mobile platforms identifies and addresses new threats.

1.2 Contributions

This dissertation makes the following contributions:

Perform the first comprehensive and systematic evaluation and comparison of se-
curity of desktop and mobile browsers: Modern mobile browsers now build on the
same or similarly capable rendering engines used by many desktop browsers and also
enable SSL/TLS transactions. We analyze SSL/TLS security indicators and display
security on ten mobile (Android Mobile, Blackberry (Mango), Blackberry (Webkit),
Chrome Beta, Firefox Mobile, Internet Explorer (IE) Mobile, Nokia Browser, Opera

Mini, Opera Mobile and iPhone Safari) and three tablet (Android on Motorola Xoom,



Android on Samsung Galaxy and iPad2 Safari) browsers. We then compare the se-
curity standing of these mobile browsers with five most popular desktop (Chrome,
Firefox, Internet Explorer, Opera and Safari) browsers. Our analysis covers over
90% of the mobile browser market and over 95% of the desktop browser market by
download.

Identify new display security vulnerabilities in modern mobile browsers and imple-
ment real world attacks: We identify previously unknown erroneous display security
policies in user event routing and boundary control, and implement multiple attacks
that demonstrate their seriousness. Even though many mobile browsers rely on the
same rendering engines as their desktop counterparts, our experiments demonstrate
that mobile browsers are vulnerable to attacks not previously seen in the desktop
space. Additionally, we exploit the conflict between usability and security in the mo-
bile environment with limited screen estate to show that adopting some policies from
desktop browsers exposes mobile browsers to new phishing attacks.

Demonstrate that the incomplete and inconsistent nature of SSL/TLS indicators
in mobile browsers preclude experts from determining the security of web transactions:
We experimentally illustrate that all popular mobile and tablet browsers fail to meet,
in numerous instances, the recommendations in the W3C guidelines for user interface
of security information, whereas in comparison desktop browsers largely follow the
guidelines. We outline attacks on mobile browsers, such as phishing and undetectable
man-in-the-middle, enabled by failure to properly follow these guidelines. Further-
more, we highlight missing security indicators, e.g., extended validation (EV) SSL
indicators.

Design and implement the first mobile-specific static tool to detect malicious web-
pages in real-time: We demonstrate that mobile specific webpages differ significantly

from their desktop counterparts in content, layout and functionality. We design and



implement kAYO, a fast and reliable mechanism that distinguishes between mali-
cious and benign mobile webpages. kAYO makes this determination based on static
features of a webpage ranging from the number of iframes to the presence of known
fraudulent phone numbers. First, we experimentally demonstrate the need for mobile
specific techniques and then identify a range of new content-based static features that
highly correlate with mobile malicious webpages. We then apply kAYO to a dataset
of over 350,000 known benign and malicious mobile webpages and demonstrate 90%
accuracy in classification. Moreover, we discover, characterize and report a number
of webpages missed by Google Safe Browsing and VirusTotal, but detected by kAYO.
Finally, we build a browser extension using kAYO to protect users from malicious
mobile websites in real-time.

Research impact: The newly discovered mobile browser vulnerabilities have been
acknowledged and a subset of them addressed [2-4]| by some browser vendors in the
latest version of their browsers. The work on display security of mobile browsers
(Chapter 3) was recognized as one of the top 10 papers of 2012 at the national level
‘CSAW AT&T Best Applied Security Paper Award’ competition. Moreover, it won
the institute-level ‘SAIC Best Student Paper Award’ and the ‘Best Demo’ prize at the
College of Computing research day at Georgia Tech. The second piece of this thesis
(Chapter 4) was recognized as the ‘Best Student Paper’” at the Information Security
conference 2012 and was covered by several media outlets [45,53,90,119,186,199]. The
third and final piece of this thesis on detecting mobile malicious webpages (Chapter 5)

has led to a patent.

1.8 Dissertation Outline

The goal of this dissertation is characterizing security of modern mobile browsers and
implementing new mechanisms to secure web browsing on mobile devices. Chapter 3

provides details on the newly discovered display security vulnerabilities in modern



mobile browsers. We then discuss real-world attacks that exploit these vulnerabil-
ities and also propose defenses. Additionally, we give an example of a universally
adopted security policy that makes mobile browsers more vulnerable to phishing at-
tacks than desktop browsers. Chapter 4 studies the impact of the small screen size
of mobile devices on implementation of SSL/TLS indicators in browsers. We ex-
perimentally demonstrate that mobile browser vendors have implemented incomplete
and inconsistent subsets of SSL/TLS indicators usually found in desktop browsers.
We then discuss the impact of the unavailability of these indicators and outline po-
tential phishing and man-in-the-middle attacks on security experts accessing mobile
browsers. After studying security vulnerabilities in mobile browsers, we focus on mo-
bile webpages in Chapter 5. We demonstrate the structural differences in desktop and
mobile webpages through a series of experiments. We then characterize the conse-
quence of these changes on existing static tools to detect desktop malicious webpages
to show the need for mobile-specific tools. By selecting novel and existing static fea-
tures of webpages relevant to mobile, we build the first technique to detect mobile
malicious webpages in real-time.

Chapter 6 discusses our ongoing work on building new permission systems for
mobile web apps. We study the impending changes in mobile web apps due to the
introduction of HTML5 and web API suites such as Firefox Boot2Gecko [51]. We
then provide a brief overview of our proposed architecture and future work. Chapter 7

offers concluding remarks.



CHAPTER 11

RELATED WORK

Browsers and websites are the core components of web browsing. A web browser is a
software application for retrieving, presenting and traversing information resources on
the World Wide Web, whereas a webpage is information written in a document so that
it renders correctly in a web browser. Securing each of these components individually
is important to secure the end-to-end browsing experience. A web browser implements
several security policies to protect users and individual websites from attacks [216].
While most of these policies are embedded in the browser’s code, others are user
facing (e.g., SSL/TLS indicators). Malicious browser extensions and plugins can also
compromise private information of a user. Therefore, web browsers employ techniques
to sandbox potentially malicious untrusted extensions [69] and plugins.

