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Abstract. In this paper, we consider a recently introduced framework
that investigates physically observable implementations from a theoret-
ical point of view. The model allows quantifying the effect of practically
relevant leakage functions with a combination of security and information
theoretic metrics. More specifically, we apply our evaluation methodology
to an exemplary block cipher. We first consider a Hamming weight leak-
age function and evaluate the efficiency of two commonly investigated
countermeasures, namely noise addition and masking. Then, we show
that the proposed methodology allows capturing certain non-trivial in-
tuitions, e.g. about the respective effectiveness of these countermeasures.
Finally, we justify the need of combined metrics for the evaluation, com-
parison and understanding of side-channel attacks.

1 Introduction

In [14], a formal practice-oriented model for the analysis of cryptographic prim-
itives against side-channel attacks was introduced as a specialization of Micali
and Reyzin’s “physically observable cryptography” paradigm [8]. The model is
based on an theoretical framework in which the effect of practically relevant
leakage functions is evaluated with a combination of security and information
theoretic measurements. A central objective of the model was to provide a fair
evaluation methodology for side-channel attacks. This objective is motivated by
the fact that side-channel attacks may take advantage of different statistical tools
(e.g. difference of means [5], correlation [2], Bayesian classification [1], stochastic
models [13]) and are therefore not straightforward to compare. Additionally to
the comparisons of side-channel attacks, a more theoretical goal was the under-
standing of the underlying mechanisms of physically observable cryptography.

Specifically, [14] suggests to combine the average success rate of a (well spec-
ified) adversary with some information theoretic metrics in order to capture
the intuition summarized in Figure 1. Namely, an information theoretic met-
ric should measure the average amount of information that is available in some
physical observations while a security metric measures how efficiently an actual
adversary can turn this information into a successful key recovery.
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Fig. 1. Summary of side-channel evaluation criteria

In this paper, we consequently study the relevance of the suggested method-
ology, by the analysis of a practical case. For this purpose, we investigate an
exemplary block cipher and consider a Hamming weight leakage function in dif-
ferent attack scenarios. First, we consider an unprotected implementation and
evaluate the information leakages resulting from various number of Hamming
weight queries. We discuss how actual block cipher components compare to ran-
dom oracles with respect to side-channel leakages. Then, we evaluate the secu-
rity of two commonly admitted countermeasures against side-channel attacks,
i.e. noise addition and masking. Through these experiments, we show that the
proposed evaluation criteria allows capturing certain non-trivial intuitions about
the respective effectiveness of these countermeasures. Finally, we provide some
experimental validations of our analysis and discuss the advantages of our com-
bination of metrics with respect to other evaluation techniques.

Importantly, in our theoretical framework, side-channel analysis can be viewed
as a classification problem. Our results consequently tend to estimate the secu-
rity limits of side-channel adversaries with two respects. First, because of our
information theoretic approach, we aim to evaluate precisely the average amount
of information that is available in some physical observations. Second, because
we consider (one of) the most efficient classification test(s), namely Bayesian
classification, it is expected that the computed success rates also correspond to
the best possible adversarial strategy. However, we mention that the best eval-
uation and comparison metrics to use in the context of side-channel attacks are
still under discussion. Our results intend to show that both are useful, but other
similar metrics should still be investigated and compared.

2 Model Specifications

In general, the model of computation we consider in this paper is the one ini-
tially presented in [8] with the specializations introduced in [14]. In this section,
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we first describe our target block cipher implementation. Then, we specify the
leakage function, the adversarial context and adversarial strategy that we con-
sider in this work. Finally, we provide the definitions of our security and infor-
mation theoretic metrics for the evaluation of the attacks in the next sections.
Both the adversarial classifications and the metrics were introduced and detailed
in [14].

