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ABSTRACT Recently, the Internet of Things (IoT) has an important role in the growth and development of 

digitalized electric power stations while offering ambitious opportunities, specifically real-time monitoring 

and cybersecurity. In this regard, this paper introduces a novel IoT architecture for the online monitoring of 

the gas-insulated switchgear (GIS) status instead of the traditional observation methods. The proposed IoT 

architecture is derived from the concept of the cyber-physic system (CPS) in Industry 4.0. However, the 

cyber-attacks and the classification of the GIS insulation defects represent the main challenges against the 

implementation of IoT topology for the online monitoring and tracking of the GIS status. For this purpose, 

advanced machine learning techniques are utilized to detect cyber-attacks to conduct the paradigm and 

verification. Different test scenarios on various defects in GIS are performed to demonstrate the effectiveness 

of the proposed IoT architecture. Partial discharge pulse sequence features are extracted for each defect to 

represent the inputs for IoT architecture. The results confirm that the proposed IoT architecture based on the 

machine learning technique, that is the extreme gradient boosting (XGBoost), can visualize all defects in the 

GIS with different alarms, besides showing the cyber-attacks on the networks effectively. Furthermore, the 

defects of GIS and the fake data due to the cyber-attacks are recognized and presented on the dashboard of 

the proposed IoT platform with high accuracy and more clarified visualization to enhance the decision–
making about the GIS status. 

INDEX TERMS Internet of things; machine learning; cyber-security; gas-insulated switchgear, partial 

discharge.

I. INTRODUCTION 

Practically, gas-insulated switchgears (GISs) have a superior 

interruption and insulation performance compared to 

traditional air-insulated switchgears [1]–[3]. Specifically, 

GISs require low spacing while yielding decent environmental 

compliance, thereby extensively being the preferable option 

for main substation components [4]–[7]. Recently, the general 

electric system infrastructure has started to approve digital 

information technologies. Interestingly, the digital substation 

can provide reduce maintenance necessities and the need for 

long conventional cabling and other electrical apparatus [8], 

[9]. These benefits are achieved by combining the newest 

electrical gear with digital sensors as well as cloud computing. 

As a result of this digitalization trend, the cyber-physic system 
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(CPS) becomes essential to ensure the continued operation of 

GISs in a digitalized substation and so the entire power system 

[10], [11]. In this regard, it has become a worldwide tendency 

that power system equipment access to the cloud, with the 

growth of the Internet of Things (IoT) and cloud platform 

systems. Its main merit is to appreciate value-added services 

by online remote monitoring, smart operation, and effective 

maintenance and diagnosis strategies [12], [13]. In particular, 

the IoT arrangement contains several evolving technologies 

that empower wireless interconnections between physical 

components.  

The collected data by digital sensors are passed to IoT 

components e.g. users, industrial equipment, and personal 

devices. In 2020, the number of intelligent devices that utilize 

IoT was estimated to be 30 billion globally [14], [15]. With the 

expansion of IoT, the massive dataset gathered by intelligent 

sensors are helpful to enhance the manufacturing procedures 

and the excellence of life [16]. Thence, this IoT topology is 

highly recommended as the most extraordinary technological 

advances in upcoming knowledge and got significant 

consideration because of its probable in empowering the 

fourth industrial revolution (so-called Industry 4.0) [17], [18]. 

The authors of [19] have identified various IoT attack models 

and learning-based IoT security methods which are shown to 

be efficient protection for the IoT. In power system 

applications, diverse power equipment has involved 

widespread consideration and is a distinctive application 

ground of IoT. Most importantly, GISs are considered the 

fundamental equipment for power system operation where 

they are the primary gear with the main amount of substation 

custom and the highest influence on the main electric network 

security. It is an important asset to guarantee the standard 

operation and security of GIS with advanced IoT topology. 

