
Towards Security in an Open Systems Federation

John A Bull1 Li Gong2 Karen R Sollins3

This paper argues that security design for Open Distributed
Processing (ODP)
would benefit from a shift of focus from the infrastructure to
individual servers
as the owners and enforcers of security policy. It debates the
policy nuances,
mechanisms, and protocol design consequences, that would follow
from such a
change of emphasis. In ODP, physically separate systems federate
into
heterogeneous networks of unlimited scale, so there can be no central
authority,
nor ubiquitous security infrastructure. Servers that offer,
trade, supply and
consume services must maintain their own security policies and
defend
themselves. For servers to take security policy and enforcement
decisions,
design is concerned with how they might seek advice and guidance from
higher
authority. This contrasts with an administrator imposed policy
on a closed
homogeneous network, where an infrastructure enforces
administrator declared
access rights to potential clients, including rights to delegate rights.

1 Introduction

Computer system security originated in the context of single
multi-user systems, to be
later refined in the context of closed homogeneous networks. This
history has led to a
focus on users: the consumers of service. As we move towards
open system
federations, this paper argues that focus should be re-directed
towards servers: the
suppliers of service. This amounts to a shift of emphasis, from the
demand side, to the
supply side of the computer service economy.

Systems participating in ODP will wish to trade services with
other systems, yet
defend themselves against attack from them. This is manifest as
systems participate
in open trade of services, with dynamic binding between supplier
and consumer.
Ultimately, each system will define its own security policy and
control invocations of
itself by the outside world. The logical conclusion from reducing
granularity implies
individual servers setting and enforcing their own security policies.

Most emerging ODP frameworks are object-based [2, 13, 14].
Encapsulation is
enforced by the infrastructure, but beyond this: you don't manage objects, objects
manage themselves [4, 25]. Each object is an instance of an abstract type with internal
state. Each maintains its own integrity, and each might also
maintain its own security
policy, thus creating secure enclaves. This offers the prospect of dynamically variable
security policies tailored for individual objects. It also offers
scope for local policy
enforcement, including immediate access revocation.

Although different approaches might meet the same ultimate goal,
this paper
shows how a subtle change of perspective from user to server can
lead to different
design solutions and eventually to different styles of implementation.

1 Architecture Projects Management Ltd, (APM/ANSA),
Poseidon House, Castle Park, Cambridge CB3 0RD, UK (jab@ansa.co.uk)

2 ORA Corporation,
301A Dates Drive, Ithaca, New York 14850, USA (li@oracorp.com)

3 M.I.T. Laboratory for Computer Science,
545 Technology Square, Cambridge, MA 02139, USA (sollins@lcs.mit.edu)

2 The Object Model

Activities within objects may invoke operations in interfaces of
other objects, but
for later convenience we may refer loosely to objects invoking
objects. Object state
may only be changed through invocation of an operation of an
interface. Object
encapsulation, necessarily enforced by a host platform, prevents
any other form of
access. For any given invocation, the object hosting the invoking
activity is a client,
and that offering the interface is a server. Concurrently, an
object may respond to
multiple clients and initiate multiple requests for service.

A client requests service by invoking a server Interface
Reference (IR) through
an infrastructure call. IRs are created by servers for their own
services, and may be
passed as parameters, or returned as results, in IR invocations.
Thus, an IR may be
created by a server, returned as a result, passed from object to
object along a chain of
service, and finally invoked, making the server the source and ultimate
target of IRs.

3 Security Models

When an IR is invoked, the server must check the client's
authenticity and
authority to obtain service. These will be decided, respectively,
by the server, or a
trusted agent of the server, checking a shared secret presented by
the client, and by
checking a record that authority had been granted to the client.
The client may have
acquired authority by delegation, in which case the same checks
must apply to the
delegator. Following various checks, the server must decide, based
on some security
policy, whether to grant or deny access. In all cases, although
the server ultimately
has control, it may seek advice and guidance on any aspect of
authenticity, authority,
or security policy, from trusted third parties.

A possible model to support this requirement is for a common
ancestor of the
client and server in a bootstrapping situation, or a shared
authority in inter-domain
co-operation, to retain an access control list (ACL) for the
services offered by the
server. An ACL entry would take the form of client identity
versus services available.
The ancestor would distribute secrets (usually keys) to the
offspring for purposes of
authentication. The server would verify client identity by
checking a supplied key.
Either this would be done by keys shared directly between client
and server, or by the
server consulting a trusted authentication service that stores
keys against identities. In
summary, given a service request by way of a client invocation of
an IR, the server
action would be to check client identity using a supplied key
and to check client
authority by reference to the ACL. In some cases, such as where
no ACL entry exists,
the server may need to check the identity and authority of any
delegator, and apply a
security policy partially based on delegation rights.

In an alternative model, the server would create a sealed and signed
certificate for
whatever it chooses to regard as a unit of security, and return
this with an IR. Each
transfer of the certificate, which would probably, though not necessarily, accompany
transfer of the IR, would similarly be signed. When the IR is
invoked, the certificate,
with any accumulated signatures, would be presented as an
authority to obtain
service. This certificate behaves like a capability created and
issued by the server but
with some essential differences: that, on presentation, the
server could check itself as
the originator; that, in the first instance, the certificate is
assigned to a specified
recipient; and that nested signatures can be used subsequently to
trace any transfers.
The server can check accumulated delegation information against a security
policy.

These models are not mutually exclusive. A certificate need not
originate from
the server, provided the server has the means to check the
authority of the originator
with an ACL entry. Where a certificate is transferred to a
recipient that has no ACL
entry, that delegation would have to be confirmed with a signed
transfer. Where a
certificate is transferred to a recipient known to have an ACL
entry, there would be
no need to authorise the delegation. In all circumstances, the
server controls access,
even though reference to higher authority may be needed to make a decision.