2.1 Target Implementation

Our target block cipher implementation is represented in Figure 2. For conve-
nience, we only represent the combination of a bitwise key addition and a layer
of substitution boxes. We make a distinction between a single block and a mul-
tiple block implementation. This difference refers to the way the key guess is
performed by the adversary. In a single block implementation (e.g. typically, an
8-bit processor), the adversary is able to guess (and therefore exploit) all the
bits in the implementation. In a multiple block implementation (e.g. typically, a
hardware implementation with data processed in parallel), the adversary is only
able to guess the bits at the output of one block of the target design. That is, the
other blocks are producing what is frequently referred to as algorithmic noise.
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Fig. 2. Single block and multiple block cipher implementation

2.2 Leakage Function

Our results consider the example of a Hamming weight leakage function. Specif-
ically, we assume a side-channel adversary that is provided with the (possi-
bly noisy) Hamming weight leakages of the S-boxes outputs in Figure 2, i.e.
WH(Y i). With respect to the classification introduced in [14], perfect Ham-
ming weights correspond to non-profiled leakage functions while noisy Hamming
weights relate to the context of device profiled (stochastic) leakage functions. In
the latter one, the leakage function includes a characterization of the noise in
the target device. For this purpose, we assume a Gaussian noise distribution.
We note also that our exemplary leakage functions are univariate since they
only consider one leaking point in the implementations, namely the S-boxes
outputs.
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2.3 Adversarial Context

We consider a non-adaptive known plaintext adversary that can perform an
arbitrary number of side-channel queries to the target implementation of Figure
2 but cannot choose its queries in function of the previously observed leakages.

2.4 Adversarial Strategy

We consider a side-channel key recovery adversary with the following (hard)
strategy: “given some physical observations and a resulting classification of key
candidates, select the best classified key only”.

2.5 Security Metric: Average Success Rate of the Adversary

The success rate of a side-channel key recovery attack can be written as follows.
Let S and O be two random variables in the discrete domains S and O, respec-
tively denoting the target secret signals and the side-channel observations. Let
Oi

Sg
be an observation generated by a secret signal Sg. Let finally C(L(S), Oi

Sg
)

be the statistical tool used by the adversary to compare an actual observation of
a device with its prediction according to a leakage function L1. This statistical
tool could be a difference of mean test, a correlation test, a Bayesian classifica-
tion, or any other tool, possibly inspired from classical cryptanalysis. For each
observation Oi

Sg
, we define the set of keys selected by the adversary as:

M i
Sg

= {ŝ | ŝ = argmax
S

C[L(S)|Oi
Sg

]}

Then, we define the result of the attack with the index matrix:

IiSg,S = 1
|Mi

Sg
| if S ∈ M i

Sg
, else 0.

The success rate of the adversary for a secret signal Sg is estimated as:

SR(Sg) = E
Oi

Sg

ISg,Sg , (1)

and the average success rate of the adversary is defined as:

SR = E
Sg

E
Oi

Sg

ISg,Sg (2)

In the following, we will only consider a Bayesian classifier, i.e. an adversary
that selects the keys such that P[S|Oi

Sg
] is maximum, since it corresponds to

(one of) the most efficient way(s) to perform a side-channel key recovery.
Finally, it is interesting to remark that one can use the complete index matrix

to build a confusion matrix CSg,S = EOi
Sg

ISg,S . The previously defined average
success rate simply corresponds to the averaged diagonal of this matrix.
1 In our following examples, L is the Hamming weight function.
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2.6 Information Theoretic Metric: Conditional Entropy

In addition to the average success rate, [14] suggests the use of an information
theoretic metric to evaluate the information contained in side-channel observa-
tions. We note (again) that different proposals could be used for such evaluation
purposes and their comparison is a scope for further research. In the present
paper, we selected the classical notion of Shannon conditional entropy and in-
vestigate how one can take advantage of the approach to understand and evaluate
side-channel attacks. Let P[S|Oi

Sg
] be the probability vector of the different key

candidates S given an observation Oi
Sg

generated by a correct key Sg. Similarly
to the confusion matrix of the previous section, we define a probability matrix:
PSg,S = EOi

Sg
P[S|Oi

Sg
] and an entropy matrix HSg,S = EOi

Sg
− log2 P[S|Oi

Sg
].