In the literature, GIS and partial discharge (PD) diagnostics 

have intensively been investigated by diverse methods and 

applications to alleviate current limitations and to attain a 

better diagnosis and monitoring. PD examination has been 

achieved by machine learning-based approaches, e.g. support 

vector machine [20], random forests [21], artificial neural 

network [22], decision trees (DT) [23], and genetic algorithm 

[24]. Different partial detection methods have been 

investigated for condition monitoring [25]. In turn, other 

research studies have been directed to diverse features of GIS 

condition monitoring [26]. In [27], a novel deep-learning 

model has been proposed based on the combination of long 

short-term memory and self-attention mechanisms to 

categorize the PD patterns in GIS, which offers the advantages 

of simultaneous computation and selective focusing signals to 

categorize diverse GIS faults. In [28], an image analysis-based 

approach for PD analysis has been proposed, combined with a 

deep learning system, to decrease the complexity of finding 

features for GIS experiments. In [29], a fault diagnosis 

technique involving a feature selection approach has been 

proposed based on a genetic algorithm as well as density-

based clustering of applications with noise.  Further, a digital 

twin concept has been proposed to enhance the virtual-real 

integration of industrial IoT of GIS and has been demonstrated 

to be feasible [30]. Recently, a novel MobileNets 

convolutional neural network model has been proposed to 

identify the GIS-PD patterns [31]. The IoT topology shows 

promising impacts in improving the performance of 

digitalized GISs. However, its usage can introduce 

considerable risks that include cyberattacks that can affect the 

reliability of the entire power system, which is not yet 

investigated and still under development.  

To cover the abovementioned gap in the literature, this 

study is aiming to propose a novel IoT topology for the online 

monitoring and defect diagnoses of GIS in an effective 

manner. The proposed topology is based on the concept of the 

cyber-physic system (CPS) which is a vital item in Industry 

4.0. Nevertheless, the classification of the GIS defects, as well 

as cyber-attacks, characterize the key challenges for adopting 

IoT in the online monitoring and tracking of GIS health. 

Specifically, an advanced machine learning technique, which 

is extreme gradient boosting (XGBoost), is developed to 

detect cyber-attacks to perform the paradigm and the 

verification process, offering superior performance above 

three machine learning algorithms. Various test scenarios are 

simulated on diverse GIS defects that prove the efficiency and 

security of the proposed IoT topology. PD pulse sequence 

features are extracted for every defect to model the inputs for 

IoT topology. The merit of the proposed IoT is to visualize all 

GIS defects with diverse alarms and the cyber-attacks on the 

networks efficiently. The contribution of this paper can be 

summarized in the following points; 

• Introducing intelligent online monitoring for the status of 

the GIS to diagnose various defects based on partial 

discharge pulse sequence features. 

• Developing a new IoT architecture integrating an 

advanced machine learning technique. 

• The proposed infrastructure can detect the GIS defects in 

order to ensure effective operation for the power system, 

keep the GIS in a healthy state, and avoid any possible 

failure for the GIS. 

• The suggested machine learning technique can detect the 

cyber-attack and present it as fake data in the main 

dashboard of the IoT platform. 

• A lot of experimental test scenarios are performed to 

confirm the effectiveness of the suggested smart system. 

• The experimental results emphasize the superiority of 

the proposed IoT architecture integrating machine 

learning to monitor and diagnose partial discharges in 

GIS towards an effective, reliable, and securing power 

system. 
 

 

II. PROPOSED IOT ARCHITECTURE OVERVIEW  

In the modern manufacturing industry, following the trend of 

Industry 4.0, automation in GIS focuses on the usage of online 

condition monitoring systems which might be essential for 

increasing the safety of the power system. The system security 
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and the management of big data represent the big challenge in 

the context of condition monitoring. The goal of condition 

monitoring is to decide the correctness of the running states of 

physical assets and power system operation. Normally, whilst 

a propensity of equipment fault or failure is detected, highly 

skilled machine learning methods are capable of performing 

appropriate decisions to decrease the outage scenario of the 

power system. Next, appropriate action on the operating states 

of physical assets and power system processes is needed for 

mitigating failures.  

 The automatic identification of partial discharges (PDs) 

in GIS is the first task in designing an intelligent system to 

avoid failures. Further development of real-time GIS 

monitoring needs to be an intelligent system for PD diagnosis. 