This paper will concentrate on the second of the above two models.
In effect, the
model allows ACL entries, which might otherwise be maintained by
the server, to
migrate through the distributed system. In other words, each
server issues identity-
based capabilities for services offered. This neatly reconciles
the capability versus
ACL controversy, with both being represented in the same
architecture. But it will be
argued that the capability view leads to favourable scaling
characteristics, and that the
server-based, rather than infrastructure-based view, produces
solutions more suited to
servers defending themselves in an ODP scenario.

Not all security concerns are addressed explicitly in this
paper, although the
suggested model would not preclude development of other services,
such as audit,
non-repudiation, etc. In particular, confidentiality can be
obtained through encryption
once keys are distributed. Denial of service is not addressed:
this being a particularly
difficult subject area for most security models. Recovery, either
from a breach of
security or network failure is not considered, although
decentralisation to servers
should lead to designs resilient to such events.

The next section compares and contrasts these models in greater
detail. Later
sections concentrate on the merits and effects of changing
emphasis to the server-
based view, and discuss implementation in some object-based
architectures, such as
ANSA [2, 4]. In the next section, we contrast the consequences of
viewing security
from each of the infrastructure and server perspectives. In a later
section, we show the
flexibility and ease with which each object controls its own
security policy. We then,
mainly as proof of concept, describe protocols which illustrate
how taking the server
view leads to a different style of implementation, and to
significant economies of
mechanism. The paper concludes with suggestions for further study.

4 Different Views of Security

In most traditional systems, service access is controlled by a
management authority
that applies a central security policy. An example might be a
certification authority
that hands out certificates to potential clients as permitted by
the policy. The service
provider is expected to supply service on presentation of a
valid certificate. For
example, in Kerberos [27], it is the Kerberos server that issues a
ticket for a client to
use a service, not the service provider itself. In traditional
capability-based systems,
such as in CAP and Hydra (see [18]), and to some extent in Flex
[30], a capability for
accessing an object is not issued by the object itself, but by a
separate authority, such
as the operating system. In such an infrastructure-based view of
security, service
access is granted when a certificate is created. Non-distributed
systems, and
homogeneous networks, were built on notions of central control
consistent with this
view, which still has strong influence in many frameworks (eg [7/8, 14]).

For systems co-operating within distributed federations, many
presumptions in
favour of centralisation have to be reversed. A server-based view
is needed, where a
service provider retains control of security policy and decides
whether to grant access

at the place and time of supply. The service may seek assistance
from other services
(eg authentication, authorisation). In turn, these services may
request assistance from
other services, such as to contact similar services in other security
domains.

The remainder of this section compares and contrasts the
infrastructure-based and
server-based views.

4.1 The Server-based View

In a typical object-based system, a server offers (or
advertises) its service through an
IR which is either returned as a result, or passed as a parameter
in some other service
invocation. In particular, an IR may be passed to a service
broker or trader [3]. A
potential client holding an IR, including a trader, may pass it to
other potential clients
for later dynamic binding to the server. IRs may pass along
chains of service until
finally invoked, thus leading to a return to the server. An IR
may be distributed
widely, and copied, including into different security domains.

This matches closely a model where, for some server chosen unit
of security, a
server issues a certificate, to a potential client, which is
delegated from client to client
until finally presented as a service request authority. It
behaves as a capability that
could be passed with an IR, except for the addition of some
semantics that would
allow the server to confirm source, content, and trace delegations.

The server can always decide whether to, and how to, respond to an
interface
invocation at the time of invocation. Assuming the server can
validate the service
chain to the final client, it can own and apply a security
policy. The server does not
have to make the decision completely unaided but may seek help
from authentication
and authorisation services. But always the server, and not some
infrastructure service,
is in control, and the server decides the assistance to seek and the
variations to apply.

Security requirements can be declared by the application designer
as part of the
computational object. This may take the form of attributes,
declared in an interface,
which cause invocation of further authorisation, authentication,
and policy services.
This is consistent with an object model that hides function and
data behind interfaces.
The decision coded into the server may be based on many criteria,
such as the time of
day, or the physical path of a service chain (assuming such data
can also be obtained
with validity guarantees). Special context dependent security
constraints, based on
object state, could be added explicitly. Alternatively, a null
security policy could be
declared which would imply no additional overhead.

This style of server-based model allows a high degree of autonomy
so that
servers may migrate, and servers may be imported into systems,
without concern
about, or the server having to conform to, an imposed security
infrastructure.

4.2 The Infrastructure-based View

Where security is assumed to be imposed by the infrastructure, a
client (including the
user) acquires rights by applying to an authority who decides,
based on some security
policy, whether to hand out certificates. Once rights are
assigned, the server is
expected to honour any service request for which a valid
authority is presented. In
this case, the certificate does not originate from the server,
but from an ancestor of, or
mentor of, the server. Certificates may be delegated, but, to
decide the validity of
delegation, the server must appeal to a higher authority for access
control arbitration.

This view becomes less reasonable as systems participate in
larger federations. In
particular, when systems are not controlled by a single
authority, but equal peers

co-operate, this view alone may not be implementable. There is
always likely to be a
fallback to a server-based view, even though the server in this
case may be of rather
macroscopic proportions, such as an entire homogeneous network.

4.3 Infrastructure and Server Views Compared and Contrasted

A chain of service is always cyclic. The loop may be viewed
either as starting from a
client and passing through a sequence of servers before returning
to the client, or as
starting from a server and passing through a sequence of
potential clients before
returning to the server. The difference of emphasis arises from
where the loop is
broken for purposes of system design. In both cases, the security manager
may decide
what goes into a policy server and how policy servers relate to one
another. Workable
solutions will emerge either way, but both views should be
considered. The
distinction is analogous to managing the economy: there is only
one economy, but for
different purposes it is convenient to view it from either the supply or
demand side.

