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Abstract 

In this paper we discuss ongoing efforts at Scientific 

Systems towards the development of e$ective strategies 

for  traf ic  management of ATM networks using Self- 

Learning Adaptive (SLA) techniques. We extended our 

previous SLA techniques to bursty trafic patterns and 

show how an approximation to SLA, called proportional 

feedback, can be used to manage real-time variable bit 

rate ATM trafic. Finally, we present results on the 

dynamic allocation of bandwidth in order to eficiently 

multiplex several variable rate MPEG-1 streams over a 

constant-rate link. 

1 Introduction 

Asynchronous Transfer Mode (ATM) enables the inte- 

gration of different types of communication services, op- 

erating in vastly different time-scales through common 

interfaces and switching fabrics. It combines statisti- 

cal multiplexing with the use of virtual channels, per- 

mitting the support of different types of traffic while 

providing efficient utilization of the network’s resources 

(bandwidth and buffer allocation). 

It is recognized by many authors (e,g. [7]) that the 

development of appropriate strategies for traffic man- 

agement are crucial for the success of ATM. Due to the 

high levels of complexity and uncertainty under which 

a modern communication network is required to oper- 

ate, it is safe to say that some form of self-learning and 

adaptation must be present in the new generation of 

traffic management protocols. 

In this paper we discuss efforts at Scientific Systems 

towards the development of effective strategies for traf- 

fic management of ATM networks using Self-Learning 

Adaptive techniques. 

*This work was supported by the US Air Force through Rome 

Laboratory, contract F30602-96-C-0156. R. S. Sutton is with the 

University of Massachusetts, Amherst MA 

2 SLA Queue scheduling on 

ATM networks 

2.1 Reinforcement Learning 

Reinforcement learning (RL) is a collection of mathe- 

matically principled methods for approximately solving 

stochastic optimal control problems. RL is based on 

classical optimal control methods and inherits much of 

their mathematical structure, but also extends them in 

three ways. 1. RL methods can learn optimal behavior 

directly from experience; 2. RL uses function approxi- 

mation methods such as neural networks to generalize 

across states. 3. RL uses Monte Carlo sampling to di- 

rect computation towards the most relevant parts of the 

state space. The above extensions enable RL methods 

to effectively solve very large stochastic decision prob- 

lems that would be intractable using conventional exact 

methods. In RL problems, a scalar value called a payoff 

is received by the control system for transition from one 

state to the other. The aim of the system is to find a 

control policy that maximizes the expected future dis- 

counted sum of payoffs received, known as the return. 

The value function is a prediction of the return available 

from each state: 

V*(s) = Elr{Ey’rk) 
k=O 

(1) 

where r is the payoff received for the transition from 

state s to s’, y is the discount factor (0 5 y 5 l), 

and E() is the expected value operator. Watkins [B] 

introduced the idea of Q-Learning where the idea is 

to learn the value of a state-action pair (s,a) rather 

than to learn the value of a state (s) alone. Sutton 

calls this algorithm SARSA because we need to know 

State Action Reward State Action before an update is 

performed. 
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the Q matrix so that SARSA begins by implementing 

the PF policy and allow the Q matrix to evolve under 

SARSA training. Both techniques yielded superior re- 

sults when compared to using unprimed SARSA from 

the beginning. The first technique, however, was sensi- 

tive to initial Q values. 

The results with this example show that RL methods 

such as SARSA can be effectively primed with hand- 

crafted methods. Of the two techniques for achieving 

this tried here, the second appears to be the simplest 

and most effective. 

2.5 Bursty Traffic Patterns 

In the experiments performed previously, the traffic pat- 

terns had very simple statistics (namely, uniformly dis- 

tributed interarrival times). Thus, we constructed a test 

with more complicated statistics. In this example, there 

are two queues (a “high” priority and a “low” priority), 

each allowed to hold up to 100 packets, and 10 packets 

were served on each time step. In addition, the traffic 

sources were made more bursty by making them inter- 

rupted Poisson processes. Each traffic source was either 

on or off. When off it generated no traffic, and when 

on it generated Poisson traffic at a high mean rate, p. 

The probability of an off traffic source turning on was 

p,,, and the probability of an on traffic source turning 

off was p,ff. The high priority queue used p = 5, and 

the low priority queue used p = 20. For both queues, 

Pm = Poff = 0.2. For these settings, the long term 

average arrival rate was about 25% higher than the ser- 

vice rate (i.e., the probability of congestion was very 

high). A binary indication of whether or not any input 

packets were received on the previous time step was also 

provided. 