Simply securing the browser does not protect users from all web-based attacks.
Attackers build malicious webpages to steal a user’s identity or other sensitive infor-
mation such as passwords [104] and credit card numbers [172]. Traditionally, browser-
based attacks originated from bad websites. However, due to poor security policies of
web applications or vulnerabilities in the software supporting websites [47], attackers
have recently been successful in compromising large numbers of trusted web sites to

deliver malicious payloads to unsuspecting visitors [141].

2.1 Web Browser Policies and Attacks

Design flaws in security policies, implementation errors, and trade-offs between per-
formance and security lead to attacks on web browsers. Browsers implement sev-
eral defense techniques against potential attacks, including access control policies for

browser resources.



2.1.1 Access Control Policies

The Same Origin Policy (SOP) [67] is the most widely used access control policy in
modern browsers. The SOP protects the content owned by a principal (domain or
website, e.g., www.example.com) from being modified by an untrusted principal (e.g.,
www.attacker.com). The SOP defines each principal based on the corresponding
browser resource, which include the Document Object Model (DOM), network, cook-
ies, other persistent state and display [191]. For example, a principal for the DOM
resource is defined as the tuple (protocol, domain, port); whereas for the cookie
resource, a principal is labeled by (domain, path). This incoherency in labeling prin-
cipals leads to replay attacks and privilege escalation [191].

Older techniques for inter-frame communication lead to breach of authentication
and confidentiality. The fragment identifier messaging method provided confiden-
tiality without authentication, whereas the postMessage method provided authenti-
cation, but breached confidentiality. Barth et al. [72] proposed stricter policies for
fragment identifier messaging by adopting ideas from well-known network protocols
and modified the postMessage API to allow the sender specify an intended recip-
ient. These access control policies were primarily focused on isolating cross origin
components of webpages. Jackson et al. [133] recognized that the security policy
of browsers provides no isolation between documents from the same origin (scheme,
host, and port), even if those documents have different security characteristics. This
lack of isolation leads to origin contamination vulnerabilities in a number of browser
security features, such as cookies, encryption, and code signing. Other weaknesses
in access control mechanisms such as frame navigation policies [72,209], client-side
browser state [134], cookie path protection, and display protection [209] also expose

browsers and web applications to a range of attacks.



2.1.2 Attacks and Defenses

SQL injection [168] is one of the most prevalent security risks as of 2013 [169]. This
attack is carried out by inserting malicious SQL statements into an entry field for
execution. Another way of injecting client-side scripts into webpages viewed by other
users is Cross Site Scripting (XSS) [68]. The persistent and non-persistent types of
XSS, together have surpassed buffer overflows to become the most common publicly
reported security vulnerability in recent years [197]. Other steadily rising browser
threats include Cross Site Request Forgery (XSRF) [71], clickjacking [6,7,182] and
phishing. Implementation errors in the browser code [55,74], slow adoption of security
techniques [221] and incorrect handling of privileges in browser extensions [69] further
increase the threats to the browser and the user.

A range of defenses have been proposed to protect browsers from attacks. To
defend against login CSRF, Barth et al. [71] proposed that browsers implement the
Origin header, which provides the security benefits of the Referer header while re-
sponding to privacy concerns that have lead to the widespread suppression of the
Referer header. Another client-side defense that mitigates cross-origin CSS attacks
was proposed by Huang et al. [129]. The authors advocate enforcing content type
checking for style sheets loaded from cross-origins, even if the requesting page is in
quirks mode. Other defense techniques against web attacks include enforcing new
security policies [129] and algorithms [54,68] in browsers, running tools for detecting
JavaScript-based attacks [92,120,139,177], and implementing security vulnerabilities

scanners [65].
2.1.3 Browser Extensions

Malicious extensions exploit browser vulnerabilities to run their code with all the
privileges and features as that supported by any native programming languages. Re-

searchers have investigated vulnerabilities in extension platforms of Firefox [65,137,
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149] and most recently Chrome [85,148].

One of the fundamental defenses against malicious browser extensions is privilege
separation [184]. Similar to OpenSSH [175] and qmail [75], this concept has been
applied to build several tools and frameworks for modern web apps [78, 110, 142,
143,161]. Moreover, studies have established that privilege separation has value in
software projects that employ security experts (e.g., browsers [101]). Yet another
protection technique from malicious plugins is implementing policies for document
access, persistent state, network connections and other devices [122]. The plugin is
required to run in a separate process from the browser and all interactions with the
underlying system are performed through the browser. Finally, permission systems for

browser extensions are popular in defending against malicious extensions [69,111,124].
2.1.4 Browser Kernels and Operating Systems

Websites include a number of cross-domain elements for rich features and user expe-
rience. Therefore, it is important to provide strong isolation between cross-domain
principals in a browser to ensure code integrity and confidentiality. The OP Web
browser [123] was the first to design a small browser kernel to enforce new browser
security features and handle resources. The authors broke the web browser into sev-
eral distinct and isolated components based on processes and made all interactions
between these components explicit. The OP browser kernel then managed each of
the components and interposed on communications between them. The OP browser
allows any security model to be specified with their framework. However, this flex-
ibility comes with a cost. The OP browser requires intimate interactions between
browser components, such as JavaScript interpreter and HTML engine to use IPC
and be inspected by the browser kernel. When targeting a specific security model,

such as that of existing browsers, this additional IPC cost does not add any benefits

11



since isolating browser components within an instance of a webpage provides no ad-
ditional security protection. Furthermore, the OP browser kernel does not provide
cross-principal display protection. The Gazelle [209] browser provides cross-principal
display protection and also reduces the cost of separating browser components within
the same instance of a webpage by removing the requirement of IPC communication.