An infrastructure-based solution leads to policies imposed on the
server through a
hierarchy of greater and greater authority. A server-based
solution leads to servers
submitting themselves to security policies by seeking advice and guidance
from wiser
and wiser mentors. It is analogous to a company attempting to
impose security
through management decree, but, in the limit, security will only
be achieved by
individuals choosing to submit to the policy. In devising
solutions, it is necessary to
recognise the power of the individual, or the server. Taking a
server-based view can
lead to solutions of greater simplicity, elegance and efficiency.

An important consequence of starting from a server view is that
access control is
applied by the supplier at the time and place of potential supply.
Starting from a client
view, with an ACL entry presumed to be extant in a policy server,
leads to access
being granted by management authority prior to request for
supply. Hence, choosing
where to break the service chain loop for purposes of design can
lead to different
solutions, with rather different characteristics. For example,
where a certificate is
granted by a certification authority, it is difficult (but not
impossible) to revoke or
vary its provisions while it is extant (see [8, 15] for various
solutions). It is easier to
see how to solve this problem where the server is always the focus
of control. In fact,
in the general case, other dynamic changes of security policy may
be permitted, since
policy is not applied until service is sought.

A further difference emerges when using the traditional access
matrix [16] to
examine the position. In the access matrix, a subject is an active entity accessing a
passive object4, such as a file. In an object-based model, the object is an active
interface with implied semantics. Problems arise when trying to
decide the subject.
Access rights represent the rights of a subject to invoke an object interface. From an
infrastructure-based view, the most appropriate choice of subject would appear to be
the activity extant on behalf of the user (ie, a user's
delegation) [17]. From a server-
based view, the subject is, or is chosen from, the chain of delegation; it is the security
policy encapsulated in the server that determines the subject. A subject may be one of
a number of clients, including end users, or many clients in
association, where each
object is also a possible subject. This view fits better with object-based architectures.

4 Subject and object in italics are used in their historical context of the access
matrix, as per
the reference. Object should not be confused with object as in object-based technologies.

5 Implementation from the Server Perspective

This section discusses some system design issues that arise when
taking a server-
based view of security. In particular, it discusses how a
server-based implementation
could be realised in object-based architectures evolving in a
direction consistent with
this paper, ANSA [2, 4] being one example. Protocols are described later.

5.1 Service Traders - Offers and Inquiries

A creator of a server will hold an IR to at least one server
interface. The precise
engineering for this is not of concern to this paper. The creator
will also be returned
an access certificate (AC) to authorise access to a service
represented by the IR. This
AC need not necessarily authorise the creator, but may authorise
a client for whom
the creator is acting. When the IR is invoked, other IRs and ACs
may be returned to
authorise access to other clients, probably for different
services. To do this, the server
may well act as a client, seeking guidance from other servers.
Servers may register
IRs and ACs with, and advertise through, a trader, which may,
such as in ANSA [3],
allow federation over multiple domains. A trader acts as a broker
between service
offers and inquiries. The trader itself is a server, and will
have issued IRs to allow
invocation of its trading services.

5.2 Propagation of Service Offers

From a server-based view, all service offers start from, and end
at, a server. For the
moment, ignore issues of object birth and object death, and
assume that a client has
requested a service (for which it must have an IR to invoke and an
AC to present).
The server wishes to create and return an IR, and an AC, as part of its
response.

An AC associated with a returned IR authorises service to a client
whose identity
may not be that of the immediately invoking client. In this
context, an identity is a
name for an authentication key that may be retrieved by an
authentication service
(if not the client itself) when the IR is invoked.

The server associates with the AC a particular security policy to
apply when the
IR is invoked. This is done by embedding a policy identifier in
the AC. Associated
with this identifier will be a private policy key stored by the
server. The server then
computes a cryptographic seal of the AC with the key and returns
the AC together
with the seal. In effect, what is returned is a ticket that allows a
request to be made for
access to the interface, but which does not guarantee access. The
ticket indicates an
assignee, associates its issue with any special restrictions (ie
policy), and is sealed in
an unforgeable way with the private policy key of the server.

The client to whom the AC is issued can present it when requesting
service. The
client can also propagate it to another potential client by adding a
signature of transfer
(signed with its private key). A transferred AC can be
transferred further; each
transfer being very specific about the identity of the intended
recipient. This creates a
chain of delegation that can be traced and checked on IR
invocation. It does not
matter what route a transfer takes to reach a final client. An
intermediate object
through which an AC passes will only be of interest if that
object could have had
authority to invoke the IR with a traceable AC delegation. To
delegate authority, a
delegator must add a signature, otherwise the AC would be
unusable by any further
recipients. Possible protocols, and a format for the signature of
transfer, are given in a
later protocol section.

It would be possible to embed rights (such as access or transfer
rights) in an AC
in a more specific way than the server identifying a policy to
apply on IR invocation.
As suggested in [9, 26], it would then be possible for delegators
of an AC to restrict
or amplify rights. This may have merit in multi-level access
control, where a
delegator could request that a delegatee have a specific
clearance before being
granted access. However, when taking a strict server-based view,
it may be better to
maintain policy entirely within the server. The server is the
final arbiter of policy, so
any restrictions placed on route could only be advisory. The issue is open
to debate.

5.3 A Mechanism for Transferring Authority

The integrity of a transfer of authority can be guaranteed with
well-known techniques
to sign and/or seal information using cryptographic methods, such as
encryption (both
conventional and public-key) and one-way (hash) functions [29].
The communicating
objects may use a third party authentication service to arrange key
sharing [21].

A basic sign and seal mechanism can be used to underpin all transfer
of authority.
It can be illustrated with a pseudo-random function f with the
property that given f
and f(m) it is computationally not feasible to compute m [23]. Thus, given a family of
such functions fk, indexed by key k from a key space, two parties who share k can
authenticate to each other the origin and integrity of m by
supplying m and fk(m) as a
signature. A pseudo-random function can be approximated with a
one-way hash
function H, or an encryption E. The signature is H(k, m), or Ek(m) (m encrypted with
key k). Sometimes, Ek(H(m)) may suffice. Note that a pair of (m, H(k, m)) is self-
identifying in that a server who knows k can verify the signature.
To show that a
signature is recent (ie that it is fresh), m could include a
time-stamp or a nonce [10].
Also, if m has traversed a chain of services, the identities of
the services on the chain
can be appended to m, and signing done, by nesting several
applications of f. For
example, a signature signed with key k1, and then signed with k2, looks like:

(id2, id1, m, H(k1, id1, m), H(k2, id2, id1, m, H(k1, id1, m))).
The protocols are described later in more detail.