Wherein, the monitoring approach should read the GIS 

information, gather and examine the sensor records, and send 

the manipulate command to the automated manage interface. 

Further, with the development of edge computing, 5G 

network, and IoT, it is become feasible to put in force this form 

of system in actual existence. Therefore, the implementation 

of the system for online PD monitoring on the shop floor is 

considered in this paper. The proposed IoT architecture 

consists of sensors for the measurement of PD pulse sequence 

features including phase appearance and its corresponding 

instantaneous voltage magnitude, which stands for the 

“physical” part.  
 Usually, there are various PD sensors that can be 

implemented with GIS to acquire PD pulses. These sensors 

are normally operating in the high-frequency range. The used 

sensors can be very high frequency/ultra-high frequency 

antenna that measures the radiated electromagnetic energy 

from PD events [32] or can be high-frequency current 

transformers that measure the induced currents from PD 

events [33]. The later one is preferred due to its lower 

attenuation and immunity to surrounding electromagnetic 

noises. Once a PD event is acquired, the instantaneous 

operating voltage and phase angle are recorded using voltage 

sensors and are sent to the data acquisition system.  

 This IoT platform has three components: connectivity, 

software, and a user interface. The hardware requires a way to 

send all the processed data to the cloud and requires a way to 

receive commands from the cloud. The WiFi, a short-range 

IoT connectivity, is considered as one of the best options for 

data-intensive speedy IoT systems operating within a small 

area. The IoT platform is responsible for storing and analyzing 

the vast amount of measured PD signals, and also for 

automatically identifying defects. Edge computing allows PD 

data from the IoT devices to be processed at the edge of the 

network before sending to the cloud. The data acquisition is 

carried out by utilizing interfaces such as Modbus, Open 

Platform Communications (OPC), and different network 

protocols like Hypertext Transfer Protocol (HTTP) and 

Message Queue Telemetry Transport (MQTT). A complete 

IoT platform needs a user interface. The contact elements for 

IoT are used for users to interact with the IoT platform as 

shown in Figure 1. 
 

 

III. MACHINE LEARNING ALGORITHMS  
 
A. OVERVIEW 

 
FIGURE 1. Proposed IoT architecture for PD monitoring on the GIS. 
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Recently, machine learning techniques have been applying 

in many fields, particularly for data analytics and data 

science in automated processes. The learning process of 

machine learning is to review historical events and to learn 

new skills and knowledge from that data [34]. The machine 

learning-based classifiers can be split into different 

categories such as supervised learning, unsupervised 

learning, reinforcement learning, and semi-supervised 

learning. A supervised learning method that the machine 

utilizes training dataset to learn what it should do [35]. For 

instance, if the manner is to classify images of puppies and 

cats, the machine utilizes a classified dataset approximately 

of puppy and cat sets to examine the variations among the 

puppies and cats. Unsupervised studying is applied to 

divided statistics organizations into similar categories [36]. 

For example, if the inputs of the system are sets of cats and 

puppies’ photographs without any label of that is puppy or 
cat, the machine can divide those units of sets into a kind 

category primarily based on the similarities between images. 

In addition to supervised and unsupervised learning, 

reinforcement learning is one of three basic machine learning 

paradigms that describes how an agent operates in an 

environment to optimize the notion of cumulative reward 

using feedback [37]. While semi-supervised learning uses 

both labeled and unlabeled datasets, the semi-supervised 

algorithm falls between supervised learning and 

unsupervised learning algorithms [38].  

Machine learning relies upon strategies named regression 

and classification. Regression is a forecasting approach 

utilized for continuous variables. On a different hand, the 

classification predicts the activities of distinct outputs, as an 

example, it can predict the day fame as be sunny or foggy. 

For example, the linear regression approach can be used to 

forecast continuous variables, even as the discrete variables 

can be predicted by using the logistic regression technique. 

There are lots of strategies utilized for machine learning, 

which include neural networks, decision trees, and random 

forests. Among those strategies, extreme gradient boosting 

(XGBoost) is a powerful approach that could perform both 

regression and classification. Furthermore, it may be applied 

for the prediction of both continuous and discrete outputs. 