Then, we define the average probability of the correct key as:

P[Sg|OSg ] = E
Sg

PSg,Sg (3)

And the conditional entropy:

H[Sg|OSg ] = E
Sg

HSg,Sg (4)

We note that this definition is equivalent to Shannon conditional entropy2. We
simply used the previous notation because it is convenient to compute the prob-
ability (or entropy) matrices. For example, it allows to detect a good leakage
function, i.e. a leakage function such that maxS HSg,S = HSg,Sg . In the fol-
lowing, the leakages will be quantified as conditional entropy reductions that
corresponds to the mutual information I[Sg; OSg ] = H[Sg] − H[Sg|OSg ].

It is important to observe that the average success rate fundamentally de-
scribes an adversary. In general, it has to be computed for different number of
queries in order to evaluate how much observations are required to perform a
successful attack. By contrast, the information theoretic measurement says noth-
ing about the actual security of an implementation but characterizes the leakage
function, independently of the number of queries.

3 Investigation of Single Leakages
In this section, we analyze a situation where an adversary is provided with the
observation of one single Hamming weight leakage. First, we evaluate single
block implementations. Then, we discuss multiple block implementations and
key guesses. Finally, we evaluate the effect of noise addition in this context.
2 Since: H[Sg |O]= EOi ESg H[Sg |Oi]

=
∑

Oi P[Oi]
∑

Sg
P[Sg |Oi] · − log2(P[Sg |Oi])

=
∑

Oi P[Oi]
∑

Sg

P[Oi|Sg]·P[Sg]
P[Oi] · − log2(P[Sg |Oi])

=
∑

Oi

∑
Sg

P[Oi|Sg] · P[Sg ] · − log2(P[Sg |Oi])
=

∑
Sg

∑
Oi P[Oi|Sg] · P[Sg ] · − log2(P[Sg |Oi])

=
∑

Sg
P[Sg ]

∑
Oi P[Oi|Sg] · − log2(P[Sg|Oi]) = ESg HSg ,Sg
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3.1 Single Block Implementations

Let us assume the following situation: we have an n-bit secret key Sg and an
adversary is provided with the leakage corresponding to a computation Y i =
f(Sg, P

i) = S(P i ⊕ Sg). That is, it obtains an observation Oi
Sg

= WH(Y i) and
we assume a single block implementation as the one in the left part of Figure 2.
Therefore, the adversary can potentially observe the n + 1 Hamming weights of
Y i. Since the Hamming weights of a random value are distributed as binomials,
one can easily evaluate the average success rate of the adversary as:

SR = E
Sg

E
Oi

Sg

ISg,Sg =
n∑

h=0

(
n
h

)

2n
· 1
(

n
h

) =
n + 1
2n

(5)

This equation means that on average, obtaining the Hamming weight of a secret
n-bit value increases the success rate of a key-recovery adversary from 1

2n to n+1
2n .

Similar evaluations will be performed for the conditional entropy in Section 3.3.

3.2 Multiple Blocks and Key Guesses

Let us now assume a situation similar to the previous one, but the adversary
tries to target a multiple block implementation. Therefore, it is provided with
the Hamming weight of an n-bit secret value of which it can only guess b bits,
typically corresponding to one block of the implementation. Such a key guess
situation can be analyzed by considering the un-exploited bits as a source of
algorithmic noise approximated with a Gaussian distribution. This will be done
in the next section. The quality of this estimation will then be demonstrated in
Section 5, by relaxing the Gaussian estimation.