A special case arises when a source and destination coincide.
This happens when
an AC created by a server migrates through a chain of service,
eventually to be
presented as an authority for service. The same pattern of sign
and seal above applies,
except in this case the key is private to the server. This is
significant, because the
original key used to create the AC (k1 in the above example)
need never be
distributed outside the server. Thus, there is much less risk of
disclosure. This is a
cyclic version of cascaded authentication as discussed in [26].
This case merits
special attention, because it is the normal case in a
server-based view of security. It is
also the most secure since it does not rely on a shared secret,
only a private secret5.
Each object maintains its own secrets and should one be
compromised there should
be no direct effect on any other. There should only ever be a need
for a server to
authenticate a chain of service that it originates.

5.4 Handling Service Requests

When an AC is presented on an IR invocation, the server validates
the signatures and
decides how to respond according to a policy. If the server knows
the private keys of
the transfer signatures - for example when the signatures are
signed with a public-key

5 "Three may keep a secret if two of them are dead". Benjamin Franklin
(1706-1790)

system, and the public keys are stored in a public place - the
server retrieves the
appropriate keys and re-computes the seal to validate the chain
of signatures. In some
cases, an authentication service may be consulted. For example,
when using a
pseudo-random function with a private key, the signature of a
client may be known
only to an authentication service and not to other objects.
Presenting the AC to the
authentication server for validation is itself a delegation of an
AC using the same sign
and seal mechanism. Finally, the server validates the request
using its own service
specific private key originally used to create the AC.

If the validation is successful, the server knows the chain of
delegation from the
client identities embedded in the AC. It may now apply a security
policy based, in
part, on the policy identifier originally embedded in the AC. The
policy can easily be
server specific, since each server has final responsibility for
security in its own
domain. Moreover, there may be further levels of control imposed
by the server,
based on context dependent criteria, which may be special to an
application, and not
necessarily included in a general model. For example, there may be
access policies
which depend on time of day, or relationships between service
requests and their
originators.

Although a simple single chain of delegation has been
illustrated, it is possible
for multiple chains to be created, since any object may transfer
authority to multiple
destinations, and may do so with many chains concurrent. A chain
of delegation is
therefore not a simple linear structure but a hierarchy, with any
object possessing
authority being able to behave as a node in the hierarchy.

Assuming domain managers have exchanged keys, so that their
authentication
services may co-operate, trusted gateways may be created to allow security domains
to integrate. When an authentication server is presented with a
number of identities
and a nested seal for verification, the authentication server may
not hold all the
necessary signatures or keys, in which case assistance from
other authentication
services may be needed. This process takes exactly the same
pattern as any other
requests to an authentication service. Authentication servers may
be equal peers in a
federated world. A request from one authentication service to
another will appear the
same as any other client-server request. Authentication may
recurse through a chain
of authentication servers, and through a number of security domains.

5.5 Revocation of Transferred Authority

By using an AC to invoke a revocation operation of a server
interface, a client within
a chain of transfers can request the server to revoke its
subsequent transfers of the
AC. A server (or its agent) would remember node points where a
limb of the transfer
hierarchy tree has to be severed. Since signatures are self
identifying, the full path of
an AC is known when it finally arrives. Given a request from any
client in the path,
the server, as the arbiter of policy, can agree (or indeed refuse) to
deny access.

Revocation has been difficult in infrastructure-based models,
especially if service
is apparently guaranteed when a certificate is issued [15]. A
server-based model
supports revocation well, since access is granted at the point
and time of service
supply. As a result, refreshing the security policy cache (eg
[8]) is not difficult.
Revocation while a server is in process of supplying service (ie
immediate
revocation) is also possible. The implications of this on other
aspects of an ODP
model (outside a security context) would need to be
considered, although it is
unlikely to be worse than an apparently uncontrolled death of a server.

Compared with an ACL model or a capability model, a signed AC may be
thought of either as an ACL entry that is allowed to migrate, or
as a capability that
embeds an identity. For distributed systems, this is an advance
on both older models,
since allowing an access list entry to migrate solves a
significant scaling problem. A
transfer of authority can happen without immediate reference to
the server, since a
security policy is applied only when a service is invoked. Also,
all necessary
authentication can be done at one time; again when the service is
invoked. Use of
identity-based capabilities (suggested in the ICAP architecture
[9]) is useful for
purposes of controlling the transfer and revocation of privilege
because the chain of
identities reveals the chain of delegation.

6 Control of Security Policy

The unit of security policy represented by an AC is chosen by the
server when the AC
is created. When the AC is presented (when an IR is invoked to
cause a return to the
server) a chain of delegation becomes available. This allows a range of
policies:

• allow access always. This would apply to a service truly open to
anyone. A
trading service is an obvious case.
Policy: open access; trust everyone.

• allow access only to the client to whom the AC was originally
granted. In this
case no delegation would be permitted by the client first specified.
Policy: trust only those specifically designated.

• allow access only if all clients in a chain of delegation are
authentic.
Policy: trust others trusted by those you trust.

• allow access only if the final client in a chain of delegation
is authentic,
regardless of the authenticity of any other clients in the chain.
Policy: trust anyone you know to be trustworthy, regardless of his sources.

• allow access only if clients in a chain of delegation are from
some pre-defined
set of the local security domain.
Policy: trust a known trustworthy group, but avoid external threats.

• allow access only if clients in a chain of delegation are from
some pre-defined
set, where this set could include clients from other security domains.
Policy: trust a known trustworthy group, and allow external threats.

