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Abstract

Systems today are application driven. Increasing application sizes re-iterate the impor-

tance of memory management and increasing application complexity stresses the need for self-

management. At the same time, different memory requirements of different applications require

that optimizations for memory management be done from a complete system perspective. In the

view of this, the goal of this thesis is to take a step towards self-optimizing memory management

at all the different levels of the memory hierarchy.

This thesis makes three main contributions to the memory management system. First,

it undertakes a thorough characterization study for the TLBs and proposes a novel prefetching

mechanism that is simple, powerful and adapts to the applications. Second, it presents a dynamic

memory allocator that tunes itself to the applications. Finally, towards the goal of developing

a self-optimizing VMM, it finds the important VMM parameters that govern the system per-

formance, relates the influence of these parameters to the application/OS characteristics, and

provides a solid motivation to set these parameters dynamically.
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Chapter 1

Introduction

Systems today are becoming application driven. Application performance is critical in

various fields like biology, genetics, military, space exploration etc. For instance, the protein

folding problem that could provide a cure to Alzheimer’s disease requires massive computa-

tional power and IBM is building the Bluegene system [21] in an attempt to solve this problem.

Several large-scale projects in industry and academia have applications as their primary motiva-

tion today. With regard to applications themselves, two fundamental trends can be observed in

their evolution: (i) Application sizes are increasing and (ii) Application complexity is increasing.

Today’s applications are much larger than those from a decade ago. Common desktop

applications like KDE [10], Netscape [16] or Mozilla [13] need about 20-32 megabytes(MB) of

memory. High-end server applications like WebSphere [9] need a minimum of 256MB to run

and a few gigabytes of memory is recommended. It is not only a question of fitting applications

in the processor caches but also that of fitting them in the main memory. As the distance between

the processor and memory increases, with disk access times showing few signs of improvement,

optimizations to reduce the data access time by having the right data at the right time in the right

level of this hierarchy become all the more important. At the same time, diversity of application

working-sets can mandate different optimizations. For example, desktop applications generally

fit in memory. For such applications, optimizations done in the processor memory management

structures, the caches and the TLBs, can have greater impact on their performance compared to
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those done in the operating system. Thus, techniques to increase the performance of these on-

chip structures will help. On the other hand, if we consider high-end applications like DBT3 [17]

or Websphere [9], the bottleneck for these applications is the disk access. Though optimizations

done in the processor-memory path might help, optimizations done to manage data effectively in

the main memory, thereby preventing disk accesses, will have much greater benefits. Thus, for

such applications, memory management techniques employed in the operating system become

more important. Therefore, due to diverse requirements of today’s applications, it is necessary

to provide optimizations at all levels in this hierarchy. In other words, memory management

optimizations need to be done from a complete system perspective.

At the same time, phenomenal growth of computing power has also resulted in mak-

ing applications more complex. Complexity has not only increased for a single application in

terms of the number of lines of code, bugs, error conditions etc. [2], but also in the diversity

of applications that are being developed. In fact, it is not just application complexity that has

increased, but systems in general have become more complex. Today, a lot of time and effort is

spent in managing systems. For instance, large companies spend about 40% of their investment

in just managing systems [62, 58]. As the proliferation of the Internet continues and device com-

plexities increase, managing systems will become an indomitable task. The goal of Autonomic

Computing [62] is to reduce the increasing complexity of managing larger computing systems

by making them self-managing. If we take a typical computer system, there are a number of

variables on which performance of applications depend. For instance, the parameters within an

operating system have significant effect on the application runtime. Humans cannot be expected

to sit and tune such parameters for every application - this is not economical both in terms of

time and cost. Thus, in the light of emerging technologies, memory management needs to be
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self-managing. While there are several aspects of Autonomic Computing, this thesis specifically

focuses on making memory management self-optimizing, i.e. the ability of a system to adapt

itself to the workload behavior in order to provide the best performance at anytime.

Disk

Processor

Memory

Appln./Compiler

Run-time Env.

Operating System

Hardware

Cache

TLB

(b) (c)

(a)

Software
Optimizations

Hardware
Optimizations

Software
Optimizations

Applications can
optimize at any level

DataPath

Data

Address

(d)

Fig. 1.1. Figure shows optimization methods for memory management.