The subsequent subsection discusses the XGBoost in extra 

detail. 

 

B. EXTREME GRADIENT BOOSTING CLASSIFIER 

Extreme Gradient Boosting, known as an ensemble 

technique of multiple classifications and regression trees, is 

a scalable end-to-end tree boosting system introduced by 

Chen et. al. [39]. It has been widely used for applied machine 

learning with great performance for fault classification 

problems [40], [41]. The XGBoost utilizes a gradient descent 

algorithm to create a new model that the error made by the 

previous model is computed and to be corrected by a 

succeeding model to make the final prediction. Interestingly, 

the XGBoost can push the limit of computations resources 

for boosted tree algorithms. Several calculations can be 

reduced, and the classification speed can be improved. 

Further, the XGBoost classifier also can avoid the overfitting 

problem by simplifying the objective functions. The iteration 

 

 

 
FIGURE 2. Scheme of extreme gradient boosting classifier for partial 

discharge diagnosis. 

 
 

 

(a) 

 

(b) 

FIGURE 3. Experimental setup for most common PD defects in GIS; (a) 

free and spacer particle defects (MPG and MPS), (b) delamination (EID) 

defect. 
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of the XGBoost algorithm starts with the first learner which 

is fitted to the entire data. Then the error of the first learner 

will be fitted by the second learner. This process will 

continue the learning process and complete if a stopping 

condition is met. The workflow of the XGBoost classifier for 

partial discharge diagnosis is described in Figure 2. 

Suppose the training data includes multiple features 𝑥𝑖 to 

predict a target variable �̂�𝑖. The XGBoost model using k 

additive function to estimate the output can be described in 

Eq. (1). �̂�𝑖 = ∑ 𝑓𝑗(𝑥𝑖)𝑘𝑗=1 , 𝑓𝑗 ∈ 𝐹,                                                                    (1) 

where the function space is defined as 𝐹 = {𝑓(𝑥) =𝑤𝑝}(𝑝: ℝ𝑛 → 𝑇, 𝑤 ∈ ℝ𝑇), w represents the weight of the ith 

leaf node, and the function fk  is corresponding to a p mapping 

and the score of its leaf nodes. The objective function of the 

XGBoost model, shown in Eq. (2), will be minimized to get 

a better learn of the final XGBoost model. 𝐿(𝜃) = ∑ 𝑙(�̂�𝑖 , 𝑦𝑖)𝑖 + ∑ 𝜓(𝑓𝑗)𝑗                                                   (2) 𝜓(𝑓) = 𝛼𝑇 + 12 𝛽‖𝑤‖2                                                       (3) 

The objective function of XGBoost model has two parts, the 

first part is to measure the difference between the estimated 

class �̂�𝑖 and the real class 𝑦𝑖. The second term 𝜓(𝑓) is the 

regularization term which represents the complexity of the 

tree. It can be calculated using Eq. (3), where 𝛼 is the 

regularization parameter of leaf number and 𝛽 is the 

regularization parameter of leaf weight. 

The second-order Taylor expansion is applied to the loss 

function shown in Eq. (4) for avoiding overfitting and 

enhancing the performance of the traditional gradient 

boosting tree. 𝐿𝑗 = ∑ [𝑙(�̂�𝑗−1, 𝑦𝑖) + 𝑔𝑖𝑓𝑗(𝑥𝑖) + 12 ℎ𝑖𝑓𝑗2(𝑥𝑖)]𝑖 + 𝜓(𝑓𝑗)     (4) 

where 𝑔𝑖 and ℎ𝑖 represent the first and the second-order 

gradient direction. The objective function is simplified by 

ignoring the constant term and obtain the simplified 

regularized objective function described in Eq. (5). 𝐿𝑗∗ = ∑ [𝑔𝑖𝑓𝑗(𝑥𝑖) + 12 ℎ𝑖𝑓𝑗2(𝑥𝑖)]𝑖 + 𝜓(𝑓𝑗)                          (5) 

 

 

IV. PD MEASUREMENT AND FEATURES EXTRACTION  

In the present study, three different GIS defects were built 

experimentally as shown in Fig. 3. These defects are the most 

common defects that can be encountered in GIS [42], [43]. 

