
Towards Self-management in
Service-Oriented Computing with Modes

Howard Foster, Sebastian Uchitel, Jeff Kramer, and Jeff Magee

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

Abstract. A self-managed system is both self-assembling and self-
healing. Service-oriented Computing (SoC) architectures, such as a Web
Services Architecture (WS-A)illustrate a highly distributed, potentially
dynamic,domain for component configurations.Wepropose the use of com-
ponent architecture ”modes” to facilitate the self-management of services
within a SoC environment. A mode abstracts a set of services that are com-
posed to complete a given task. Our approach, named ”SelfSoC” includes
designing and implementingkey parts of a self-managed system specifically
aimed at supporting a dynamic services architecture. We extend Darwin
component models, Alloy constraint models and distributed system man-
agement policies to specify the mode architectures. We also propose the
generation of dynamic orchestrations for service compositions to coordi-
nate different modes of an automotive services platform.

1 Introduction

Self-management of components in distributed system architectures is becoming
a widely researched area, with the emerging paradigms of Service-oriented Com-
puting (SoC) and Service-oriented Architectures (SoA), these have increased
the interest of having less human intervention in the management of complex,
distributed systems. With the use of a Web Services Architecture (WS-A) [3]
to overcome technical interoperability difficulties using standard protocols and
messaging formats, the issue of managing complex configurations of services is
a leading requirement of progressing the use of this type of architecture. The
availability of services is also more prominent in a dynamic service configuration
whereby the provider of the service may not be known in advance. As services
should be developed with much closer representation to clients requirements, the
context and environment co-exist to support requests. Events that change con-
text or conditions within the environment however, need self-managing mecha-
nisms to support both initial configurations (self-assembly) and reconfigurations
(self-healing) [10]. Further self-management techniques can be applied to sup-
port optimal configurations of a given set of components (self-optimisation or
also known as self-tuning).

The main contribution of this paper is to present self-management techniques
applied to a services architecture, using the concept of modes and the coordi-
nation of reconfigurable component architectures. We firstly discuss the mode

E. Di Nitto and M. Ripeanu (Eds.): ICSOC 2007 Workshops, LNCS 4907, pp. 338–350, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Towards Self-management in Service-Oriented Computing with Modes 339

approach, where the design of composite component architectures (as services)
provides a formal abstraction of elements that change within a self-managed
environment. The relation to scenarios and events that can invoke changes in
the architecture, such as services becoming unavailable is illustrated through
behavioural models, which when combined with component mode architecture
descriptions can be used to generate coordination processes which detect and
switch architectures depending on the context. Secondly, we provide an example
related to a case study defined in the SENSORIA EU project [12] for a highly
dynamic coordination of services in Automotive Route Planning scenarios. Our
role in this project explores the analysis and coordination of components in a
self-managed services environment.

In Section 2, we provide a background to SoC, WS-A and self-management
techniques for distributed component architectures. In Section 3, we describe
our approach and a case study example providing a running example of a ser-
vices architecture requiring self-management. In Section 4, we discuss our notion
of modes, the design of architectures based upon components with modes and
the self-assembly and self-healing techniques used. We also discuss specifying
rules, constraints and analysis on reconfiguring a services architecture based
upon modes. Section 5 discusses current assumptions and limitations of the
approach,whilst section 6 concludes this paper with a work summary and an
indication of our future work direction.

2 Background

Service-oriented Computing (SoC) [15] has emerged from a number of differ-
ent directions in computing science. Technically, the most influential aspects
have been from that of remote procedure calls (RPC), messaging standards and
internet protocols, where agreement has been formed on standard ways to in-
terface components in a distributed system. SoC however, also encompasses a
design philosophy, bringing re-use and context support directly to the specifi-
cation of components and composite components (composed of more than one
component). As an example of a SoC architecture, a Web Services Architecture
(WS-A) is a set of conceptual elements defining a common set of standards be-
tween interoperating components, running on different platforms or frameworks.
There remains an ambitious task of building systems on such dynamic architec-
tures and this is closely aligned with the capabilities of self-management and
reconfiguration of services. Self-management of systems is not a new idea, with
ideas from both the cybernetics [20] and system theory [18] worlds. As discussed
in [17] however, one of the main problems that exists in self-management is to
understand the relationship between the system and its subsystems: can we pre-
dict a system’s behavior and can we design a system with a desired behavior in
all situations? The issue is deemed the ”closed control loop issue” [2] - to tailor
a system with all possible states and external influences completely specified.