Servers can apply a range of possible discretionary to mandatory
policies against
separately chosen units of security policy. The rules are, in
effect, built into the
server, although, as has been emphasised before, servers may call
upon other servers
to obtain them. Furthermore, these other servers comply with the
same model, and set
their own security policies. Hence, policy rules need not be
static data structures, but
can be modified dynamically. Other criteria might also apply,
including application
specific criteria.

In a server-based view, the society of servers as a whole has a
characteristic
behaviour that might be thought of as a system policy. For a
system design, the
default case may be to construct all servers to redirect access
checks to other policy
servers. Furthermore, the default may be to make this transparent
to the application
designer, who may relax this security transparency selectively.
Thus, system policy is
pervasive in the design structure, rather than being imposed through an
infrastructure.

6.1 Locality of Control and Encapsulation of Security Policy

If an object interface is rigorously defined, then, subject to
acceptable levels of
reliability and efficiency, one is concerned with what functions
the object performs,
not with how it performs them. Similarly, subject to an audit of
the object and its
invoked security services, a client should be concerned with what
security policy an
object offers; not with how it offers it. Therefore, a
server-based view of security is
consistent with an object model that hides function and data
behind interfaces. This
leads to the following principle of locality of control of authority.

In an object-based model a principle of encapsulation applies
whereby an object
always controls its own destiny [2, 4, 25]. This may be loosely
translated as: you
don't manage objects; objects manage themselves. In the context of security, this
would become a principle of locality (of control) of
authority, whereby an object
always controls transfer of authority across its encapsulation boundary. The object,
acting as a server, decides when to create and pass an AC and, in
doing so, decides
when to pass a service authority to a potential client. It also
decides when to accept an
authority as a legitimate request for service and what policy
rules to apply. The
principle of locality of authority puts the server in control of
creating tokens of
authority, checking legitimacy of access to its services, and of
maintaining its own
security policy, although it is not obliged to do these entirely
unaided. This principle
of control of flow of authority out of and into an encapsulation
boundary was
proposed in [20], although there it was set in the context of a
traditional non-object-
based database model.

When an object is created it is formed from a template. An
instantiation interface
is invoked to fill in initial values from given parameters. At
this point, a shared key
for mutual authentication with the parent is passed to the child,
and this, effectively,
establishes the server's separate identity. An identity name may
be created, but this
only indicates an authentication key to retrieve.

It is possible for an object to be created such that it would
only ever allow access
to a pre-designated client (which need not necessarily be its
parent). This implies a
security policy defined when the system is conceived, with no
provision for any
subsequent discretionary delegation; hence, this implies a
mandatory security policy.
At the other extreme, possession of an AC could always imply a
right to delegate.
This is a fully discretionary situation.

There is a midway position where delegation of the AC may not be
allowed, but
where the server could interpret it as right for the client to be
returned a different AC,
to a different unit of security policy. This implies a limited
discretionary policy6. It
could be used to apply different security policies to different
classes of service, such
as where management facilities control access to basic service facilities.

Finally, a server could choose to control access to a number of
services, and
apply a range of policies to them. Mandatory policies could apply
in some cases;
fully discretionary in others. A possible application is to make
management services
mandatory but basic services discretionary. It is unlikely that
such full generality
would be contemplated in any system design, but this is not precluded.

6 Other models with similar objectives (eg [28]) have called this
an extended discretionary
policy, but this seems to be a misnomer. An in-between position seems
either to be a relaxed
mandatory policy, or a restricted discretionary one.

6.2 The Role of User

The human user is assigned an initial responder object in the
system. This object,
when created, has a human identity embodied in it (through a
password key in this
case), and it is built to reflect the security policy the human
wishes to apply. In effect,
the object is a system clone of the user. Thus, the server-based
model accords well
with ordinary human society, where each individual is responsible
for setting and
enforcing his/her own security policy.

The issue is illustrated well in a (most interesting) study by
Abadi et al [1], which
considers what characteristics a smart card must have for a human
possessing the
card to authenticate mutually with a system, and then further be
able to delegate
privilege. It transpires that complete integration of the human
would imply a smart
card with functionality equivalent to an object that is fully
part of the distributed
system. For reverse authentication - that is, for the human to
authenticate the system -
the human (smart card) would need to issue the equivalent of
ACs to the system. The
study [1] also suggests how various limited forms of smart card
could be used to
advantage. Without such a card one is limited to a user object
in the system
conducting some form of password authentication protocol with the
user, together
with its contingent problems.

7 Protocols

This section presents some example protocols that embody the principles
discussed in
the previous sections. It focuses on the benefits of viewing AC
authorisation from a
server-based perspective. Also, at various times, usually when a
service in invoked,
there is a need to authenticate a chain of authority. A cascaded
authentication
protocol can be used for this purpose with the two significant
advantages: that a
whole chain can be presented to an authentication service in a
single package; and
that authorisation and authentication protocols can be
integrated to achieve a
significant economy of mechanism. An initial analysis of the
protocols with the
BAN/GNY logics [5, 11] shows that the protocols meet their goals.

7.1 Authentication

It is easier to show the cascaded authentication protocol first
from a client point of
view, since this is consistent with how most other papers present
the subject. Later
discussion will show how the protocol can be used by a server to
authenticate a chain
of delegation that it initiates, and finally satisfies. In both
cases there is a loop back to
the originator. Suppose a client C invokes servers S1, S2, etc, then the
loop is:
C⇒S1⇒S2⇒S3⇒S→S3→S2→S1→C, where ⇒ is invokes, and → is responds to.
From the view of a server S delegating to clients C1, C2, etc, the loop
would be:
S≡C1≡C2≡C3⇒S, where ≡ implies delegates to, and ⇒ again implies invokes.