They include free metallic particles in the gas gap (called free 

particle, MPG), metallic particles adhered to the spacer 

surface (called spacer particle, MPS), and internal 

delamination at electrode/insulation interface (called 

delamination, EID). For free particle and spacer particle in 

Figure 3a, they have a length of 5 mm and a diameter of 0.25 

mm, while for delamination defect in Figure 3b, it was sized 

40 mm in diameter and 50 µm in depth. All these defects 

were sequentially implemented inside a pressurized GIS 

chamber, where a PD measuring process was performed 

using current pulse measurements. The PD pulses for various 

defects were acquired for a duration of 10 minutes and 

various PD features were extracted [44], [45]. The various 

PD features are phase appearance, amplitude, number of PD 

pulses, and instantaneous operating voltage. Regarding the 

PD amplitude, it usually needs proper calibration and it is 

 

  
(a) (b) 

FIGURE 4. Input datasets of the GIS and the corresponding classification; (a) The variation of voltage, and (b) The variation of angle. 
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dependent on the defect size. So, using PD amplitude for PD 

diagnosis can be misleading. Regarding the number of PD 

pulses, it requires statistical calculations for PD events. 

Instead, it is proposed in this paper to use pulse sequence 

features including phase appearance and voltage magnitude, 

which proved in previous researches their effectiveness in 

PD diagnosis [46], [47]. In addition, these pulse sequence 

features can be easily acquired using voltage sensors making 

them suitable to be used with IoT architecture. 
 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the XGBoost classifier is devoted to 

identifying four classes of partial discharge in gas-insulated 

switchgear including MPG, MPS, EID defect types, and 

cyber-attack cases. A real-time dataset is gathered from the 

GIS at several operation conditions for the training and 

testing of the XGBoost classifier. A cyber-attack dataset is 

combined with the real-time dataset of the GIS. The attacked 

data is labeled by 0 and the real data of the MPG, MPS, EID 

defects are labeled by 1, 2, and 3 respectively in order to train 

and test the XGBoost classifier. Figure 4 shows all samples 

of the inputs training dataset. The dataset includes 7986 

samples with 4 features, of which the training dataset is 80% 

and the testing dataset is 20%. The training and testing 

models were processed using a PC computer with an Intel  

CoreTM i7-8700 @3.20 GHz central processing unit and 8G 

RAM. In this paper, the grid search has been used to optimize 

the XGBoost hyper-parameters including estimators 

number, learning rate, maximum depth, min child weight, 

and objective of the model. The grid search approach scans 

the entire grid of hyper-parameter combinations in some 

order and also calculates the cross-validation loss to 

determine the optimal model parameters. The parameter, 

max_depth, is one of the Booster parameters that can define 

how deep each estimator is permitted to build a tree. The 

parameter max_depth is considered in the XGBoost 

classifier to avoid over-fitting. If max_depth is large, the 

model will learn very specific to a particular sample. In this 

study, the maximum depth was identified by tuning the 

hyperparameter of XGBoost using the grid search 

infrastructure. As a result, the optimal parameter of 

max_depth is set as 3. The grid search method is adopted to 

obtain the optimal parameters of the XGBoost model. The 

optimal parameters are listed in Table 1, in which the 

maximum number of iterations was optimized with “n 
estimators” of 600, the learning rate value is 0.1 which allow 
the learning speed is fast while remaining good performance 

of the model. The maximum depth of the tree is 3 that can 

control overfitting. The value of “min child weight” is 5. The 

learning process can be optimized using the objective 

function “multi: softprob”.  
The final XGBoost model was obtained after training and 

parameter adjustment. The performance of the model is 

evaluated by Eq. (6). The best performance goes to the cyber-

attack class with 99.75 % accuracy, which is followed by 

EID and MPG defect types, and the worst case is the MPS 

defect type with 97.01% accuracy. The average classification 

accuracy is 98.69% shown in Fig. 2(b). 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                                                         (6) 

where TP = true positive; TN = true negative; FP = false 

positive; FN = false negative.  