For these tasks, and in a web services perspective, there has been some work on
providing dynamic orchestrations of web service compositions using dynamically



340 H. Foster et al.

generated workflows for service orchestration engines[1]) and service matching
techniques on service brokers. In [8], a workflow BPEL process is monitored and
exceptions handled for failing services by creating new service proxies (i.e. re-
binding to a set of pre-determined services). An alternative approach in [6], uses
semantic web service specifications to match new services and generates compo-
sitions based upon their specification for use (e.g. in a correct sequence). Several
other works [16,4,14] apply Artificial Intelligence (AI) Planning to composing
service compositions from higher-level goals, typically also in a semantic web
service specification. A characteristic across these works however, is that they
aim to provide dynamism for the same type of service, focusing mainly on avail-
ability and the ability to switch providers. The wider issue of self-management
must also consider a change in service process functionality and reconfiguring
the architecture to support correctness in such functional dynamism.

One of the leading industrial efforts for self-management is part of IBM’s
Autonomic Computing programme. Their blueprint [5] suggests three goals for
an architecture in autonomic computing. Firstly, it must describe the interfaces
and behaviours required by individual system components. Secondly, it must
describe how to compose these components so that the components can con-
tribute toward the goals, and thirdly, it must describe how to compose systems
from these components in such a way that a system as a whole is self-managing.
As with most complex systems development, an iterative elaboration of require-
ments is key in capturing key points of change. To address the broader issues
in service architecture self-management we propose the use of component archi-
tecture ”modes” [13] to facilitate the self-management of services within a SoC
environment. A mode abstracts a set of services that are composed to complete
a given task. Our approach, named ”SelfSoC” includes designing and imple-
menting key parts of a self-managed system specifically aimed at supporting a
dynamic services architecture.

3 Approach

SelfSoC is our approach to addressing some of the issues in dynamic reconfiguration
of services. Figure 1 illustrates the approach, and the areas considered. In this pa-
per we specifically discuss the areas of mode component architectures, behaviour
and analysis whilst highlighting future work on implementation of coordination.
SelfSoC consists of two parts. Firstly the specifications are analysed for correct-
ness (e.g. that reconfiguration canbe undertaken and that constraints are realised).
Secondly, the verified source and models for service composition modes are used to
derive some deployment artefacts to assist in the self-management runtime. These
artefacts include coordination requirements and capabilities for service brokering,
and coordination processes which may be executed to handle events and service
architecture changes. Our work so far has concentrated on the specification and
analysis ofmodes, and we report this in the following sections. To help us define the
necessary elements of SelfSoC we utilised a case study from the European Union
SENSORIA project, for which we are participating to support enhanced service
deployment mechanisms.



Towards Self-management in Service-Oriented Computing with Modes 341

Fig. 1. Service Composition, Analysis and Deployment Artefacts in SelfSoC

3.1 Case Study: Driving Assistance

Our case study is based upon an In-Vehicle Services Platform and the interac-
tions, events and constraints that are posed on this services architecture. One
particular scenario focuses upon Driving Assistance, and a navigation system
which undertakes route planning and user-interface assistance to a vehicle driver.
Within this scenario are a number of events which change the operating mode
of the navigation systems. For example, two vehicles are configured where one
is a master and another is a slave. Events received by each vehicle service plat-
form, for example an accident happens between vehicles, requires that the system
adapts and changes mode to recover from the event. In a more complex example,
the vehicles get separated on the highway (because, say, one of the drivers had
to pull over), the master vehicle switches to planning mode and the slave vehicle
to convoy. However, if an accident occurs behind the master and in front of the
slave vehicle, meaning only the slave needs to detour it must somehow re-join the
master vehicle route planning. The slave navigation system could firstly change
to a detour mode (to avoid the accident), then switch to planning mode (to reach
a point in range of the master vehicle), and finally switch to convoy mode when
close enough the master vehicle. We now explore a formal way to specify these
service mode changes.