Figure 1 presents a cascaded invocation example, in which client
U invokes
server C, which in turn invokes server S. The following is a generalised and modified
version of the Otway-Rees protocol [22]. In all protocols
presented here, H(I, J)
indicates a one-way hash function (OWHF) as discussed earlier, where (I, J)
represents a concatenation of all arguments. K is an
authentication (strictly a
validation) server; Uk is U's key known to U and K, and Un is a
nonce chosen by U.
The steps of the authentication protocol are:

Uk Ck Sk
K

Uk
U
Un

Ck
C
Cn

Sk
S
Sn

1 2

6 5

4

3

Fig 1. Asymmetric cascaded authentication

1. U → C : U, H(Uk, C), Un
2. C → S : U, C, H(Ck, S, U, H(Uk, C), Un), Un, Cn
3. S → K : U, C, S, H(Sk, K, U, C, H(Ck, S, U, H(Uk, C), Un), Un,
Cn), Un, Cn, Sn
4. K → S : H(Sk, Sn, U), H(Ck, Cn, U), H(Uk, Un, C)
5. S → C : H(Ck, Cn, U), H(Uk, Un, C)
6. C → U : H(Uk, Un, C)

In this protocol C and S act as carriers between U and K. At step
2, K validates that
the message could only have come jointly from both U and C, since
only U could
create H(Uk, C), and only C could nest it in H(Ck, S, U,
H(Uk, C), Un). Similar logic
can be applied to step 3. At step 6, the message to U still
validates that C must have
been the original recipient of the message at step 1 since, after
being satisfied about
C's identity, only K could have inserted C's identity and U's nonce in
H(Uk, Un, C).

There are two practical differences between this and the
Otway-Rees protocol.
First, this protocol uses OWHFs rather than encryption. Second, U's message to K is
nested in C's message to K. In the Otway-Rees protocol a common challenge was
used to tie the two participants' messages together for presentation to K.

It is possible that nesting could introduce a weakness with reversible encryption
when there is predictability in the input data (such as with English
text). Many uses of
the same encryption function might help a dictionary attack. This
is not a serious
concern with OWHFs. A cryptographic signature could originate from an infinity of
possible sources, so finding the exact inverse is difficult. On
the other hand, since an
infinity of possible sources could generate the same signature, a
valid seal does not
100% guarantee the originality of the attached message. But given
a sufficiently large
signature field, the chance of erroneous validation would be small.
The precise size of
field to choose is a subject of much further debate, and maybe
further research, in
information theory [eg 23]. A 128 bit cryptographic signature is
generally thought to
be sufficient for most practical purposes.

The protocol of Otway-Rees introduced an asymmetry from earlier
protocols to
reduce the total number of messages sent7, and the cascaded version presented here
has similar merit. The introduction of nesting, to replace the common challenge,
allows the protocol to be cascaded easily, as suggested in [26],
and, as will be shown,
leads to an economy of mechanism when overlaid with the delegation proposal.

7 For an example, compare the Otway-Rees [21] with the Needham-Schroeder
protocol [22].

7.2 Delegation

This sub-section presents a server-based view of delegation. An
AC originated by a
server is signed and sealed by passing it through a OWHF. At each stage, a signature
may be added, and the package sealed, by nesting again through a OWHF.

Ak
A
An

Bk
B
Bn

Ck
C
Cn

Xk
X
Xn

Sp(P)
S

Sn

0

5

43

2

1

Fig 2: Transfer of authority

Figure 2 shows a server S creating an AC to return to X. The
chosen unit of security
policy P of S is indicated by a private key Sp. If X is providing
some service to A, X
may request that A's identity be embedded in the AC. The signed
and sealed AC
would then take the form P, H(Sp, A).

This AC is now transferred from A to B to C through a chain of
delegation for
final presentation by S. At each step a signature is formed by
taking the accumulated
data, adding a client authentication key, passing this through a OWHF to produce a
cryptographic seal, and then adding this seal and the clear-text
client identity to the
accumulated data before sending. In full, the steps are:

1. S → X : A, P, H(Sp, A)
2. X → A : A, P, H(Sp, A)
3. A → B : B, A, P, H(Sp, A), H(Ak, B, P, H(Sp, A))
4. B → C : C, B, A, P, H(Sp, A), H(Bk, C, H(Ak, B, P, H(Sp, A)))
5. C → S : S, C, B, A, P, H(Sp, A), H(Ck, S, H(Bk, C, H(Ak, B, P, H(Sp,
A))))

When the AC, with all attached signatures, finally returns to S,
S can present the
whole package for authentication to a server, K. K uses the
clear-text client identities
to retrieve its copies of the relevant shared keys. A transfer
from S to K, and possibly
from K to K' to check signatures from another domain, uses the
same sign and seal
protocol, with signatures of S and K added at the relevant steps.

7.3 Combining Authentication and Delegation

It may be observed that the mechanisms for authentication and
delegation are very
similar, and may be integrated. To overlay the cascaded
authentication protocol, only
a nonce need be added at each delegation step. For example, where
{.} is the
sequence representing the original AC (given in full in step 1;
abbreviated in step 2)
the original delegation from S to X, and then to A, would take the form:

1. S → X : S, {A, P, H(Sp, A)}, H(Sk, X, {A, P, H(Sp, A)}), Sn
2. X → A : S, X, {.}, H(Xk, A, S, H(Sk, X, {.}), Sn), Sn, Xn

A basic transfer of an AC then takes the form:
Source id, Destination id, Data, H(Source key, Destination id, Data), nonce

where Data includes the original P, H(Sp, A).
A delegator of an AC must identify its target client (or
possibly client group).

When the service is finally invoked, the server must be able to
authenticate the chain
of delegation, from itself, back to itself, and thereby have the
identities of potential
clients for applying a security policy. It is this control of
export and import of
authority out of and into a server that is significant in considering the design from the
server perspective. However, as was pointed out very early in
this paper, it is possible
to integrate this with an ACL-based scheme, where a signature may
not necessarily
be needed at every step. Also, for particular system designs,
security policies could be
fixed so that the full delegation generality might not always be needed.