The security architecture of the Google Chrome browser [73] also repudiates the
monolithic browser architecture that combines the “user” and the “web” into a sin-
gle protection domain. Chromium has two modules than run in separate protection
domains: a browser kernel, which interacts with the underlying operating system,
and a rendering engine, which runs with restricted privileges in a sandbox. All these
secure web browsers are built on top of commodity operating systems and include
complex user-mode libraries and shared system services within their trusted comput-
ing base (TCB). The Illinois operating system and browser [198] reduce the TCB for
web browsers drastically and simplify browser-based systems. The authors expose
browser-level abstractions at the lowest software layer to remove almost all tradi-
tional OS components and services from the TCB by mapping browser abstractions

to hardware abstractions directly.

2.2 Browser Security Indicators

Traditional desktop browsers contain user facing security indicators in addition to
the security techniques embedded in the browser code. A range of security indicators
are displayed in the chrome of the browser including the lock icon, the https URL

prefix, and public key certificates.
2.2.1 Ineffective Security Indicators on Desktop Browsers

Each website provides its certificate information to the browser and the browser in
turn conveys the same to the user using graphical and textual indicators. Certificates

and other SSL/TLS indicators are meant to provide simple cues to the user about the
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identity of the website and protection from eavesdroppers. However, several studies
have indicated that these security cues used in desktop browsers go unnoticed [97,100,
185,192,211] or are absent in websites [193]. In a study conducted by Dhamija et al.,
desktop web browser users were challenged to identify phishing attacks in the presence
of phishing and fraudulent certificate warnings [97]. 23% of their subjects completely
ignored the passive or non-interruptive phishing warnings, and 68% of subjects quickly
clicked through the active or interruptive fraudulent certificate dialogs. Another
study by Akhawe et al. [135] used Mozilla Firefox and Google Chrome’s in-browser
telemetry to observe 25 million warning impressions in situ. The authors found that
users continued through a tenth of Mozilla Firefox’s malware and phishing warnings,
a quarter of Google Chrome’s malware and phishing warnings, and a third of Mozilla
Firefox’s SSL warnings. Moreover, it was observed that users rarely click on the
explanatory links such as “More Information” or “Learn More”.

Although domain name mismatches between certificates and websites are observed
often [206], Sunshine et al. [196] showed that users ignore TLS warnings for domain
name mismatches, and showed that users ignore TLS warnings for expired certificates
and unknown CAs. Moreover, a majority do not understand these warnings. The
lock icon is the security indicator most often noticed [100,211]. However, even when
used as a security cue by users, many do not fully understand its meaning [97,98,100]
and its absence also often goes unnoticed [97]. Additionally, the majority of users
who rely on the lock icon remain unaware of its identity feature [97,100,115,211] and
do not reliably understand the concept of certificates [97,98]. Indicators for newer
technologies such as EV-SSL have also been shown to be ineffective to convey better

security to the user as compared to a simple SSL certificate [76,136].
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2.2.2 Improved Security Indicators

Several techniques have been proposed to design better security indicators to pre-
vent potential attacks such as phishing. Researchers have proposed better warn-
ings [196], more effective interface dialogues [76], browser plugins [91], trusted path
from the browser to the human user [214] and mandatory security indicators [126]
to help users make correct security decisions. Other proposed security mechanisms
include disabling JavaScript in the user browser and forcing persistent visibility of
the browser’s location line [113]. Dynamic Security Skins [98] allow a remote web
server to prove its identity in a way that is easy for a human user to verify and hard
for an attacker to spoof. Finally, efforts have been taken [29,34-36,41] to standardize

security indicators and thus minimize confusion across browsers.

2.3 Malicious Webpages

Simply securing the web browser alone cannot protect a user from all web-based
attacks. Attackers build malicious webpages to steal a user’s identity or other sensitive

information such as passwords or credit card numbers.
2.3.1 DNS-based Approaches

A popular approach in detecting such malicious activity on the web is by lever-
aging distinguishing features between malicious and benign DNS usage. The first
study [205] in this direction proposed to collect real-world DNS data for analyzing
malicious behavior. The results of the passive DNS analysis showed that malicious
domains that are used in fast-flux networks exhibit behavior that is different than
benign domains [217]. Antonakakis et al. [63] added to the passive monitoring idea
by proposing Notos, a detection scheme that dynamically assigns reputation scores to
domain names whose maliciousness is yet to be discovered. The premise behind No-

tos is that agile malicious uses of DNS have unique characteristics and thus malicious

14



use of DNS can be distinguished from benign use. To this end, the authors analyze a
number of features from three categories, network-based features, zone-based features
and evidence based features. Notos is unable to detect malicious domains that are
mapped to a new address space each time and never used for other malicious purposes
again. This limitation is addressed by yet another passive DNS monitoring system
called EXPOSURE. EXPOSURE uses time-based features which account for short-
lived domains. Other efforts to identify malicious domains include more passive DNS
monitoring tools [173,217] and active DNS probing methods [127,131]. Active DNS
probing methods repeatedly query the domains that are advertised to be malicious
by various sources (e.g., spam mails) to detect the abnormal behavior. The main
drawback of active DNS analysis is the possibility of being detected by the miscre-
ants who manage the domains under analysis. Passive DNS analysis, in comparison,
is more stealthy because of its non-intrusiveness characteristics.

These techniques did not detect all types of web-based attacks. While some of
these existing efforts focused solely on detecting fast-flux service networks [127,164,
171,210], another [77] can also detect domains implementing phishing and drive-by-
downloads. Fast-flux service networks [127] are malicious systems that abuse Round-
Robin DNS. Most of the efforts in detecting fast-flux service networks [127,140, 164,
171] differ from each other only in the number of features used and the details of the
classification algorithms. They are also limited to mainly studying fast-flux domains
advertised through email spam. In particular, potential fast-flux domain names are
extracted from the URLs found in the body of spam emails in a dataset. Then an
active probing strategy is applied, which repeatedly issues DNS queries to collect
information about the set of resolved IP addresses to classify each domain name into
either fast-flux or non-fast-flux. Perdisci et al. [173] overcame the limitations of such
techniques by performing passive analysis of recursive DNS (RDNS) traffic traces.