3.3 Noise Addition

Noise is a central issue in side-channel attacks and more generally in any signal
processing application. In our specific context, various types of noise are usually
considered, including physical noise (i.e. produced by the environment), mea-
surement noise (i.e. caused by the sampling process and tools), model matching
noise (i.e. meaning that the leakage function used to attack does possibly not
perfectly fit to real observations) or algorithmic noise (i.e. produced by the un-
targeted values in an implementation). All these disturbances similarly affect the
efficiency of a side-channel attack and their consequence is that the information
delivered by a single leakage point is reduced. For this reason, a usually accepted
method to evaluate the effect of noise is to assume that there is an additive ef-
fect between all the noise sources and their overall effect can be quantified by a
Gaussian distribution. We note that this assumption may not be perfectly veri-
fied in practice and that better noise models may allow to improve the efficiency
of side-channel attacks. However, this assumption is reasonable in a number of
contexts and particularly convenient for a first investigation.
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In our experiments, we will consequently assume that the leakage function is
affected by some Gaussian noise such that the physical observations are repre-
sented by a variable: Oi

Sg
= WH(Y i) + N(0, σ2). It is then possible to estimate

the average success rate of the adversary and the conditional entropy as follows:

SR = E
Sg

E
Oi

Sg

ISg,Sg =
n∑

h=0

(
n
h

)

2n
·
∫ +∞

−∞
P[OSg |h] · ISg,Sg do, (6)

H[Sg|OSg ] = E
Sg

HSg,Sg =
n∑

h=0

(
n
h

)

2n
·
∫ +∞

−∞
P[OSg |h] · − log2(P[Sg|OSg ]) do, (7)

where P[OSg = o|WH(Y i) = h] = 1
σ
√

2π
exp

−(o−h)2

2σ2 and the a posteriori prob-
ability P[Sg|OSg ] can be computed thanks to Bayes’s formula: P[Sg|OSg ] =
P[OSg |Sg]·P[Sg ]

P[OSg ] , with P[Osg ] =
∑

S P[OSg |S]·P[S]. As an illustration, the average
success rate and the mutual information are represented in Figure 3 for an 8-bit
value, in function of the observation signal-to-noise ratio (SNR=10 · log10(

ε2

σ2 ),
where ε and σ respectively denote the standard deviation of the signal and the
noise emanated from the implementation).
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Fig. 3. Average success rate and mutual information in function of the SNR

Note that the average success rate starts at 9/256, i.e. the noise-free value
computed with Equation (5) and tends to 1/256 which basically means that very
little information can be retrieved from the leakage. The figures also shows the
correlation between the information available and the resulting success rate.

4 Investigation of Multiple Leakages

In the previous section, we analyzed a situation in which an adversary performs
one single query to a leaking implementation and evaluated the resulting average
success rate and mutual information. However, looking at Figure 3, it is clear
that such a context involves limited success rates, even in case of high SNRs. As
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a matter of fact, actual adversaries would not only perform one single query to
the target device but multiple ones, in order to increase their success rates. This
section consequently studies the problem of multiple leakages.

For this purpose, let us consider the following situation: we have an n-bit se-
cret key Sg and an adversary is provided with the leakages corresponding to two
computations Y 1 = f(Sg, P

1) and Y 2 = f(Sg, P
2). That is, it obtains WH(Y 1)

and WH(Y 2) and we would like to evaluate the average predictability of Sg.
The consequence of such an experiment (illustrated in Figure 4) is that the key

),( 111 YPf −

),( 221 YPf −

Y Sg

Y

Y

1

2

1

2

Sg

Sg

Fig. 4. Multiple point leakages

will be contained in the intersection of two sets of candidates obtained by in-
verting the 2-input functions Y 1 = f(Sg, P1) and Y 2 = f(Sg, P2). The aim of
our analysis is therefore to determine how the keys within this intersection are
distributed. Importantly, and contrary to the single query context, this analysis
requires to characterize the cryptographic functions used in the target imple-
mentation, since they will determine how the intersection between the sets of
candidates behaves. Therefore, we will consider two possible models for these
functions.