8 Key Management

To complete the picture, this section offers a brief discussion of
two issues in key
distribution. The first is distribution of a new key to be used
by an object A, and
known only to A and the authentication server K. The second is
distribution by K of a
conversation key to be used by objects A and B. Both are based
on use of the
exclusive or (⊕) operation.

The protocol for distribution of a new key to A is based on a
master key Am that
is used only for this purpose. The new key is denoted by Ak. Kt,
Kn, and An are
nonces. The protocol is as follows:

1. A → K : An
2. K → A : Kt, Ak⊕H(Am, An, Kt), H(Ak, Kt), Kn
3. A → K : H(Ak, Kn)
4. K → A : H(Ak, An)

In step 2, K generates a new key Ak and uses the master key Am to
pass it to A.
Since A knows Am and An, and is given Kt, A can generate x = H(Am, An, Kt) and
use this to recover Ak from x ⊕ (Ak ⊕ H(Am, An, Kt)). A then uses H(Ak, Kt) to
check that the message had not been intercepted, the components
split, and an invalid
(spoof) field substituted for Ak ⊕ H(Am, Kt); that is, to check that Ak was the key
that K had intended to send. The nonce An protects against replay of a
message 2.

The nonce Kt serves two purposes. First, without Kt the message
would read
Ak ⊕ H(Am), and since H(Am) could be used to recover later keys,
discovering
H(Am) would be just as useful as discovering Am. Discovering
H(Am, Kt) is not so
useful, since a different Kt each time makes H(Am, Kt) a once only value.

Second, Kt ties the message components together to protect
against them being
separated and substituted during transmission. This works the
same way as the
common challenge in the Otway-Rees protocol introduced in §7.1. Here, however,
nesting components is not an alternative.

If Am is discovered, any keys distributed using Am are also
potentially
compromised. However, just knowing Am does not compromise other
keys; Am has
to be used in conjunction with recorded protocols. Conversely,
if any Ak, or any
sequence Ak1, Ak2, Ak3, etc, is discovered, this cannot
compromise Am. This would
only allow recovery of H(Am, Kt), rather than Am, which is of
limited concern
because of the once only use of Kt.

Strictly, message 1 is all that is necessary to distribute the
new key. The two

further messages, 2 and 3, provide some confirmation of receipt.
They protect against
earlier messages not having reached their destinations. Both A
and K would have to
use an earlier sub-key until each knows that they both have the new key.

The protocol is necessary and sufficient for the purpose
described, although it is
of interest to observe that it is not complete. A does not know
what K knows about
A's state of knowledge; that is, {A does not know that {K knows
that {A knows that
{K knows the new key}}}}. A complete state of common knowledge
(requiring an
infinity of acknowledge responses) is unattainable [see 12].

Slight protocol variations are possible. For example, if, before
being prepared to
use the new key, K and A insisted on receipt of messages 2 and 3,
the component
H(Ak, Kt) of message 1 could be omitted. Its function
concerning validation of Ak
would be inherent in the subsequent messages.

Most authentication protocols demonstrate how a key distribution
server
distributes a session key for use between two communicating
objects. Although this
is not strictly needed in the model outlined in the paper, it can
be a basis for support
of confidentiality. It is presented here using a OWHF [10]. Here Ks is the session or
conversation key:

1. A → B : A, H(Ak, B), An
2. B → K : A, B, H(Bk, K, A, H(Ak, B), An), An, Bn
3. K → B : H(Bk, A, Bn)⊕Ks, H(Bk, A, Bn, Ks), H(Ak, B, An)⊕Ks, H(Ak, B, An, Ks)
4. B → A : H(Ak, B, An)⊕Ks, H(Ak, B, An, Ks)

After message 2, it is only K that can check the OWHF, since only K knows both Ak
and Bk. The order of nesting specifies that it must have come by
way of A to B to K.
K now has to send a session key Ks back to A and B. The keys Ak and Bk
ensure that
the messages in 3 could only have been generated by K. The
nonces An and Bn
ensure no replay of earlier messages. Also, only A and B,
respectively, could encode
H(Ak, B, An) and H(Bk, A, Bm) to find Ks. H(Ak, B, An, Ks)
and H(Bk, A, Bn, Ks)
can then be checked by A and B to ensure that the messages were
not interfered with,
and that a valid Ks was recovered. Only A and B could recover the
same Ks, so both
are happy that they have a common session key. A further message
would be needed
if B wished to know that A really has received Ks, but this is a
trivial addition using
Ks under H: for example H(Ks, B).

Various protocols are possible, offering different
characteristics, with either A or
K initiating a sequence. Efficiencies may be achieved with
protocol components used
in parallel, even though needing more of them. Also there may be
variations in the
knowledge states of the communicating objects on protocol completion.

9 Conclusions

As ODP begins to emerge, this paper suggests that it may be more appropriate to
consider security from the perspective of the server, rather than
the infrastructure, as
has been traditional. Although both aim at the same ultimate
goal, taking a server-
based view of the issues could lead to more appropriate system design
solutions.

An ODP environment consists of physically separated systems,
integrated into
heterogeneous networks of any scale. In such an environment, the
focus must be on
the server defending itself against outside abuse, while still
being prepared to trade
services with other systems. Furthermore, as scale increases, it
becomes essential for
clients to locate and bind dynamically with outside services.
Systems will wish to

co-operate, yet remain autonomous, and subscribe to different
security policy
regimes. Looking at the problem from the service supply side,
rather than the more
traditional user demand side, suggests how possible solutions
might evolve. This
suggests prospects of dynamically variable security policies based
on local and fine
grain data relationships and semantics. It suggests scope for
local policy enforcement
and easy immediate revocation of privilege.