A major drawback of these DNS based mechanisms is that they do not necessarily
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provide deeper understanding of the specific malicious activity implemented by a

webpage or domain.
2.3.2 Content-based and In-depth Inspection Techniques

Dynamic approaches using virtual machines [159,176] and honeyclient systems [130,
157,163] provide deeper visibility into the behavior of a webpage. Honeyclient systems
fully execute the contents of a webpage. This includes fetching the webpage, all
the resources that are linked from it, and then interpreting the associated dynamic
content, such as JavaScript code. The complete visibility into each webpage leads
to a very low false positive rate and great accuracy. However, downloading and
executing each webpage also impacts performance and hinders scalability of dynamic
approaches. Each webpage can take anywhere from a few seconds to several minutes,
depending on the complexity of the analyzed page.

This performance penalty can be avoided by using static approaches. The oldest
static approach is signature-based techniques based on string patterns in malicious
code, commonly used in anti-virus tools [32]. Such techniques can be easily evaded us-
ing obfuscation, thus suffering from high false negative rates [92,179]. These high false
negative rates can be reduced by using static approaches that rely on the structural
and lexical properties of a webpage and do not execute the content of the webpage.
One such technique of detecting malicious pages is using statistical methods for URL
classification based on a URL’s lexical and host-based properties [114,117,144, 153].
Garera et al. used URL statistical techniques to classify phishing URLs [117]. A larger
scale classification was carried out by Ma et al. [153] using lexical properties of URLSs
and registration, hosting, and geographical information of the corresponding hosts.
All URL-based techniques usually suffer from high false positive rates. Using HTML
and JavaScript features extracted from a webpage in addition to URL classification

helps address this drawback and provides better results [84,156,212,218]. Commonly
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used features include visibility and size of iframe tags, and the number of script tags
referencing external resources. Static approaches avoid performance penalty of dy-
namic approaches. Additionally, using fast and reliable static approaches to detect

benign webpages can avoid expensive in-depth analysis of all webpages.

2.4 The Mobile Web

Mobile Internet users are growing rapidly [166]. Based on the current rate of change
and adoption, mobile web usage will be greater than desktop Internet use by 2015.
Mobile users access Internet using both native applications and web browsers. De-
spite 81% of mobile users browsing web on their phones using a web browser [79],
the majority of security research in the recent years has focused on securing native

applications on mobile devices.
2.4.1 Native Application Security

The Android, iPhone, Symbian and Windows operating systems use different types of
permissions. The Android OS and iOS have been the most popular among researchers
due to the popularity of the iOS platform and both widespread use and open source
nature of the Android platform.

Detecting overprivilege in Android applications and studying its impact on users’
private data has been a popular area of study. Enck et al. applied Fortify’s Java
static analysis tool to decompiled applications to study the applications’ use of a
small number of permissions and API calls [106]. Their analysis uncovered pervasive
use or misuse of personal and phone identifiers, and deep penetration of advertising
and analytics networks. Felt et al. detected overprivilege by manual classification of
a small set of Android applications [111], whereas the Kirin [107] system used static
analysis focusing on permissions and other application configuration data. Kirin relies
solely on developer permission requests, rather than examining whether or how per-

missions are used by applications. Another permission overprivilege study examined
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1,100 Android applications’ permission requirements and used self-organizing maps to
visualize which permissions are used in applications with similar characteristics [66].
Other tools to detect overprivilege include application source code analyzer [204], ap-
plication package attribute analyzer [87], NLP to detect reasoning behind permission
requests [170] and static analysis on Android APIs [118].

Several systems also studied the impact of application overprivilege on users’ pri-
vate data. TaintDroid [105] used system-wide dynamic taint tracking to identify
privacy leaks in Android applications. By using static analysis, the authors studied
a number of applications and confirmed the exfiltration of information. PiOS [102]
performed static analysis on iOS applications for the iPhone. The PiOS study found
that the majority of analyzed applications leaked the device ID and over half of the
applications included advertisement and analytics libraries.

In addition to application overprivilege, host security is a growing concern on
smartphones. OS-level protections such as Saint [167] and Security-by-Contract [96]
provide enhanced security mechanisms for Android and Windows Mobile. These ap-
proaches prevent access to sensitive information; however, once information enters the
application, no additional mediation occurs.Mulliner et al. [160] provide information
tracking by labeling smartphone processes based on the interfaces they access, effec-
tively limiting access to future interfaces based on acquired labels. Finally, Aquifer
presents a policy framework and system for preventing accidental information disclo-

sure in modern operating systems such as Android, iOS, and Windows 8 [162].
2.4.2 Mobile Web Security

Web browsers have become one of the most popular applications on today’s smart
phones. The mobile web research so far has focused on browser energy consumption
analysis [201], device performance [93] and mobile latency [56]. However, there are

limited or no efforts in securing web browsing on mobile devices. In addition to
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malicious mobile applications affecting user privacy [102,105] and potentially harming
the cellular network [202,203], the increasing user base of mobile platforms and mobile
e-commerce have made mobile browsers an attractive target for attackers [24, 28,
31, 59,95, 112, 165, 178, 183, 183]. Researchers have already begun to think about
defending against attacks on mobile phones using smart CDNs [150]. Although mobile
browsers will be targets of security attacks in the coming years, security issues in
mobile browsers will be new since the devices have serious limitations compared to
desktops. However, a large-scale security analysis of the differences between mobile
and desktop browser software has not yet been performed.

In addition to the underlying code, the user interfaces of mobile browsers differ
significantly from their desktop counterparts. The small display of mobile phones
and tablet computers leads to adaptation in user facing security indicators in web
browsers. Until now, almost all research efforts in the area of security indicators in
browsers have been focused on desktop browsers. However, in light of the recent
attacks targeted towards mobile browsers [28,59] and considering how the mobile
browser user interface differs from desktops, it is important to analyze and understand
the security indicators used in mobile browsers. Although the W3C [35] guidelines
consider mobile browsers in their definitions, a large-scale evaluation of the state-of-
the-art security indicators in mobile browsers has not been carried out.