4 Modes

4.1 Architecture

A mode, in the context of SoC, abstracts a specific set of services that must inter-
act for the completion of a specific (sub)system task. Note that modes not only de-
termine configuration but also coordination and communication mechanisms. We
utilise the work reported in [13] which proposes modes for the Darwin component
architecture notation, however, we could equally have used UML 2.0 as the Dar-
win form of component can now be satisfactorily encoded inUML2.0.A component



342 H. Foster et al.

component AComponent {
provide PrvServices;
require ReqServices;
mode ASetOfModes; }

Fig. 2. A Darwin Service Component Specification (graphical and textual)

describing a mode specification, is illustrated in figure 2. Note also that the mode
label is a simple attribute of the component, however, related with the mode is a no-
tion of behaviour, for example to describe the expected interaction behaviour with
required and provided services whilst the component is in that mode. We discuss
behavioural specification of modes in SoC in a later section.

Modes of a composite component depend on their constituent component
modes defining a mode-state based service composition. This is useful to deter-
mine when a service changes mode, which other services in the composition must
also change mode. An example of this mode-state composition is illustrated in
two elaborated Darwin models, for a mode change of ”planning” to ”Convoy”,
in Figure 3.

Fig. 3. Vehicle Service Component Architecture Composition and Modes

A service component composition is specified with multiple instances of com-
ponents and a series of bindings between them. In Darwin this is declared using
the inst and bind constructs respectively. A mode has a designated set of mode
labels (e.g. active and disabled listed previously). These are used to identify the
current state of mode for a component and derive the permissible behaviour.

4.2 Behaviour

We extend the Darwin component model with a description of the interaction be-
haviour between component services given a particular mode. Each behavioural



Towards Self-management in Service-Oriented Computing with Modes 343

behaviour C1.AMode.active
process active_Process;
constraints ConstraintSet;
properties PropertiesSet;

create TC:TaskController;
create RP:RoutePlanner;
bind TC.result RP:route;
bind RP.location TC.data;
set RP.AMode to detour;

Fig. 4. A Scenario leading to Detour Mode Activation

type is determined by the component, mode and mode label. Each type con-
sists of a definition of interaction process (a set of interactions), constraints and
properties (Figure 4). Each behaviour type describes a process (in this case we
assume a process specifies the interaction scenarios expected for this compo-
nent and mode), a set of constraints forming rules for when the mode can be
changed, which modes are applicable in sibling components when this mode is
enabled and other architectural correctness characteristics, and a set of proper-
ties which must be upheld. The properties form a source for runtime verification
analysis as mode transition occurs.

A process defines a set of scenarios in which the mode can operate. At this
stage in our work we have assumed that this is a series of interaction sequences,
which when combined, provides a composition of all possible interaction se-
quences in the given mode. An example in our case study is a switch from a
”planning” mode to ”detour” mode. From this scenario, a component process
can be generated which provides a specification of the mode interactions and
their sequence. For example, if the TaskController service is in ”running” mode
it can perform various things, such as receive events from ”news service” or in-
voke an update of the UserPrompt service. Elaborating on the example given
for detour, a client vehicle service can respond to an event (such as that as
of an instruction that an accident has occurred in its current route) and the
service architecture can change modes of participating services to react accord-
ingly. In the case of normal behaviour, we could assume that the RoutePlanning
component should be in ”planning” mode unless it is instructed to change to
enable a ”detour” mode configuration. The permissible reactions must satisfy
the architectural correctness, that for example all participating components are
in a suitable mode that corresponds to the parent mode change. A series of
constraints are specified as to when and how these modes changes can occur.