4.1 Assuming Random S-Boxes

A first (approximated) solution is to consider the functions f−1(P i, Y i) to be-
have randomly. As a consequence, each observed Hamming weight leakage hi =
WH(Y i) will give rise to a uniform list of candidates for the key Sg of size
ni =

(
n
hi

)
, without any particular dependencies between these sets but the key.

Let us denote the size of the set containing Sg after the observation of q leak-
ages respectively giving rise to these uniform lists of ni candidates by a random
variable Iq(n1, n2, . . . , nq). From the probability density function of Iq (given in
appendix A), it is straightforward to extend the single leakage analysis of Section
3.1 to multiple leakages. The average success rate can be expressed as:

SR =
n∑

h1=0

n∑

h2=0

. . .

n∑

hq=0

(
n

h1

)

2n
·
(

n
h2

)

2n
. . .

(
n

hq

)

2n
·
∑

i

P[Iq = i] · 1
i

(8)
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4.2 Using Real Block Cipher Components

In order to validate the previous theoretical predictions of the average success
rate, we performed the experiments illustrated in Figure 5. In the first (upper)
experiment, we generated a number of plaintexts, observed the outputs of the
function f = S(P i ⊕ Sg) through its Hamming weights WH(Y i), derived lists of
ni candidates for Y i corresponding to these Hamming weights and went through
the inverted function f−1(P i, Y i) to obtain lists of key candidates. In the sec-
ond (lower) experiment, a similar procedure is applied but the ni key candidates
were selected from random lists (including the correct key). As a matter of fact,
the first experiment corresponds to a side-channel attack against a real block
cipher (we used the AES Rijndael S-box) while the second experiment emulates
the previous random S-box estimation. We generated a large number (namely

f

Sg

P Y WH(Y  ) [Y1,Y2,…,Yni ] [S1,S2,…,Sni]f -1

P

R Y ni

[Kg | KR1,KR2,KR3,…,KRN]

[Sg | SR1,SR2, … SRni-1 ]

WH(Y  )

i

ii

i i

i

Fig. 5. Multiple leakages experiments: real S-boxes and random S-boxes simulation

100 000) of observations and, for these generated observations, derived the ex-
perimental average success rate in the two previous contexts. Additionally, we
compared these experiments with the theoretical predictions of the previous sec-
tion. The results of our analysis are pictured in Figure 6, where we can observe
that the real S-box gives rise to lower success rates (i.e. to less information)
than a random function. The reason of this phenomenon is that actual S-boxes
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give rise to correlated lists of key candidates and therefore to less independence
between consecutive observations, as already suggested in [2, 11]. These experi-
ments suggest that even if not perfectly correct, the assumption that block cipher
components are reasonably approximated by random functions with respect to
side-channel attacks is acceptable. We note that this assumption is better veri-
fied for large bit sizes since large S-boxes better approximate the behavior of a
random function than small ones.

5 Investigation of Masked Implementations

The previous sections illustrated the evaluation of simple side-channel attacks
based on a Hamming weight leakage function thanks to the average success
rate and mutual information. However, due to the simplicity of the investigated
contexts, these notions appeared to be closely correlated. Therefore it was not
clear how one could need both criteria for our evaluation purposes. In this section,
we consequently study a more complex case, namely masked implementations
and higher-order side-channel attacks. This example is of particular interest
since it allows us to emphasize the importance of a combination of security and
information theoretic metrics for the physical security evaluation process of an
implementation. As a result of our analysis, we provide (non-trivial) observations
about the respective effectiveness of masking and algorithmic noise addition that
can be easily turned into design criteria for actual countermeasures.

S

S’

Sg

P

R Q

Y = S(P       Sg)      Q
i

i

i i i

i

Fig. 7. 1st order boolean masking

The masking technique (e.g. [4]) is one of the most popular ways to prevent
block cipher implementations from Differential Power Analysis. However, recent
results suggested that it is not as secure as initially thought. Originally pro-
posed by Messerges [7], second and higher-order power analysis attacks can be
successfully implemented against various kinds of designs and may not require
more hypotheses than a standard DPA [9]. In [12], an analysis of higher-order
masking schemes is performed with respect to the correlation coefficient. In the
following, we intend to extend this analysis to the (more powerful but less flexi-
ble) case of a Bayesian adversary, as introduced in [10].