Finally, all the approaches for malicious webpage detection have focused on web-
sites built for desktop browsers in the past. Although differences in mobile and desk-
top websites have been observed before [83], it is unclear how these differences impact
security. Furthermore, the threats on mobile and desktop websites are somewhat dif-
ferent [112]. Static analysis techniques using features of desktop webpages have been
primarily studied for drive-by-downloads on desktop websites [84,176], whereas, the

biggest threat on the mobile web at present is believed to be phishing [81]. Efforts
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in mitigating phishing attacks on desktop websites include isolating browser appli-
cations of different trust level [116], email filtering [114], using content-based fea-
tures [212,218] and blacklists [151]. The best-known non-proprietary content-based
approach to detect phishing webpages is Cantina [218]. Cantina suffers from perfor-
mance problems due to the time lag involved in querying the Google search engine.
Moreover, Cantina does not work well on webpages written in languages other than
English. Finally, existing techniques do not account for new mobile threats such as
known fraud phone numbers that attempt to trigger the dialer on the phone. Con-
sequently, whether existing static analysis techniques to detect malicious desktop
websites will work well on mobile websites is yet to be explored.

In summary, the mobile web is evolving rapidly. Most of the existing techniques
in securing web browsing focus primarily on the desktop environment. However, due
to the differences in the mobile and desktop environments, the threats in desktop
might not translate directly to the mobile environment. Furthermore, the mobile
web presents new threats due to the newly added functionality such as web APIs.
Therefore, investigating security of mobile browsing independent of desktop browsing

is crucial.
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CHAPTER III

MEASURING SYSTEMIC WEAKNESSES IN MOBILE
BROWSER SECURITY

3.1 Introduction

Mobile web browsers have long underperformed their desktop counterparts. Whether
by implementing limited alternative standards such as WAP [200] or incomplete ver-
sions of HTML, the first mobile browsers provided a meager set of capabilities and
attracted only a small number of early adopters. However, recent improvements in
processing power and bandwidth have spurred significant changes in the ways users
experience the mobile web.

Modern mobile browsers now build on the same or similarly capable rendering
engines used by many desktop browsers [40,42]. Mobile browsers are so capable that,
through APIs such as WebViews, many of the most popular mobile apps (e.g., BBC,
Walgreens) [48,82] act as wrappers for the browser pointed to specific webpages. How-
ever, due to limitations in the screen real estate and memory, existing desktop browser
software was not directly ported to mobile devices. Accordingly, while many mobile
browsers bear the name of related desktop applications, their internal components
might significantly differ. The impact of these changes on security has not previously
been evaluated. Given the popularity of browsing on mobile devices [79,152], focusing
on the security of mobile browsers is critical.

In this chapter, we perform the first large-scale security comparison between mo-
bile and desktop browsers. While there are many potential areas for investigation,

we focus on the issues of display security due to the screen constraints of mobile
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devices. Given the often crowded layout of mobile webpages, we specifically investi-
gate the behavior of overlapping HTML elements (and how browsers handle clicks -
i.e., “user event routing”), behavior at the boundaries between non-overlapping items
(“boundary control”) and the impact of nonpersistent availability or complete ab-
sence of the address bar. We apply blackbox analysis across ten mobile, three tablet
and five desktop browsers and demonstrate that many mobile and tablet browsers
are vulnerable to new two classes of attacks due to inconsistent click-event routing
and incorrect write policies. We illustrate that desktop browsers are not susceptible
to these attacks and present solutions to address the new vulnerabilities. We then
discover a third class of vulnerability resulting from a clash between considerations
made for usability in mobile browsers and a universally implemented display policy,
demonstrating that making usability considerations while creating mobile software is
crucial and blind porting of traditional browser code to mobile devices can introduce
unexpected vulnerabilities.

We make the following contributions:

e Characterize display security disparity between the most popular mo-
bile and desktop browsers: We analyze display security on ten mobile (An-
droid Mobile, Blackberry (Mango), Blackberry (Webkit), Chrome Beta, Firefox
Mobile, Internet Explorer (IE) Mobile, Nokia Mini-Map, Opera Mini, Opera
Mobile and iPhone Safari), three tablet (Android on Motorola Xoom, Android
on Samsung Galaxy and iPad2 Safari) and five desktop (Chrome, Firefox, Inter-
net Explorer, Opera and Safari) browsers. We use blackbox analysis as source
code is not available for the majority of browsers. Table 3 on page 14 summa-

rizes our findings.

e Identify erroneous implementations of display security policies: We
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identify previously unknown erroneous policies in user event routing and bound-
ary control and implement multiple attacks that demonstrate their seriousness.
Even though many mobile browsers rely on the same rendering engines as their
desktop counterparts, our experiments demonstrate that mobile browsers are

vulnerable to attacks not previously seen in the desktop space.

e Expose conflict between usability and display security: We show that
some re-implemented policies from desktop browsers, specifically Top-Level
Frame Navigation [70], expose mobile devices to phishing when mobile browsers
hide or completely eliminate indicators such as the address bar for reasons of
usability. In particular, we demonstrate the ability to navigate users away from
their intended destinations. Qur technique is new and does not use address bar
spoofing similar to the phishing techniques studied earlier [112, 165]. We find
that our technique enables a more dangerous and easy to launch attack, since
it exploits a built-in policy in all web browsers instead of attempting to spoof

the address bar in individual browsers.

Our analysis demonstrates that the discovered vulnerabilities are not isolated
bugs; rather, they are pervasive and affect all but one of the most popular mobile
and tablet browsers in some capacity. We have communicated our results to various
browser vendors who have acknowledged the presence of these vulnerabilities. More-
over, we argue that because an increasing number of apps rely on mobile browsers,
that these issues are relevant to all mobile app developers. Our results are the first
comprehensive study in display security and they provide strong evidence that the
security of mobile browsers has taken steps backward when compared to desktop

browsers.