Figure 5 performs the ROC curve of the proposed 

XGBoost classifier where the areas of different classes under 

different curves reach to 1. It shows that the balance of the 

dataset with multiple classes and the effective performance 

of the XGBoost model. 

To further examine the effectiveness of the proposed 

XGBoost classifier for diagnosing PD in GIS, several 

machine learning classifiers such as artificial neural network 

TABLE 1. Optimum parameters of XGBoost model 
 

Parameters Values 

estimators' number 600 

learning rate 0.1 

max_depth 3 

min child weight 5 

objective Multi: softprob 

thread number 1 

 
 

 

 

FIGURE 5. Receiver operating characteristic (ROC) curves of XGBoost 

classifier. 
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(ANN), decision tree (DT), and random forest (RF) 

approaches were implemented for the classification. The 

ANN is a mathematical model that tries to simulate the 

functionality of the biological nervous system. The inputs of 

the model are assigned the specific weights and all the 

weighted inputs will be added with a bias term. In the end, 

the weighted inputs and the bias term will be transformed by 

an activation function to compute the output.  

The ANN model has been widely used for PD pattern 

recognition. In this work, the ANN is using a 

backpropagation algorithm. The ANN consist of 4 input and 

4 output representing 4 types of PD defects. The inputs go 

through with hidden neurons varied from 8 to 16. The 

activation function is rectified linear activation function. The 

DT approach is also one of the supervised learning 

algorithms that have a fast training process with low memory 

requirements. To estimate the class of the given dataset, first, 

the values of the root attribute are compared to the real 

dataset attribute. The algorithm continues to compare the 

attribute value with the other sub-nodes in the next node and 

moves further.   
Finally, the process reaches the leaf node of the tree. In 

addition to ANN and DT, the RF is also known as an 

effective method for fault diagnosis problems. The RF is an 

ensemble approach that uses tree-type classifiers. This 

method can enhance the performance of the model by using 

 
FIGURE 6. Classification result from proposed ANN; (a) Confusion matrix without normalization, and (b) Confusion matrix with normalization. 

 

 
FIGURE 7. Classification result from proposed DT; (a) Confusion matrix without normalization, and (b) Confusion matrix with normalization. 
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bagging to suppress over-fitting. The decisions of RF are 

based on the total votes of component predictors from each 

target. The classification results from all machine learning 

techniques are shown in Figures (6-9) and summarized in 

Table 2. The confusion matrix of the testing set shows that 

excellent classification accuracy can be achieved using the 

proposed XGBoost algorithm.  

Figure 10 represents the classification accuracies 

obtained from different classifiers in the vertical bar plot for 

PD diagnosis in GIS. It shows that the proposed XGBoost 

classifier has the highest accuracy of approximately 99%. 

The ANN model has the lowest accuracy of approximately 

90%. While the decision tree and random forest models 

 
FIGURE 8. Classification result from proposed RF; (a) Confusion matrix without normalization, and (b) Confusion matrix with normalization. 

 

 
FIGURE 9. Classification result from proposed XGBoost classifier; (a) Confusion matrix without normalization, and (b) with normalization. 

 

TABLE 2. The accuracy of each machine learning method and the corresponding class. 

                       Class 

Method 
Attacked MPG MPS EID Total efficiency 

ANN 99.01% 76.64% 91.15% 92.05% 89.71% 

Decision Tree (DT) 98.45% 88.45% 92.04% 97.26% 94.05% 

Random Forest (RF) 99.74% 92.14% 91.29% 97.92% 95.27% 

Proposed XGBoost 99.75% 98.51% 97.01% 99.49% 98.69% 
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could provide better performance of the classification with 

the accuracy of approximately 94% and 95%, respectively. 