Self-Assembly. A requirement for adaptable software architectures is that
it must easily accommodate the addition of new capabilities (self-assembly).
For example, in addition to adding new tasks to activate and control the user



344 H. Foster et al.

interface of a vehicle, it would be necessary to add new components that encap-
sulated the software drivers to the physical device and for it to be able to switch
modes. Initially a service composition with a designated ”mode” would be con-
figured with an initial set of services. As events occur which trigger changes in
the composition environment, these sets may expand or shrink in the number
of services required and change the required behaviour between services in the
architecture. Assembly of the services requires a set of instructions, these are
listed below and include service component instance creation, removal, binding
and mode changing as follows:

create C: T
-- create component instance C from type T.

delete C
-- delete component instance C.

bind C1.r to C2.p
-- connect required port r of component C1

to provided port p of component C2.
unbind C1.r

-- disconnect required port r of component C1
set C1.m to val

-- set mode m of component C1 to val.

Note that when an instruction to change mode is undertaken, or indeed other
environmental events occur which change the state of the component instances
and behaviour, a transition from one architecture configuration to another is
made. Such transitions between architecture configurations when a disturbance
occurs requires a form of self-healing.

Self-Healing. An extension to self-assembly is the notion of self-healing in
which a system attempts to repair it’s architecture in response to a disturbance,
such as a service failure. A reactive layer is required in self-healing which can
perform the transition from one activity plan to another through a coordina-
tor function. This plan relates directly with a change in mode, switching the
required or provided interfaces of a service, and the expected behaviour of inter-
actions between services. When a failed service is no longer available, the system
attempts to assemble itself into a configuration that satisfies the overall archi-
tectural constraints. One of the main considerations in self-healing is the explicit
specification of constraints that express permissible combinations of component
modes and behaviour (interactions) between these modes such that self-healing
could cause a transition to a degraded mode, and the behaviour analysis of these
situations.

4.3 Runtime Policy

To specify the architecture constraints on reconfigurations and the component
mode behaviour, we utilise the work of Alloy and Ponder toolsets respectively.
In particular, the Alloy language [9] can be used to describe the valid structural



Towards Self-management in Service-Oriented Computing with Modes 345

and evolutionary constraints of component mode changes in the architecture.
It is both a relational and declarative language with allows for partial models
and incremental elaboration to be specified. One particularly interesting fea-
ture of Alloy is that it can be used to generate sample instances of reconfig-
ured structures that conform to the mode changes specified previously. A set of
configuration actions can be generated when the structure of the system is no
longer valid with respect to its architectural description due to either a scheduled
change (e.g. event or obligation) or a component failure. An Alloy specification
consists of component and field declarations (signatures), constraints (facts and
predicates), and properties (assertions). Ponder [7] is a language for specifying
management and security policies for distributed systems management. In Pon-
der, a policy is a rule that can be used to change the behaviour of a system.
Separating policies from the managers that interpret them allows the behaviour
and strategy of the management system to be changed without re-coding the
managers. The management system can then adapt to changing requirements
by disabling policies or replacing old policies with new ones without shutting
down the system. This is a key requirement for a self-managed system. More
recently, a redesign of the Ponder framework has produced Ponder2, which en-
ables an extensible management framework based upon the eXtensible Markup
Language (XML).