We implemented the SARSA algorithm under these 

conditions and measured the cell loss probability. We 

also implemented the HPF, random, PF, and Fullest 

Queue policies for comparison. We found that SARSA 

performs significantly better that HPF schedulers, and 

slightly better than the PF policy specifically designed 

for the these problems. In addition, we have shown how 

an RL policy can easily take advantage of additional 

information, in this case of information about the recent 

arrival rates. 

3 Extension of PF to Real-Time 

VBR Traffic 

In the work presented so far, we have considered only 

traffic that is sensitive to loss. Furthermore, the algo- 

rithms presented so far reward a misbehaving source 

(i.e., one that sends too much traffic into the network) 

by giving it more resources. In ATM, however, there is 

the notion of a traffic contract in which the source speci- 

fies characteristics of its traffic and the network guaran- 

At,, = E 

Atbp= E 

Figure 1: Worst-case arrival pattern allowed by the 

GCRA. 
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Figure 2: Single-server, single-connection queue. 

tees a certain &OS. The traffic parameters are sustained 

cell rate @CR), peak cell rate (PCR), and maximum 

burst size (MBS). The &OS is specified in terms of cell 

loss ratio (CLR), delay, and jitter. The traffic is policed 

by the network using the Generic Cell Rate Algorithm 

(GCRA). The network has the option of discarding cells 

that do not conform to the traffic contract. In this sec- 

tion we derive a bandwidth and buffer allocation scheme 

for the PF server that guarantees zero loss and bounded 

delay assuming that the arrival process conforms to a 

variable bit rate (VBR) traffic contract. 

3.1 Deterministic Service for VBR 

It is possible to guarantee bounded queuing delay and 

zero loss due to buffer overflow if one assumes that the 

arrival process has some deterministic bounds. In ATM, 

GCRA is a means of establishing such bounds. The 

GCRA (equivalent to a “leaky bucket”) limits the max- 

imum burst size and the time between maximum bursts. 

The worst-case arrival pattern for a GCRA-conformant 

stream is shown in Figure 1. This stream would be ser- 

viced by a single buffer of length B as shown in Figure 

2 where &(t) is the arrival rate, Rd(t) is the departure 

rate, and Q(t) is the queue length. 

Given these conditions, one must determine the rate 

Rd(t) at which to drain the queue and the buffer size 

B such that Qmar < B and the worst delay is less than 

rmaz. This is done by noting that the longest queue will 

occur at the end of the burst (see Figure 1) and that 
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the longest delay will be incurred by the last cell in the 

longest queue. 

The necessary drain rate and buffer size for a 

constant-rate server has been derived in [3]. Here, we 

derive the equations for the proportional-rate server. In 

this case, the drain rate is 

Rd(t) = QP * Q(t), (2) 

where gp is the proportional gain. As the worst-case 

burst of Figure 1 enters the queue, the drain rate will 

increase. The time it takes to accumulate one cell in the 

queue is given by 

&ell,acc = 
1 

PCR - gpQ’ 

assuming a “fluid-flow” approximation in which the 

trafhc arrives and departs in a continuous manner. This 

accumulation will occur for the duration of the burst 

(A&, = $!$$). Thus, the maximum queue size can be 

found from the solution to the equation 

MBS Qma= 

c 

1 
-= 
PCR i=l PCR - gp . i 

After the burst, the queue will decay. The time it 

takes for one cell to depart is given by 

At 
1 

cell,dep = -a 

gp . Q 

The maximum delay must be less than or equal to the 

time it takes all the cells to depart from the maximum 

aueue: 
I 

r ma5 = (6) 

There are now two equations (4 and 6) and two un- 

knowns (Qma2 and gp). There is no analytical solution, 

but it is not difficult to solve numerically. 

A simulation was used to verify this design technique. 

The contract parameters were set at: PCR = 10,550 

cells/set, SCR = 4000 cells/set, MBS = 256 cells, and 

7 ma5 = * 024 sec. An ON-OFF process was used to simu- 

late the source. During the ON period, the source emit- 

ted cells at the PCR; no cells were emitted during the 

OFF period. The ON and OFF periods were chosen 

randomly from exponential distributions (ON average 

= .024 set, OFF average = .040 set). This source was 

filtered using a GCRA to assure that all cells reaching 

the queue conformed to the traffic contract. For these 

parameters, B = Qmaz = 55 and gp = 191.4. The sim- 

ulation was run for 6 (simulated) hours during which 

about lo* cells arrived at the queue. The results showed 

that a buffer overflow never occurred and that the max- 

imum delay never exceeded rmaZ . The maximum queue 

length, however, did reach 55, and the maximum delay 

was within 34psec of rmas. This shows that this design 

method is extremely accurate in terms of predicting the 

needs of a VBR stream and that the PF server can pro- 

vide real-time lossleses guarantees. 