Increasing application sizes reiterate the importance of efficient and effective memory

management. Differing memory requirements of different applications imply the need for mem-

ory management optimizations to be done at all the levels. Increasing application complexity

stresses the need for self-optimization. The goal of this thesis is to take a step towards making

memory management self-optimizing - this being done from a complete system perspective at

all the levels in the memory hierarchy without requiring applications to be modified. While one

could think of writing an application by keeping the complete memory hierarchy in perspective,

we do not want to burden application programmers to do this. Also, as applications become
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more complex, this task will become non-trivial. This thesis takes a step towards proposing

adaptive mechanisms for optimizing the Memory Management System(MMS) at different levels

- hardware, operating system and runtime libraries, to improve application performance.

1.1 Hardware Enhancements for the TLB

On the hardware front (shown as (a) in Figure 1.1), the caches and the TLBs are respon-

sible for providing efficient data access and protection to the processor core. The performance

of these two structures has direct implication on the application. Numerous efforts have been

undertaken to improve the performance of these structures, especially for caches. Methods to

improve performance of data caches include design of exclusive caches [70], adaptive caches

[90], stream buffers [69], column associative caches [22] etc. Methods have also been proposed

on the software side to improve the performance of caches [52, 72, 98, 40, 35]. Techniques have

been proposed to improve the performance of instruction caches as well [95]. Some of these

proposals have even been implemented in commercial microprocessors. Caches have also been

investigated quite extensively with regard to prefetching [42, 75, 48, 108]. In all, a plethora of

literature exists for caches in the past while TLBs have received much less attention. Most of

the optimizations for TLBs in the past have been mainly been limited to structural optimizations

like Multi-level TLBs[84] and Superpaging[104]. There has not even been a characterization

study that has been undertaken for the TLBs (where as such studies have been done extensively

for caches [28, 36, 60], for different kinds of workloads). Since the access time of TLB is ex-

tremely important, there has been reluctance to propose novel enhancements in case it affects the

design of the critical path. Further, since this is an on-chip structure, use of elaborate hardware
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to monitor and optimize the datapath reference patterns would be limited by space and power

constraints.

Several previous studies [63, 94, 97, 23] have noted the importance of the TLB. Some

studies report that TLB overhead could constitute as much as 40% of the execution time in

extreme cases with an average overhead of 8-9% [63]. TLB overhead could be upto 80% of

a kernel’s computation time [94] and studies with commercial and scientific applications [97]

have shown that the TLB miss rate can account for over 10% of their execution time even with

an optimistic 30-50 cycle miss overhead. It has also been observed in the past [23] that TLB

handler is the most frequently executed kernel service.

Keeping the current trends in mind, it is important to provide optimizations for the TLBs

due to several reasons: First, the growing gap between the processor and the memory can only

increase the TLB overhead in case the translation is not cached. Second, as application working-

sets get larger it is difficult for the TLB to cover the working-set effectively, even with large

TLBs. For instance, many of the SPEC CPU 2000 benchmarks have working sets larger than the

TLB coverage provided by any of the processors today. In fact, it might even become difficult to

find the translations in the cache. Third, as pipelines get deeper, overhead of software handled

TLBs will increase due to the increased cost of flushing the pipelines. Therefore, the issue of

improving TLB performance will continue to remain an important problem to be looked at even

in future.

Before proposing enhancements, it is important to understand how applications behave

and then justify the extra hardware based on the cost-benefit trade-offs. Such an approach has

been used in the design and analysis of other system components (eg. [28] for caches, [100] for

I/O, [111] for processors etc.), and to our knowledge there is no other prior study that has done
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the same for the TLBs. In our quest for a self-optimizing MMS, we begin with such a study

(Chapter 2), studying numerous applications to find out what is it that applications need from

the TLB, and whether we can provide it in a fashion that is not specifically tailored for an ap-

plication while still dynamically adapting itself to the application characteristics. Our thorough

characterization study yields several good insights into the application characteristics based on

which we develop a novel TLB prefetching technique Our technique is simple, yet powerful, and

it adapts to applications as they execute.

1.2 Software Memory Management

Optimizations to the memory structures can also be done in software Software optimiza-

tions ((b) in Figure 1.1) for caches, which can also have an effect on the TLBs have used compiler

transformations and data reorganization to enhance locality [40, 98, 72, 52]. Increasing complex-

ity of applications (and hence that of application code) can make compiler optimizations more

difficult in future. Compiler optimizations may not be possible when we do not have access to

the source code. Also, most of these optimizations target static data and arrays but not dynamic

memory, which is managed by the runtime environment. Many applications today spend signif-

icant amount of time in managing dynamic memory. For example common utility applications

like GNU Make [6] and GNU Awk [4] spend about 5% of their runtime in dynamic memory

allocation. Cfrac, a prime number factoring application, spends about 15% of its execution time

in memory allocation. SPEC benchmarks twolf, vpr and SPEC JBB [18] spend about 1-3% of

application runtime in memory allocation. Efficient dynamic memory allocation is a necessity

for all these applications. Although operating systems ship libraries that do have allocators, ap-

plications do not trust or use them. The reason being that these allocators are much more generic
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than what is required by the applications and hence are not optimized for a given application. At

the same time, these allocators need to be generic enough to work with any given application. In

order to prevent the application slowdown using generic memory allocators, many applications

today come with their own custom allocators e.g. The Apache Webserver [1], MySQL Database