Architecture Constraints. We utilise the work presented in [11], where Alloy
models of Darwin are described and a series of constraints are defined for com-
ponents and their interfaces. In particular, we are interested in modelling the
structural constraints (which define a valid set of architectural instances) and
evolution constraints (which define the properties of an architecture that can
be changed in a transition between two architectural instances). The Darwin
components can be described in Alloy with signatures. The basic elements of
the Alloy model of Darwin+Modes are the components (Comp), a set of ser-
vice ports (Port), a set of interface types (Type) and a set of Mode definitions
(Modes). As an example, the In-Vehicle ServicePlatform for our case study can
be expressed as the following:

sig ServicePlatform extends Component {
ports : set Port, type : set Type,
modes : set ServicePlatformModes,
AP : one AnalysisAndPlanning,
SB : one ServiceBroker }

Reconfiguration constraints can be expressed as facts or predicates. Generally,
facts always hold whilst predicates are only held when invoked. Predicates are
more flexible as predicates can be included in facts, but not vice-versa. For ex-
ample, if we wish to specify that if the ServicePlatform component is in Convoy
mode, no UserPrompt component instance may exist in a trace of the architec-
ture configuration instance we could state the following fact.



346 H. Foster et al.

fact ServicePlatformTrace {
init[Time:t]
all t : Time | no UP: UserPrompt

in SP.modes.convoy }

Distributed Management Policy. There are two types of runtime policy
construct that we utilise in the mode work using the PONDER language. Firstly,
specifying the event (or trigger) behaviour policy and secondly, the constraint
policy on when mode changes can occur (i.e. by constraining when obligations
maybe carried out). In the first case we are interested in which events cause an
architectural change. This is specified in PONDER using the event construct. An
event generally triggers an obligation policy. In the following example we specify
that given an event raised by the service platform, in this case that an accident
event has been received, then an obligation is to switch the related event targets
to Convoy mode.

event accident(s) = sp.accident_event
type oblig switchToConvoyT (subject s,

target<taskcontroller> t) {
on accident(source);
do t.switchToConvoy(t); }

inst oblig switchToConvoy(taskcontroller) {
subject tc = taskcontroller;
target rp = routeplanner;
do rp.stopplanning;
do rp.acceptroute;
do rp.replan; ... }

The event construct is also flexible enough to specify Quality of Service (QoS)
characters for service brokering. An example maybe that a service composition
requires that a particular interaction occurs within a specified timescale. This
can be specified in PONDER using an event, with a when attribute attached
to the do clause. e.g. when time.duration(5) - the duration of an action is only
valid for 5 minutes. Furthermore, constraints may also be specified as part of an
obligation to decide when a change of mode is permissible - given the current
state of component instances within the architecture. For example, to specify
that the switch to Convoy mode can only be undertaken when the routeplanner
is active and is not planning, we could define a constraint as follows:

constraint rpConvoyMode(rp) =
rp.isActive() and !rp.isPlanning()

Note that runtime policy constraints could also be derived from some of the
architecture constraints specfied in section 4.3. These definitions provide us with
a specification for coordination analysis, which we consider in section 4.4.



Towards Self-management in Service-Oriented Computing with Modes 347

4.4 Analysis

At this point we have defined three key elements to the self-management of
SoC with modes. Firstly, we have a representation of the system (in the form of
a component architecture with specified instances and behavioural protocols).
Secondly we have defined a set of constraints attributed to the architecture and
more specifically, to specify how the architecture can evolve given different mode
changes. Thirdly, we have also specified a policy when these mode changes can
occur and what actions must be undertaken in the event a change is required.
An interesting question in analysis is given different component and mode ar-
chitecture models, rules for reconfiguration and given an arbitrary failure of a
service, can the system reconfigure into a valid mode or can any mode convert in
a finite number of steps into another? We split these types of analysis in to two
sections, one focusing on the architectural correctness of a mode change, and the
other on the ability to reconfigure in to another given a series of configuration
tasks.