4 Dynamic resource allocation 

for video traffic 

Although bitstreams of compressed video are known to 

be extremely bursty and &n-stationary (eg. El]), cur- 

rent state-of-the-art technology for compressed video 

transport is still based on constant resource ahoca- 

tion. This reality stems from the difficulty encountered 

in modeling the traffic emitted by commercial video 

encoders, and characterize their effective bandwidths. 

Static bandwidth allocation for compressed video trans- 

port implies an extremely inefficient use of network re- 

sources, specially in the case of applications requiring 

high levels of &OS, where bandwidth allocations need 

to be based on the peak bitrate of the video content, It 

is clear that the efficient transport of compressed video 

signals can only be achieved in an environment capable 

of dynamic resource allocation. Such environment must 

include on-line prediction mechanisms capable of fore- 

casting the resource needs of incoming traffic and also 

allocate these resources on-line. 

As discussed in section 3.1, the interaction between a 

transmitting source and an ATM network is regulated 

by a static service contract. However, fixed ATM ser- 

vice contracts pose an obstacle to the establishment of 

architectures capable of dynamic resource allocation. 

A possible way by which dynamic bandwidth allo- 

cation can be used in conjunction with a fixed ATM 

contract was suggested in [2]. In what follows we il- 

lustrate the methodology described in [2] using a case 

study of video transport over ATM networks, combining 

dynamic bandwidth allocation, multiplexing and on-line 

forecast. 

The problem at hand is to transport, on a common 

channel having fixed capacity, 1600 seconds of eight 

multiplexed video sequences, corresponding to a diverse 

combination of sources. The objective is to investigate 

the overall performance of the transport for a range of 

link utilizations, comparing three strategies: (1) Static 

resource allocation, (2) Dynamic resource allocation, 

and (3) Dynamic resource allocation based on predic- 

tion. In all three cases the ATM service contract for 

the multiplexed channel is CBR. 

Traces of the video sequences used in our studies were 

obtained from the University of Wuerzburg [5]. Each 

sequence consists of the size in bits of 40,000 frames, 

of resolution 384 x 288, obtained using an MPEG-1 

encoder at the rate of 25 Hz. The GOP (Group-of- 

Pictures) size is 12, with a pattern IBBPBBPBBPBB. 

Variable bitrate coding is achieved by fixing the quanti- 

zation values at 10 for I frames, 14 for P frames, and 18 

for B frames. A detailed statistical study of the traces 

is given in [5]. 

The eight sequences correspond to two movies: 

Goldfinger (bon) and Jurassic Parlc (dino), two sports 

events: Soccer World Cup Final’94 (sot) and Germany 

Fl Grand-Prix’94 (rat), a German TV news broadcast 
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(new), a German Talk Show (tal), an MTV video clip 

(mtv), and the cartoon Asteriz (a&). 

We assume that each GOP is sent at a constant bit 

rate for the duration of its 12 frames (480 ms). This as- 

sumption attempts to model the MPEG-2 requirement 

of constant bit rate between clock stamps; it also has the 

benefitial effect of smoothing out the imbalance among 

the sizes of I, P and B frames caused by motion com- 

pensation. 

The total number of bits (the eight sequences to- 

gether) to be transported over the 1600 seconds is 

6.8845 Gbits, which gives a bandwidth of 4.30 ,Mbps 

for an overall link utilization of 100 %. 

Below we describe the results obtained using three 

strategies for resource allocation. 

Static bandwidth allocation For static bandwidth 

distribution among the eight sources, it is necessary to 

describe the link utilization of each source by a single 

number. We choose the peak value of the GOP se- 

quence to describe the bandwidth requirements. If each 

video source is served at its peak GOP rate, lossless 

transmission is achieved, with no delay and no need for 

buffering. It is found that this is achieved using a band- 

width of 16.87 Mbps, or a link utilization of 0.25. If a 

“less-than-perfect” transmission with delay and buffer- 

ing is possible, one wants to know the degradation on 

QoS caused by having link utilizations higher than 0.25. 