'The Chrome Mobile browser was not susceptible to any of the attacks described in this work at
the time of experiments (June 2011). However, the latest version of the Chrome Mobile browser (as
of Dec 2013) minimizes the address bar on page rendering, thereby being susceptible to the attack
described in Section 3.5.
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Table 1: Details of the browsers used for experimental evaluation. We also evaluated
Opera Mini 5.5.1, Android 2.2.1 and Android 2.3.3 on Nexus One and Android 4.0.1 on
Galaxy Nexus. We observed the same vulnerabilities in both the old and new versions
of Opera Mini and Android browsers (except Android 4.0.1). (*: The version numbers
of these browsers were not apparent. We have used the default browsers shipped with
the referenced version of the OS.)

[ Category [ Browser Name [ Version [ Rendering Engine [ Operating System [ Device
Android 2.3.6 Webkit Android 2.3.6 Nexus One
Blackberry 5.0.0 Mango Blackberry OS 5.0.0.732 Bold 9650
Blackberry 6.0.0 Webkit Blackberry OS 6 Torch 9800
Chrome Beta 0.16.4301.233 Webkit Android 4.0 Galaxy Nexus
Firefox Mobile 4 Beta 3 Gecko Android 2.3.6 Nexus One
Mobile Internet Explorer % Tri Windows Phone LG-C900
: rident
Mobile 7.0.7004.0 OS
Nokia Mini-Map * Webkit Symbian S60 E71x
Opera Mini 6.0.24556 Presto Android 2.3.6 Nexus One
5.0.019802 Presto i0S 4.1 (8B117) iPhone
Opera Mobile 11.00 Presto Android 2.3.6 Nexus One
Safari * Webkit i0S 4.1 (8B117) iPhone
Tablet Android * Webkit Android 3.2.1 Motorola Xoom
Android * Webkit Android 3.1 Samsung Galaxy
Safari * Webkit i0S 4.3.5 (8L1) iPad 2
Chrome 15.0.874.106 Webkit OS X 10.6.8 —
Firefox 7.0.1 Gecko OS X 10.6.8 -
Desktop Internet Explorer | 8.0.7600.16385 Trident Windows 7 -
Opera 11.52 Presto OS X 10.6.8 —
Safari 5.1.1 Webkit OS X 10.6.8 -

3.2 OQverview

This section discusses our experimental methodology and defines our threat model.
3.2.1 Methodology

We analyze the rendering differences between popular desktop and mobile browsers
for security. The studied browsers are shown in Table 6. We have selected these
browsers as they represent approximately 90% of mobile browsers in the market [14],
as shown in Table 2.

We define a ‘display element’ as any HTML element that can color pixels on the
screen. For example, iframe, image, text, text area, link, table and button all
fall under display elements. However, HTML elements such as head or option do
not qualify as display elements. We create customized scenarios to evaluate common
interactions of cross-origin display elements: 1) when they overlap, 2) when they

border each other and 3) when they are navigated to new sources. Given the tight

24



Table 2: Market Share of Popular Mobile Browsers as of April 2012 [14]. We cover
approximately 90% of the mobile browsers in the market for our evaluation.

’ Browser Name \ % Market Share ‘
Opera 22.52
Android 21.18
iPhone Safari 19.85
Nokia 11.65
Blackberry 6.08
iPod Touch 3.72
Other (Firefox Mobile, 398
IE on Windows Phone 7 OS etc.) '

layout of many mobile webpages and the corresponding small screen sizes of the
associated devices, characterizing such interactions is critical. We discover new classes
of vulnerabilities in mobile browsers and evaluate their risk by implementing attacks
exploiting the vulnerabilities. All the experiments were performed on browsers on
real mobile phones, and are recreated in the respective emulators to create many of

the figures throughout the chapter.
3.2.2 Threat Model

We consider two classes of adversaries. Each adversary attempts to attack other web-
site principals and /or the user and exploit the constrained nature of a mobile device’s
display. Each adversary can identify the user’s mobile browser and is knowledgeable
of the display-related security vulnerabilities associated with that browser.

Landlord attacker: The landlord attacker is a malicious principal® who can host his
own websites such as landlordattacker.com. For example, the owner of a phishing
website such as blankofamerica.com imitating bankofamerica.com is classified as a
landlord attacker. A ‘tenant’ is a principal who rents an area on a landlord’s website to
render his own content such as advertisements. After the landlord gets honest tenants

on his website, he attempts to exploit the honest tenant and/or the honest user. The

2 A principal is the owner of some web content. In general, one principal does not trust another
with respect to his resources [208].
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landlord cannot read or change parts of the content in the tenant’s rented area on
the screen (due to the Same Origin Policy®), but controls the external properties
of the tenant’s rented area. For example, the landlord can specify the dimensions,
transparency and position of the tenant’s area on his website. The landlord instead
tries to attack the honest tenant and honest user by manipulating his own website
display.

We note that not every user visiting the malicious website will be exploited. De-

pending on the vulnerability targeted by the landlord attacker, the honest tenant
and honest user may be attacked only when landlordattacker.com is rendered in a
vulnerable browser. Placing web advertisements, displaying popular content indexed
by search engines and sending bulk e-mail to users are some of the techniques that
the landlord attacker can use to attract users to his website [72].
Tenant attacker: The tenant attacker is a malicious principal who can rent an
area of the display on a website owned by an honest landlord. For example, the
tenant attacker can insert a malicious advertisement or widget into an honest website.
Websites such as iGoogle allow any user having an account to upload a new widget.
We assume that an honest user visits an honest website containing at least one tenant
attacker area using a vulnerable mobile browser. The tenant attacker has knowledge
of the display vulnerabilities in the popular mobile browsers. He manipulates the
content of his rented area to attack the honest website and/or the user.

A successful exploit is able to:

1. Influence the state and logic of a victim website principal across Same Origin

Policy boundaries, and/or

2. Deceive a user into performing unintended actions or sharing private data.

3The Same Origin Policy prevents a document or script loaded from one domain from getting or
setting properties of a document from another domain [18,181].