After training and testing, the created model of the 

proposed XGBoost classifier is combined with the IoT 

architecture to categories the online reading of the GIS and 

present it through the IoT dashboard as described in the 

following test scenarios. The flowchart in Fig. 11 describes 

the total operation of data acquisition, validation, and 

visualization.  

The current pulse measurements and the edge server for 

machine learning are the edge devices. The cloud server is 

MQTT server “HiveMQTT broker” with “Contact elements 
for IoT platform” and the data is transferred via MQTT 
protocol. The classifier is implemented at the edge server for 

machine learning. The following pseudo-code in Algorithm 

1 summarizes the steps of the data acquisition, validation, 

and visualization based on the proposed IoT architecture and 

machine learning technique.  
 

 
 

A. SCENARIO 1: STABLE SYSTEM 

This scenario is created to present the normal state of the 

system that represents the state of the GIS insulation and the 

proposed IoT architecture. The healthy or the normal state 

means that there are no defects in the GIS insulation and 

there is no cyber-attack on the internet network of the 

proposed IoT architecture. Figure 12 shows the GIS status 

and network status on the dashboard of the IoT platform. It 

is clear from this figure that the GIS does not has any defects 

and the internet network is stable which means there is no 

cyber-attack and the IoT system is secured. Besides, the 

traffic light is green which means the system works properly. 

Furthermore, the proposed IoT system monitor and visualize 

the GIS in an effective, clear and secure way instead of the 

traditional tracking methods that depend on the 

measurements and analysis and consume a long time and 

much costs. 
 

Algorithm 1. The pseudo-code of the proposed IoT architecture 

and machine learning technique 
 

1: Read data from the current pulse measurements  

2: Send data to the edge server for machine learning via MQTT 

protocol 

3: Input the data to XGBoost model 

4: Classify the GIS status by the XGBoost model 

5: Connect to MQTT server 

6: elseif the output XGBoost model==0 

7:     Publish that the GIS status is ‘Fake data’ and network status 
is ‘Unstable network’ 

8: if the output of XGBoost model==1  

9:     Publish that the GIS status is ‘MPG defect’ and network 
status is ‘Stable network’  

10: elseif the output XGBoost model==2 

11:     Publish that the GIS status is ‘MPS defect’ and network 
status is ‘Stable network’ 

12: elseif the output XGBoost model==3 

13:     Publish that the GIS status is ‘EID defect’ and network 
status is ‘Stable network’ 

14:  else  

15:      Publish that the GIS status is ‘No defects’ and network      
status is ‘Stable network’ 

16: end if  

 

 

 

FIGURE 10. Classification accuracy of different methods.  
 

 

 
FIGURE 11. Schematic of the proposed IoT architecture with the 

proposed XGBoost classifier.  
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B. SCENARIO 2: MPG DEFECT 

This test is carried out to validate the effectiveness of the 

proposed machine learning technique and the proposed IoT 

architecture to recognize and present the MPG defect. Figure 

12 presents the GIS insulation status in case of the MPG 

defect. The system has MPG defect and the network is stable 

as clear in Fig. 13. Besides, the traffic light is changed to a 

yellow light to present an automatic alarm to the user about 

the defect state on the GIS in order to maintain the system. 

This test confirms that the proposed machine learning 

techniques and the IoT architecture work well and can 

recognize and visualize the MPG defect. 

 

C. SCENARIO 3: MPS DEFECT 

The MPS defect is created in this scenario as another class 

from GIS insulation defects. The proposed IoT platform 

presents the MPS defect and the network status in Fig. 14. 

 
 
FIGURE 12. The GIS and network status in case of a normal case. 

 

 
 
FIGURE 13. The GIS and network status in case of MPG defect. 
 

 
 
FIGURE 14. The GIS and network status in case of Scenario 3. 
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The IoT dashboard clear that the GIS insulation has MPS 

defect and the traffic light is changed to a yellow light to 

inform the user about the detected defect as shown in Fig. 14. 

Besides, the network is stable, and the transmitted data is 

secured that enhances the decision-making about the 

classified defect by the proposed machine learning 

technique. 