[15], Natural Language Processing Benchmark parser [18], GNU C Compiler [5] etc. As the

application complexity and working set sizes increase, application writers cannot be expected to

supply an efficient allocator with every application. This is not good software engineering prac-

tice, may not be feasible at times and can also result in duplication of work. Also, use of custom

allocators often precludes the use of memory leak detection tools [30] and makes debugging

more difficult. There are also several other disadvantages with traditional custom allocators and

these have been discussed in [30] in detail. The solution rather lies in building an adaptive mem-

ory allocator that tunes itself to application behavior. As a next step in a self-optimizing MMS,

this thesis proposes an allocator that observes incoming allocation/deallocation events and their

properties and optimizes itself to the application. Before designing such an adaptive memory al-

locator, we first look at application allocation/deallocation characteristics. These characteristics

show promise for an adaptive allocator. We then build an adaptive memory allocator and com-

pare it with traditional allocators which are similar to custom allocators. Our results indicate that

adaptivity can help reduce application runtime in many cases but can also hurt in a few. We con-

clude that adaptivity does not come for free. The overhead involved in monitoring application

characteristics might overshadow the performance gain using adaptivity. We finally recommend

an infrastructure that is a combination of our adaptive allocator and a traditional custom allocator

that can reap the benefits of both.



8

1.3 Adaptivity in the Operating System

Applications whose working-sets fit into the memory would benefit from the optimiza-

tions discussed above that are in the processor-memory path. Many high-end server applications

today do not fit in memory. For such applications, disk accesses become the bottleneck and it

is important to minimize the need to go to the disk. The operating system’s Virtual Memory

Manager (VMM) is responsible for moving the data in and out of the disk(represented by (c)

in Figure 1.1) and keeping the important data in the memory. VMM is composed of two main

components: the policy and the parameters of the policy. The policy determines how the pages

are managed by the operating system and is typically fixed. The parameters used by the pol-

icy, on the other hand, have influence on its performance and can be varied dynamically as the

system is running. Operating system developers spend a lot of time tuning these parameters.

During development, these parameters are set ’intuitively’ based on the developer’s experience.

After the systems get deployed, if the users start observing poor application performance, these

parameters are again tuned after massive experimentation. It is neither possible to think of every

application when fixing these parameters, nor are the same values good for all classes of appli-

cations. Developers spend days to set these parameters after hundreds of experiments. Finally,

’hooks’ are provided to change these parameters while the system is running if the user wishes

to. Most of the users do not have any idea about the internals of the system and do not know

how to set such parameters. This motivates the need for a self-tuning system that can tune the

parameters by itself when different applications are running, to deliver the best performance at

any time. Such a system would adapt to different applications automatically and no external

tuning would be required.
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Observing application characteristics within an operating system and tuning parameters

dynamically using these characteristics is a very challenging problem. Towards this goal, in-

vestigating the influence of important VMM parameters on the application execution, coming

up with methods to capture application characteristics in the operating system (where not all

information is available), and correlating these characteristics to the influence of parameters is

a good starting point. In this thesis, we undertake a thorough characterization study and com-

pare pure application characteristics with those that can be inferred in the OS. We show that a

few parameters have significant impact on the performance of the applications and finally show

how these characteristics impact performance. The insights gained in this study provide a solid

background to investigate different methods for designing a self-tuning VMM.

1.4 Application-controlled Memory Management

Finally, we would like to point out that memory management can also be done by appli-

cations themselves ((d) in Figure 1.1). Application developers can pass hints or use operating

system/architectural features explicitly to manage the memory more efficiently. This would def-

initely place a large burden on the programmers. Instead, in the light of emerging system and

application complexities, this thesis takes a different approach by proposing to self-optimize

Memory Management at different levels - hardware, operating system and runtime environment

- to save application programmers from this burden of application-level memory management.
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1.5 Roadmap

The rest of the thesis is organized as follows: Chapter 2 goes over the issues on TLB

characterization and optimization. Chapter 3 discusses the design and evaluation of the adap-

tive runtime memory allocator and Chapter 4 discusses the memory management issues in an

operating system. Finally, Chapter 5 presents concluding remarks.
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Chapter 2