26



3.3 User Event Routing

Overlapping elements are common in many webpages. From drop-down menus to
floating advertisements, the ability to overlay objects allows for content to be dynam-
ically presented to the user. However, the interaction between such elements must
be strictly defined, especially in cases when they are controlled by different origins.
When two or more display elements share the same pixel on the screen, browsers
must decide both a) which element can control the ‘coloring’ (display) of the pixel
and b) which element owns and responds to the user access to that pixel (user event
routing). For example, if a drop-down menu covers over an image and a user clicks
in this shared screen area, the browser must decide whether the principal owning the
image or the principal owning the menu will respond to a user’s click action.
Although all browsers make these decisions, the security relevance of user event
routing in overlapped elements has not previously been studied. Our evaluation
demonstrates that while desktop browsers consistently route user actions to the top-
most element, event routing is inconsistent across mobile and tablet browsers. This
inconsistency allows hidden elements to intercept user actions and potentially perform
dangerous operations. We first discuss the results of our evaluation of overlapped el-
ements using the methodology in Section 3.2.1 and then present attacks exploiting

the vulnerabilities.
3.3.1 Experimental Evaluation

Mobile and tablet browsers:

Inconsistent click-event reception: Click-event reception refers to a browser choosing
the element that receives a user’s click action in a stack of overlapped elements. In the
Android mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers,
a user’s onclick event on an image is routed to the onclick events of buttons, text

areas and links below the opaque image, thereby executing the events of the hidden
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Click Fraud

San Francisco Restaurants, Denti.. San Francisco Restaurants, Denti..
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Fresh Lists Fresh Lists
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mesothelioma-find-lawyer.com
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Uh-oh. I've o enough acnul sh
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ing a separate list for tt

i Neighbe i Eats - San Franci —— —nmtl i Eats - San Franci
rGSI]th(quCU‘[QL(S\l en | d

User access: the user's click
Display: user's view of the webpage actually accesses the hidden
mesothelioma ad

Figure 1: Left image: Fake image advertisement of sales in San Francisco on the
www.landlordattacker.com website; Right image: The mesothelioma ad from
Google AdSense placed directly below the enticing fake sales ad image by malicious
landlord. A wuser clicking on the mesothelioma ads [1] earns the landlord attacker
more money. The landlord places the honest mesothelioma ads from AdSense in an
iframe and overlays it with the more enticing images of sales in San Francisco to
increase the rate of clicks. When a user clicks on the fake sale ad in San Francisco,
the mesothelioma ad is clicked benefiting the landlord attacker. The Opera Mini
(pictured), Android mobile, Android tablet on Xoom and Nokia Mini-Map browsers
are vulnerable to the click fraud attack.

elements. We note that only the events corresponding to the element directly situated
below the area where a user clicks responds to the click action. Click events of all
the elements situated below the image are not executed when the user clicks on the
image.

In the Nokia Mini-Map and Opera Mini browsers, even if the top image has an
onclick event associated with it, the onclick events of the buttons below the image
are given preference. If the image on top does not have an event associated with it,
the buttons below the image are clickable in the Android mobile and Android tablet
on Xoom browsers.

Incorrect write policy: The Android mobile, Android tablet on Xoom, Nokia Mini-
Map and Opera Mini browsers allow a user to write into the text areas in an iframe

situated below an opaque image. When a user clicks on the portion of the image
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overlapping any part of the text area below, the text area pops out on top and the

user can write into the box.

Desktop browsers: The desktop browsers always route click and write events ex-

clusively to the top element in a stack of overlapped elements.
3.3.2 Attacks

We present three novel techniques that exploit inconsistent click-event reception and
incorrect write policies for overlapping elements.

1) Click Fraud: This attack is possible due to inconsistent click-event reception in
overlapping elements. Click fraud occurs in pay-per-click advertising when a malicious
principal creates illicit clicks on an ad by either tricking a real user or by imitating a
legitimate user’s click with a program. Such attacks generate revenue per click with
no actual interest in the target of the ad’s link. A popular pay-per-click advertising
program is Google’s AdSense. A malicious landlord or tenant website cannot manip-
ulate the ad placed by Google (due to the Same Origin Policy) and thus cannot trick
a legitimate user into clicking on an unwanted ad by disguising it with more enticing
content.

Consider a malicious landlord principal who creates an AdSense account and em-
beds relevant content containing targeted keywords to attract high paying ads. The
high paying ads [1] are generally not as popular as ads for discounts or coupons and
thus are not clicked very often. A landlord attacker can carry out click fraud as shown
in Figure 1, on a browser that allows a user to inadvertently access hidden content
(links, buttons etc.) placed below an opaque element such as an image. The landlord
attacker overlaps the mesothelioma ad (right) with more enticing and opaque content

such as sales at local restaurants (left). If an honest user clicks the area containing
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the attractive content from a vulnerable browser, the mesothelioma ad* below the
attractive content will be clicked without the user’s knowledge. Since the user’s click
is captured by the Google AdSense ad instead of the image on top, the malicious

landlord illicitly benefits.

2) Login CSRF: This attack is possible due to inconsistent click-event reception
and incorrect write policies. The intention of an attacker in a login Cross Site Re-
quest Forgery (CSRF) is to make the honest user’s browser log in as the attacker
into a legitimate website without any notice to the user. While seemingly counter-
intuitive, such an attack allows an adversary to monitor operations executed by the
user and steal their private information. For example, if an attacker successfully
logs in into his Yahoo account from the victim’s browser, the victim’s actions on all
of the websites (search, shopping, finance, health) belonging to Yahoo's single sign-
on system will be recorded in the attacker’s account. If the user makes a purchase
at shopping.yahoo.com and enters his credit card details, the information will be
stored in the attacker’s profile. Note that the user will not be asked to sign-in since
the attacker has already signed in in the user’s browser. Previous work has leveraged
a browser’s network connectivity and a browser’s state to launch a login CSRF at-
tack [71]. We present a new mechanism to launch the login CSRF attack by exploiting
the vulnerability of incorrectly handling user access to overlapped display elements in
mobile browsers. Our method is more robust and not easy to detect since it exploits
an in-built vulnerability in the browsers.