For the purposes of our analysis, we will use the masked implementation
illustrated in Figure 7 in which the plaintext P i is initially XORed with a random
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mask Ri. We use two S-boxes S and S’ such that: S(P i⊕Ri⊕Sg)=S(P i⊕Sg)⊕Qi,
with Qi = S′(P i ⊕ Ri ⊕ Sg, R

i). According to the notations introduced in [10],
it is particularly convenient to introduce the secret state of the implementation
as Σg = S(P i ⊕ Sg) and assume an adversary that obtains (possibly noisy)
observations: Oi

Σg
= WH [Σg ⊕ Qi] + WH [Qi] + N(0, σ2). Similarly to a first-

order side-channel attack, the objective of an adversary is then to determine the
secret state Σg (it directly yields the secret key Sg). Because of the masking, Σg

is not directly observable through side-channel measurements but its associated
PDFs do, since these PDFs only depend on the Hamming weight of the secret
state WH(Σg). As an illustration, we provide the different discrete PDFs (over
the random mask values) for a 4-bit masked design in Figure 8, in function of the
secret state Σg. We also depict the shapes of the discrete PDFs corresponding to
an unmasked secret state affected by four bits of algorithmic noise (i.e. we add
4 random bits to the 4-bit target and the PDF is computed over these random
bits). Similar distributions can be obtained for any bit size. In general, knowing
the probability distributions of the secret state, the average success rate and
conditional entropy can be straightforwardly derived:
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Fig. 8. Exemplary discrete leakage PDFs

SR = E
Σg

E
Oi

Σg

IΣg,Σg =
n∑

h=0

(
n
h

)

2n
·
∫ +∞

−∞
P[OΣg |h] · IΣg,Σg do, (9)

H[Sg|OSg ] = E
Σg

HΣg,Σg =
n∑

h=0

(
n
h

)

2n
·
∫ +∞

−∞
P[OΣg |h] · − log2(P[Σg|OΣg ]) do,

(10)
where P[OΣg = o|WH(Σg) = h] can be computed as in Section 3.3, assuming
that the OΣg are distributed as a mixture of Gaussians. In the following, we
illustrate these metrics in different contexts. First, we consider 2nd and 3rd order
masking schemes for 8-bit S-boxes. Then, we consider unmasked implementations
where 8 (resp. 16) random bits of algorithmic noise are added to the secret signal
Sg, corresponding to the 2nd (resp. 3rd) order mask bits.
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Fig. 9. Mutual information of 2nd, 3rd order masking and equivalent algorithmic noise

The first (and somewhat surprising) conclusion of our experiments appears
in Figure 9. Namely, looking at the mutual information for high SNRs, the use
of a n-bit mask is less resistant (i.e. leads to lower leakages) than the addition
of n random bits to the implementation. Fortunately, beyond a certain amount
of noise the masking appears to be a more efficient protection. The reason of
this behavior appears clearly when observing the evolution of the PDFs asso-
ciated to each secret state in function of the SNR, pictured in Appendix B,
Figures 13 and 14. Clearly, the PDFs of the masked implementation are very
different with small noise values (e.g. in Figure 13.a, the probability that an
observation belong to both PDFs is very small) but becomes almost identical
when the noise increases, since they are all identically centered (e.g. in Fig-
ure 13.b). Conversely, the means of each PDF in the unmasked implementa-
tions stay different whatever the noise level (e.g. in Figure 14.b). Therefore the
Bayesian classification is easier than in the masked case when noise increases.
These observations confirm the usually accepted fact that efficient protections
against side-channel attacks require to combine different countermeasures. A
practically important consequence of our results is the possibility to derive the
exact design criteria (e.g. the required amount of noise) to obtain an efficient
masking.