 
D. SCENARIO 4: EID DEFECT 

This scenario is created to demonstrate the last defect of the 

GIS insulation. The EID is one of the GIS insulation defects 

that must be recognized by the machine learning technique. 

Figure 14 shows the dashboard of the proposed IoT platform 

that presents the GIS status and the network status in a clear 

and effective presentation for the user. It is clear in Fig. 15 

that the GIS insulation has EID defect. Besides, the IoT 

platform creates an alarm to hint the user about the abnormal 

state and changed the light of the traffic indicator to yellow 

light. Furthermore, the network status is stable that confirms 

the reliability of the transferred data about the GIS. This test 

confirms the effectiveness of the proposed machine learning 

technique to detect the EID defect and recognize the network 

status. 

 
E. SCENARIO 5: ABNORMAL INTERNET NETWORK 

The reliability of the internet network represents the main 

challenge against the implementation of the IoT architecture. 

Therefore, this test is carried out to confirm the superiority 

of the proposed machine learning technique to detect cyber-

attacks on the internet network. This scenario represents a 

serious case in the system.  Figure 16 shows that the internet 

network unstable that means the IoT system exposes to 

cyber-attacks. In this case, the transmitted data about the GIS 

is fake. Besides, the proposed IoT platform changed the 

traffic indicator to red light to inform the user about the 

abnormal case of the cyber-attacks to maintain the internet 

network and the IoT server. This test emphasis that the 

proposed machine learning technique and the IoT 

architecture can recognize the cyber-attacks and inform the 

user effectively. Furthermore, the proposed IoT is more 

reliable to track the GIS insulation status. 

 

 
 
FIGURE 15. The GIS and network status in case of EID defect. 
 

 
 
FIGURE 16. The GIS and network status in case of cyber-attacks scenario. 
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F. DISCUSSIONS 

The following points summarize the main results of the 

above scenarios, 

• The normal state of the GIS insulation and the internet 

network is visualized by the proposed IoT platform in 

a clarified dashboard in the first test scenario. It 

confirms that the GIS insulation does not have any 

defects and the internet network is stable. 

• The second scenario demonstrates the effectiveness of 

the proposed IoT architecture and the proposed 

machine learning technique to detect and visualize the 

MPG defect of the GIS insulation. Besides, the 

proposed IoT platform created an alarm and changed 

the light of the traffic indicator from the green light to 

the yellow light in order to inform the user about the 

defect on the GIS. 

• The third and fourth scenarios present the MPS and 

EID defects and confirm that the superiority of the 

proposed IoT architecture and the proposed machine 

learning technique to detect these defects and visualize 

them effectively. 

• The last scenario emphasizes the effectiveness of the 

proposed machine learning technique to detect cyber-

attacks on the network. Besides, the proposed IoT 

platform shows that the transmitted data about the GIS 

is fake which enhances the decision-making about the 

GIS. Furthermore, the IoT platform changed the light 

indicator to red light in order to inform the user about 

the cyber-attacks on the network. 

 

VI. CONCLUSIONS  
 

This paper presents new online monitoring and tracking for 

GIS defects based on a novel IoT architecture and machine 

learning technique. The defects of the GIS are classified 

based on effective new machine learning techniques. 

Besides, the proposed IoT architecture can recognize the 

cyber-attacks of the internet network based on the utilized 

machine learning techniques in order to provide reliable and 

secured monitoring for the GIS status. Further experimental 

scenarios are carried out to emphasize the superiority of the 

proposed IoT architecture. The results confirm that the 

proposed IoT topology with machine learning can detect and 

present the defects of GIS with high accuracy and 

effectiveness. Besides, the proposed IoT architecture based 

on the machine learning technique can detect the cyber-

attacks on the internet network to provide the user with 

reliable data about the GIS status in order to support the 

decision-making. Furthermore, the proposed IoT platform 

can present the GIS defects and the network status in a more 

clarified visualization with different alarms about the GIS 

defects and cyber-attacks. The proposed IoT architecture 

solves the cyber-attack issue that provides a promising 

solution to be implemented on other power system 

applications in future work.   
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