Consider a malicious website landlordattacker.com. The landlord includes a
legitimate iframe containing the ‘sign in” page of www.yahoo.com as shown in Figure 2
(right). The landlord then overlaps the iframe completely with an opaque image as

shown in Figure 2 (left). The image shows enticing free content on the landlord’s

4Mesothelioma is a cancer caused by inhaling asbestos and an ad costs $65.21 per click [15].
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Login CSRF
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PLEASE SOLVE THE CAPTCHA signIn
TO VERIFY THAT YOU ARE HUMAN

" attacker's _; nnnnnnn
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fellawving, | attacker's 1y

password

Display: user's view of webpage User access: user actually fills the username
and password fields on the hidden yahoo page
and signs in as the attacker

Figure 2: Login CSRF attack on Yahoo's sign in page. Left image: Image over-
lapping the www.yahoo.com iframe on www.landlordattacker.com. The text areas
for entering ‘solution’ of the CAPTCHAS are placed exactly over the email and pass-
word fields on yahoo.com. The verify button is placed exactly above the ‘sign in’
button of yahoo.com. The two CAPTCHASs are the real email and password of the
attacker’s Yahoo account.; Right image: Login page of www.yahoo.com included in
an iframe on www.landlordattacker. com, placed below the image. The Android mo-
bile (pictured), Android tablet on Xoom, Opera Mini and Nokia Mini-Map browsers
are vulnerable to this attack.

website and includes two image CAPTCHASs expected to be solved by the user to
access the free content. The intention of the landlord attacker is to make the user
enter the attacker’s credentials into the hidden iframe below the opaque image. The
landlord accomplishes this by setting the two CAPTCHASs to the email and password
of the attacker’s Yahoo account. For example, in Figure 2, FVbLzzF and following
are the username and password respectively of the attacker’s Yahoo account. The
landlord attacker then carefully places each of the solution boxes of the CAPTCHAs
on the image exactly overlapping the email and password fields (text areas) of the
Yahoo iframe below the opaque image. The ‘Verify’ button on the image of the
CAPTCHAs is exactly overlapped with the ‘Sign in’ button of the Yahoo iframe
below.

When an honest user visits landlordattacker.com from a vulnerable browser, he

solves the two CAPTCHAS on the image to view free content. Since the browser allows
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user access to the text area below the image, when the user fills in the CAPTCHA
on top, he actually fills in the username and password of the landlord attacker in the
Yahoo iframe below the image. Once the user clicks the verify button on the image,
the ‘sign in” button on the Yahoo iframe is clicked instead, thereby logging the user’s
browser into www.yahoo.com as the attacker.

In general, solving a CAPTCHA does not disclose private user information and is
perceived as a security feature. Therefore, even a careful user would likely be willing
to solve the CAPTCHA. Because the top image is opaque, the user is completely
oblivious to the consequences of his seemingly benign action. Once the attacker is
logged in from the user’s browser, all the potential consequences of login CSRF are

possible.

3) User Interaction Interception: This attack is possible due to inconsistent click-
event reception. A malicious landlord can launch a user interaction interception attack
on his cross-origin tenant by inserting display elements below a cross-origin tenant
image. In a webpage containing mutually distrusting principals, each principal’s
actual content as well as the user interaction with the principal’s content are private
to that principal (due to the Same Origin Policy). Therefore, the browser must not
allow unauthorized observation by a principal on a user’s interaction with another
tenant.

A malicious landlord attacker can intercept user interaction with an opaque cross-
origin image ad with a click event in a browser that gives priority to the user events
(such as onclick, onmouseover) of elements situated below the image. The expected
behavior of onclick on the image is navigation of user’s browser to the advertiser’s
webpage. A user’s interaction with the ad on the malicious landlord’s page is private
to the advertiser because of the Same Origin Policy. To snoop on the user interaction

with the tenant, the landlord fills the entire screen area below the image ad with
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buttons that have an onclick event defined. If a user visits the landlord’s website
from a vulnerable browser and clicks on the image ad, the click event of the buttons
below the image will be executed. This browser behavior will allow a malicious

landlord to monitor user interaction with the honest tenant.
3.3.3 Analysis

Android Mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers
are susceptible to all the attacks; whereas, none of the desktop browsers are suscep-
tible to any of the attacks. We found discrepancies between browsers made by the
same vendors. For instance, while Opera Mini is susceptible to all of the attacks
discussed in this section, neither the Opera desktop nor Opera Mobile browsers are
vulnerable. However, this behavior does not indicate that Opera Mobile enforces all
the same policies implemented in Opera desktop as seen in Section 3.4.

These experiments demonstrate that there are a number of ways in which user
actions can be intercepted by hidden and potentially malicious objects when rendered
by many popular mobile web browsers. However, as our next set of tests demonstrates,

there are more direct ways by which malicious objects can elicit direct user interaction.

3.4 Boundary Control

Many websites contain one or more cross-origin tenants in the form of ads or widgets.
Websites (landlord) rely on the browsers to restrict a tenant’s dimensions to the dis-
play area as defined by the landlord. However, if a browser allows a malicious tenant
to control its own dimensions (display ballooning), the tenant can easily expand its
own boundaries, completely disregarding the dimensions specified by the cross-origin
landlord. This lack of boundary control allows the tenant to dominate the constrained
mobile screen and intercept a user’s intended interaction with the landlord. We discuss

details of the discovered vulnerability and then describe potential attacks.
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3.4.1 Experimental Evaluation

Mobile and tablet browsers: The Android mobile, iPhone and iPad2 Safari, Opera
Mini and Opera Mobile browsers allow an iframe to stretch its own dimensions to fit
the content inside the iframe. Even if the landlord specifies the dimensions of the
iframe, the cross-origin tenant can change them by putting more content in the iframe.
By altering the iframe’s dimensions, the tenant’s iframe does not alter the layout of
the original page; rather all other elements on the screen are adjusted around the new
dimensions of the iframe while retaining the original relative layout.

Desktop browsers: We observe that desktop browsers restrict the boundaries of
a cross-origin tenant to those defined by the landlord. Instead of expanding, these
browsers add scroll bars to the contained iframes, allowing the user to scroll the
iframes to access the content not immediately visible due to the