This paper also discusses how a server-based view could be
implemented in an
object-based architecture, such as ANSA [2, 4]. There is scope for
further study in
this area, particularly in the design of cryptographic algorithms,
key management,
and protocols based on a simple use of cryptographic seals and
signatures, rather than
reversible encryption. Such protocols are of interest where legal
restrictions would
prevent full encryption of data messages. They are of particular
merit where a cycle
allows a protocol based on private, rather than shared keys.
Identity-based crypto-
systems [24], and subliminal channels, could also be explored in
the context of this
paper. These offer the means to engineer signature schemes based
purely on identity
information without shared keys.

Acknowledgements

The research project at MIT was supported by The Defense
Advanced Research
Projects Agency (DARPA) through NASA Grant NAG 2-582 and through DARPA
contract number DABT63-92-C-0002. APM is financially supported by
all sponsors
of ANSA, who also provide a valuable forum for technical debate.

References

1. M. Abadi, M. Burrows, C. Kaufman, and B. Lampson
Authentication and Delegation with Smart-Cards
DEC Systems Research Center, Report No.67, Oct 1990.

2. Architecture Projects Management Ltd (ANSA)
The Application Programmers' Introduction to the Architecture
Technical Reports TR 017.00, 1991.

3. R.J. van der Linden and J. Sventek
The ANSA Trading Service
IEEE Distributed Processing Committee Newsletter, Vol. 13, No. 4, 1991.

4. J.A. Bull
Object Request Broker
RFP Response OMG: 91.1.2, to the Object Management Group.
Architecture Projects Management Ltd, CO.059.00, 08 Jan 1991.

5. M. Burrows, M. Abadi, R.M. Needham
A Logic for Authentication
ACM Trans. on Computer Systems, Vol.8, No.1, Feb 1990, pp.18-36.

6. ECMA Security in Open Systems: A Security Framework.
ECMA TR 46, Jul 1988.

7. ECMA Security in Open Systems: Data Elements and Service Definitions
ECMA TR 138, Dec 1989.

8. M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson
The Digital Distributed System Security Architecture
Proc. of the 12th National Computer Security Conference
NIST/NCSC, Oct 1989, pages 305-319.

9. L. Gong
A Secure Identity-Based Capability System
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, May 1989, pp 56-63

10. L. Gong
Using One-Way Functions for Authentication
ACM Computer Comms Review, Vol.19, No.5, Oct 1989, pp.8-11.

11. L. Gong, R. Needham, and R. Yahalom
Reasoning about Belief in Cryptographic Protocols
Proc. of the IEEE 1990 Symp. on Security and Privacy
Oakland, California, May 1990, pp.234-248.

12. J.Y. Halpern and Y. Moses
Knowledge and Common Knowledge in a Distributed Environment
Proc. of the 3rd ACM Symp. on Principles of Distributed Computing
Vancouver, British Columbia, Aug 1984, pp.50-61.

13. ISO ODP Basic Reference Model of Open Distributed Processing
Part 2: Descriptive Model
ISO/IEC JTC1/SC21/WG7 N315, Mar 1991 (and later revisions) and
ISO/IEC JTC1/SC21 N6079 (draft), May 1991 (and later revisions)
Part 3: Prescriptive Model
ISO/IEC JTC1/SC21 N6080 (draft). May 1991 (and later revisions).

14. Working draft Security Frameworks Overview
ISO/IEC JTC1/SC21 N6166 and N6080, Jul 1991.

15. P.A. Karger
New Methods for Immediate Revocation
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, May 1989, pp.48-55.

16. B.W. Lampson
Protection
Proc. of the 5th Princeton Symp. on Info. Sciences and Systems, March, 1971.
Reprinted in ACM Operating. Systems Review, Vol.8, No.1, Jan 1974, pp.18-24.

17. B. Lampson, M. Abadi, M. Burrows, and E. Wobber
Authentication in Distributed Systems: Theory and Practice
Proc. of the 13th ACM Symp. on Operating Systems Principles, Oct 1991
Publ. as ACM Op. Systems Review, Vol 25, No.5, pp.165-182.
Also as, DEC Systems Research Center, Report No.83, Feb 1992.

18. H.M. Levy
Capability-Based Computer Systems
Digital Press, 1984.

19. R.C. Merkle
Protocols for Public Key Crypto-systems
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, May 1980, pp.122-134.

20. N.H. Minsky
Selective and Locally Controlled Transport of Privilege
ACM Trans on Prog Langs and Systs, Vol.6, No.4, Oct 1984, pp.573-602.

21. R.M. Needham and M.D. Schroeder
Using Encryption for Authentication in Large Networks of Computers
Communications of the ACM, Vol.21, No.12, Dec 1978, pp.993-999.

22. D.J. Otway and O. Rees
Efficient and Timely Mutual Authentication
ACM Op. System Review. Vol.21, No.1, Jan 1987, pp.8-10.

23. R.L. Rivest
Cryptography
In J. van Leeuwen, editor: Handbook of Theoretical Computer Science
Volume A, Algorithms and Complexity, chapter 13, pages 717-755.
Elsevier Science Publishers B. V., 1990.

24. A. Shamir
Identity Based Crypto-systems and Signature Schemes
Proc. of Crypto'84, Aug 1984, pp.47-53.

25. A. Snyder
Inheritance and the Development of Encapsulated Software Components
In B. Shriver and P. Wegner ed.:
Research Directions in Object-Oriented Programming
MIT Press, 1987, pp.165-188.

26. K. Sollins
Cascaded Authentication
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, Apr 1988, pp.156-163.

27. J.G. Steiner, C. Neuman, and J.I. Schiller
Kerberos: An Authentication Service for Open Network Systems
Proc. of the USENIX Winter Conference, Feb 1988, pp.191-202.

28. S.T. Vintner
Extended Discretionary Access Controls
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, Apr 1988, pp.39-49.

29. V.L. Vodyock and S.T. Kent
Security Mechanisms in High-Level Network Protocols
ACM Computing Surveys, Vol.15, No.2, Jun 1983, pp.135-171.

30. S. Wiseman
A Secure Capability Computer System
Proc. of the IEEE Symp. on Security and Privacy
Oakland, California, Apr 1986, pp.86-94.