Considering the architecture analysis, we can link the policy description spec-
ified in section of PONDER with that of the archiectural constraints specified
in Alloy to determine if such situations exists. This technique is similiar to that
reported in [19], where assertions are used to check the correctness of the model,
assuming the facts specified on that model.

assert validchangetomode_Convoy {
all sp:ServicePlatform, rp:RoutePlanner |
(rp in sp.components => (rp !in rp.mode.replan) }

check validchangetomode_Convoy

The above assertion states that a RoutePlanning (RP) component should not
already be replanning if the component is already in a replan mode. If we found
that a counterexample violates this assertion then a predicate can be formed to
constrain our model. The following predicate states that preconditions for a mode
change to ”Convoy” are that both the ServicePlatform component is in mode
”active” and the RoutePlanner component is in mode ”planning”. Additionally,
a postcondition is that the UserPrompt component is in mode ”disabled”.

pred mode_convoy [t: time,
SP : ServicePlatform, RP : RoutePlanner, UP : UserPrompt]{

SP in Mode.active.t, RP in Mode.planning.t, (preconditions)
RP.Mode = planning.t, UP.Mode = disabled.t }(postconditions)

There are two aspects of behavioural analysis, from the viewpoint of that
specified for the service component composition and that of the policy defined
in section 4.3. Firstly, safety and liveness analysis can be undertaken on the be-
havioural scenarios for the component composition. We synthesise the message
sequence charts to Finite State Processes (FSP) to construct a Labelled Transi-
tion System (LTS) which can be compiled and analysed in the LTSA toolset. As
a default function, the LTSA toolset can detect the presence of deadlocks but we



348 H. Foster et al.

Fig. 5. LTS of ServiceCoordinator and RoutePlanner Process Model

may also specify other analysis properties (such as liveness or fluent assertions)
in the FSP model. Figure 5 illustrates LTS models for ServiceCoordinator and
Routeplanning services. For example, each state transition specified for the be-
haviour of the ServiceCoord component represents a message activity specified
in Figure 4. Note that shortnames (e.g. tc for TaskController) have been used to
represent the component names. Secondly, the tasks involved in mode change,
as that of specified in the PONDER policy can be translated to FSP and mod-
elled as a series of processes. In a similiar way to analysing the scenarios for
component behaviour, a composition of events, obligations and constraints can
be analysed by compiling the FSP and performing model checking on the policy
rule set. This model can be used to detect whether there is any conflict between
obligations, and also to check whether it is possible to apply the obligations
given the architecture model of behaviour created previously.

4.5 Preparation for Deployment Artefacts

A combination of architecture, behaviour and policy specifications can be used
to derive the deployment artefacts from the SelfSoC approach. More specifi-
cally, the architecture descriptions (section 4.1) can be used to extract a series
of services required to be brokered and composed in sets, compositions of these
services can be used to generate coordination processes for the behaviour spec-
ified in section 4.2 (potentially in an executable orchestration language such as
BPEL4WS) and service brokering requirements and capabilities can be gener-
ated using the architecture and policy sets described in section 4.3. The process
for this generation activities is part of our on-going work and we expect to pro-
vide a prototype as part of this.

5 Assumptions and Limitations

In our work, we have assumed that alternative mode scenarios are a choice of
sequences for interactions within a service orchestration. To synthesise these to
runtime coordination processes is complex, involving inspection of all possible



Towards Self-management in Service-Oriented Computing with Modes 349

paths and refactoring conditional elements around these. We plan to explore the
synthesis in much greater detail in our future work. We also assume that engi-
neers can express sufficient modes to represent common changes in architecture,
the concept of modes is not an exhaustive one, as such it handles those speci-
fied and not all changes in all cases (although some of these may be discovered
through analysis or indeed, may be expressed as an ”all other” rule).

6 Conclusions and Future Work
We believe that the notion of modes helps engineers abstract appropriate ele-
ments, behaviour and policy from the services domain, and can facilitate the
specification of appropriate control over both architectural change and service
behaviour. In this paper we have presented our approach to the modelling and
analysis of service-oriented computing component architectures using an abstrac-
tion of modes to represent the changes in such an architecture. Our future work
will explore how these artefacts are more accurately built and analysed, and also
on how our approach can assist in the dynamic invocation of services given com-
ponent requirements and capabilities. This work has been partially sponsored
by the project SENSORIA (IST-2005-016004).