It is also interesting to observe that Figure 9 confirms that algorithmic noise
is nicely modeled by Gaussians. Indeed, e.g. for the 2nd order case, the mutual
information of an 8-bit value with 8 noisy bits for high SNRs exactly corresponds
to the one of an unprotected 8-bit value with SRN=0.

The second interesting conclusion is that the average success rate after one
query (pictured in Figure 10) does not follow an identical trend. Namely, the
masked implementations and their equivalent noisy counterparts do not cross
over at the same SRN. This situation typically corresponds to the intutive cate-
gory of weak implementations in Figure 1. That is, some information is available
but the number of queries is too low to turn it into a successful attack. If our in-
formation theoretic measurement is meaningful, higher number of queries should
therefore confirm the intuition in Figure 9.
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Fig. 10. Avg. success rate of 2nd, 3rd order masking and equivalent algorithmic noise

Success rates with higher number of queries for a 3rd order masking scheme
(and noisy equivalent) were simulated in Figures 11, 12. In Figure 11, a very
high SNR=20 is considered. As a consequence, we observe that the masks bring
much less protection than their equivalent in random bits, although the initial
value (for one single query) suggests the opposite. Figure 12 performs similar ex-
periments for two SNRs that are just next to the crossing point. It illustrates the
same intuition that the efficiency of the key recovery when increasing the number
of queries is actually dependent on the information content in the observations.

Importantly, these experiments illustrate a typical context where the combi-
nation of security and information theoretic metrics is meaningful. While the
average success rate is the only possible metric for the comparison of different
side-channel attacks (since it could be evaluated for different statistical tools),
the information theoretic metric allows to infer the behavior of an attack when
increasing the number of queries. As an illustration, the correlation-based anal-
ysis performed in [12] only relates to one particular (sub-optimal) statistical tool
and was not able to lead to the observations illustrated in Figure 9.
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Fig. 11. Avg. success rate of an 8-bit 3rd order masking scheme with noisy counterpart
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Fig. 12. Avg. success rate of an 8-bit 3rd order masking scheme with noisy counterpart

6 Concluding Remarks

This paper discusses the relevance of a recently introduced theoretical framework
for the analysis of cryptographic implementations against side-channel attacks.
By the investigation of a number of implementation contexts, we illustrate the
interest of a combination of security and information theoretic metrics for the
evaluation, comparison and understanding of side-channel attacks. Specifically,
in a well defined adversarial context and strategy, the average success rate would
allow the comparison of different usually considered side-channel attacks (e.g.
DPA, correlation analysis, template attacks). By contrast, independently of the
statistical tools used by the adversary, an information theoretic metric provides
theoretical insights about the behavior and effects of a particular leakage function
that can possibly be turned into practical design criteria.
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A Probability Density Function of the Variable Iq

We take an iterative approach and first consider the intersection after two leak-
ages. Assuming that the leakages respectively give rise to uniform lists of n1 and
n2 candidates and the the key space has size N = 2n, it yields P[I2 = i|n1, n2] =
(

n1 − 1
i − 1

)
·
(

N − n1
n2 − i

)

(
N − 1
n2 − 1

) , where the binomials are taken among sets of N −1 possible el-

ements since there is one fixed key that is not chosen uniformly. Then, assuming
the knowledge of the distribution of Iq(n1, n2, ..., nq) and an additional leakage
that gives rise to a uniform list of nnew candidates, we can derive the distribution
of Iq+1 as follows: P[Iq+1 = j|Iq, nnew] =

∑
i P[Iq+1 = j|Iq = i, nnew]·P[Iq = i],

with: P[Iq+1 = j|Iq = i, nnew] =

(
i − 1
j − 1

)
·
(

N − i
nnew − j

)

(
N − 1

nnew − 1

) .
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Fig. 13. Leakages PDFs in function of the noise: masked implementation
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