Figure 3 depicts the mean queue sizes of the eight 

video sources for link utilizations ranging from 0.25 to 

0.4. The total bandwidth is divided among the sources 

according to their peak GOP rates Pi: 

pi(p) = ri 
.& ri /J(p)7 i = 1, . . . ,8, 0 2 t < 1600s 

where p(p) = 4.30~bpy, Pi = 1.08Mb (ast), I”z = 

0.956Mb (bon), Ps = 0.627Mb (din), lY4 = 1.28Mb 

(mtv), rs = l.llMb (new), l?s = 1.33Mb (rat), r7 = 

1.28Mb (SOC), rs = 0.471Mb (tal). 

It is clear from Figure 3 that there is a substan- 

tial variation among the eight queue solutions. This 

is caused by the burstiness of the sources, and the dif- 

ficulty found in characterizing their bandwidth require- 

ments statically. If equal QoS conditions are imposed 

on all sources, one has to dimension the links (buffer size 

and link utilization) according to the source which dis- 

plays the worst behavior. This is certainly undesirable 

in the case at hand, where variations up to a loo-fold 

can be found on the statistics of the sources. 

Dynamic bandwidth allocation (ideal case) If 

the bandwidth requirements of each source are known 

in advance at each GOP time frame, [2] suggests a dy- 

namic bandwidth allocation scheme, on which the total 

bandwidth is divided among the sources according to 

their instantaneous values at each GOP. In the present 

case, it is possible to achieve lossless transmission with- 

out buffering, using a total bandwidth of 7.42 Mbps, 

or a link link utilization of 0.57, which correspond to a 

gain of 128 % over the static case. For higher values of 

link utilization, the bandwidth assigned to each source 

is computed according to the expression: 

Pi(P, t> = 
7i (t) 

cfz y.(t) P(P), i = 1, * a., 8, 0 5 t _< 1600s 
21% 

where p(p) = 4.30rbps and -yi(t) = # of bits on the 

n-thGOP,n=L&]. 

Figure 4 depict the mean queue sizes of the video 

sources for link utilizations in the range of 0.57 to 

0.8. One finds a much more balanced &OS distribu- 

tion among the eight sources, in comparison with the 

static case. The strategy described above can be em- 

ployed for transport of recorded video, when the frame 

sizes are known in advance. In practice however, there 

is always a protocol processing time which has to be 

taken into account ([2]). 

Dynamic bandwidth allocation with prediction 

In the case where the time series describing the video 

sources are not known in advance, or in the case of real- 

time video, it is necessary to forecast the bandwidth 

requirements of each source in advance. One needs a 

predictor of the bandwidth requirements yi(t), which 

we denote as ;vi(t). In which follows we utilize a simple 

RLS (recursive least squares) one-step-ahead predictor 

for each of the GOP time series, based on linear au- 

toregressive models of order 12. We emphasize that our 

objective here is not to perform a detailed investigation 

of models for video traffic (eg. [l]), but rather to illus- 

trate a practical application of forecasting technology in 

the context of ATM networks. It is verified in [2] that 

Pi-Sigma Neural Networks perform considerably better 

than linear RLS for the forecast of video traces. 

The bandwidth assigned to each source in this case is 

given by: 

Pi(P, t) = 
5%(t) 

cfzl ‘ri(t) P(P), i = 1,. . . ,8, 0 I t I 1600s 

where p(p) = 4’30rbps and Ti(t) = one-step-ahead pre- 

dictor of the # of bits on the n - th GOP, n = [&I. 

Figure 5 depicts the mean queue sizes in the range 

0.25 to 0.8. While the QoS measurements (queue sizes 

and corresponding delays) are obviously worse than 

those obtained in the ideal case, the degradation in per- 

formance is not substantial, considering the simplicity 

of the predictive model utilized. As an example, notice 

that mean queue sizes of the order of 20 cells are ob- 

tained for p = 0.75 in the ideal case, and p = 0.65 using 

predictions. 
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5 Summary 

The promise of ATM will be fulfilled only when the 

diverse set of traffic can be managed properly on net- 

work$of limited resources. The traffic patterns in ATM 

will be quite dynamic because the sources are diverse 

(eg, constant bit rate service, bursty compressed video, 

delay-insensitive internet packets). We have discussed 

techniques which can adapt themselves to these chang- 

ing patterns in order to provide a high quality of service 

while maintaining high network utilization. 
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