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
process execution language for web services version 1.1 (2004)

2. Andrzejak, A., Hermann, U., Sahai, A.: Feedbackow-an adaptive work- ow genera-
tor for systems management. In: ICAC, pp. 335–336. IEEE Computer Society, Los
Alamitos (2005)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web services architecture (ws-a) - w3c working group note (February
11, 2004)

4. Bova, R., Hassas, S., Benbernou, S.: An Immune System- Inspired Approach for
Composite Web Services Reuse. In: Workshop AI for Service Composition (ECAI
2006) (July 2006)

5. IBM Corporation. An architecture for autonomic computing, fourth edition. Tech-
nical report (June 2006)

6. da Costa, L.A.G., Pires, P.F., Mattoso, M.: Automatic composition of web services
with contingency plans. In: ICWS 2004: Proceedings of the IEEE International
Conference on Web Services (ICWS 2004), Washington, DC, USA, p. 454. IEEE
Computer Society, Los Alamitos (2004)

7. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specifica-
tion language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, p. 18. Springer, Heidelberg (2001)

8. Denaro, G., Pezz, M., Tosi, D.: Adaptive integration of third- party web services.
In: DEAS 2005: Proceedings of the 2005 workshop on Design and evolution of
autonomic application software, pp. 1–6. ACM Press, New York (2005)

9. Jackson, D.: Alloy: A lightweight object modeling notation (1999),
http://sdg.lcs.mis.edu/alcoa

http://sdg.lcs.mis.edu/alcoa


350 H. Foster et al.

10. Foster, H., Magee, J., Kramer, J., Uchitel, S.: Adaptable software architectures and
task synthesis for uavs. In: Systems Engineering for Autonomous Systems (SEAS)
DTC Conference, Edinburgh, UK (2006)

11. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: WOSS 2002: Proceedings of the first workshop on Self-
healing systems, pp. 33–38. ACM Press, New York (2002)

12. Gnesi, S., ter Beek, M., Baumeister, H., Hoelzl, M., Moiso, C., Koch, N., Zobel, A.,
Alessandrini, M.: D8.0: Case studies scenario description. Technical report (August
2006)

13. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures.
In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006)

14. McDermott, D.: Estimated-regression planning for interactions with web services
(2002)

15. Singh Munindar, P., Huhns Michael, N.: Service-Oriented Computing - Semantics,
Processes, Agents. John Wiley and Sons, Ltd., Chichester (2005)

16. Petrie, C.J., Genesereth, M.R., Bjornsson, H., Chirkova, R., Ekstrom, M., Gomi,
H., Hinrichs, T., Hoskins, R., Kassoff, M., Kato, D., Kawazoe, K., Min, J.U.,
Mohsin, W.: Adding AI to Web Services, pp. 322–338. Springer, Germany (March
2004)

17. Van Roy, P.: Self management and the future of software design. In: Formal Aspects
of Component Software (FACS 2006), Prague, Czech Republic (2006)

18. Von Bertalanffy, L.: General System Theory: Foundations, Development, Ap- pli-
cations. George braziller, New York (1969)

19. Warren, I., Sun, J., Krishnamohan, S., Weerasinghe, T.: An automated formal
approach to managing dynamic reconfiguration. In: ASE 2006: Proceedings of the
21st IEEE International Conference on Automated Software Engineering (ASE
2006), Washington, DC, USA, pp. 37–46. IEEE Computer Society, Los Alamitos
(2006)

20. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the
Machine. MIT press, Cambridge (1948)


	Towards Self-management in Service-Oriented Computing with Modes
	Introduction
	Background
	Approach
	Case Study: Driving Assistance

	Modes
	Architecture
	Behaviour
	Runtime Policy
	Analysis
	Preparation for Deployment Artefacts

	Assumptions and Limitations
	Conclusions and Future Work