Hardware Enhancements for the TLB

Virtual to physical address translation is one of the most critical operations in computer

systems since this is invoked on every instruction fetch and data reference. To speed up address

translation, computer systems that use page based virtual memory provide a cache of recent

translations called the Translation Lookaside Buffer (TLB). The TLB is usually a small structure

indexed by the virtual page number that can be quickly looked up by the memory management

unit (MMU) to get the corresponding physical frame number. The importance of the TLB has

always been recognized, and emerging technological and application trends only reaffirm its

dominance in determining system performance. Increases in instruction level parallelism, higher

clock frequencies, and the growing demands for larger working sets by applications continue to

make TLB design and implementation critical in current and future microprocessors.

Several studies have quantified the importance of TLB performance on system execution

[66]. Anderson et al. [23] show that TLB miss handling has an important consequence on

performance, and this is the most frequently executed kernel service. TLB miss handling has

been shown to constitute as much as 40% of execution time [63]. and upto 90% of a kernel’s

computation [94]. Studies with specific applications [97] have also shown that the TLB miss

rate can account for over 10% of their execution time even with an optimistic 30-50 cycle miss

overhead.
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Processor i-TLB d-TLB TLB Miss Handler

MIPS R10000 8-entry FA 64-paired-entry FA Software

Alpha 21164 48-entry FA 64-entry FA Software

PowerPC 604 128-entry 2-way 128-entry 2-way Hardware

HP 4-entry Micro-TLB for Instructions Software
PA-RISC 2.0 96-entry FA Main-TLB

Sun UltraSparc-I 64-entry FA 64-entry FA Software

Intel Pentium II 32-entry 4-way 64-entry 4-way Hardware

Intel Itanium 64-entry FA 32-entry level1 FA Hardware/Software
96-entry level2 FA

AMD Athlon 24-Entry 32-Entry Hardware
level1 FA level1 FA

(Thunderbird) 256-Entry 256-Entry
level2 FA level2 FA

AMD Athlon 24-Entry 40-Entry Hardware
level1 FA level1 FA

(Palomino) 256-Entry 256-Entry
level2 FA level2 FA

(Exclusive) (Exclusive)

Table 2.1. TLBs in Commercial Microprocessors
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With its importance widely recognized, the TLB has been the target for several opti-

mizations to reduce access latency, miss rates and miss handling overheads. With regard to

TLB structures themselves, there have been investigations on suitable organizations in terms

of size, associativities and multi-level organizations [104, 84, 41, 25]. Superpaging is a con-

cept that has been proposed to boost TLB coverage. The basic idea is to use a single entry

to map several pages, thereby increasing the number of translations within the TLB. Hard-

ware and software techniques for supporting this mechanism have come under a lot of scrutiny

[104, 105, 103, 56, 88, 93]. Most prior work in TLB optimizations has targeted lowering miss

rates or miss handling costs. It is only recently [97, 89, 26] that the issue of prefetching TLB

entries to hide all or some of the miss costs has started drawing interest. Many research findings

on TLBs have also made their way into commercial offerings. Today’s microprocessors exhibit

a wide range of TLB organizations and miss handling capabilities as is shown in Table 2.1. A

very nice survey of several of these TLB structures can be found in [65]. In all, a good deal

of research has been undertaken on TLB design and evaluation. However, to our knowledge,

there has not been any study looking at characterizing the TLB support that is required from an

application’s perspective. At the same time, different studies have used different workloads to

evaluate their designs/improvements, and the lack of a common ground makes a uniform com-

parison difficult. Further, one may ignore one or more issues when optimizing any particular

detail, and such omissions can play an important role in the effectiveness of the optimizations.

For instance, in the recent study on prefetching benefits [97], it is not clear if there is a reason-

able window of chance for performing the prefetching. It is thus essential to uniformly examine

a wide range of application characteristics at the same time (from an application’s perspective)

to gain better insights on:
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� How can TLB structures/organization be optimized to reduce misses?

� How much scope is there to benefit from superpaging?

� Can we use the program’s static code structure and/or dynamic instruction stream to trigger

optimizations?

� Would the flexibility provided by software TLB management1 offset the higher overheads

of miss handling compared to a hardwired approach?

� How well suited are applications to prefetching TLB entries? Which prefetching tech-

niques should be employed, and under what circumstances?

� Do we have a large enough window to benefit from prefetching? If not, what other tech-

niques should we employ for latency tolerance/reduction?

Characterizing the behavior of an application is crucial in any systems design endeavor as

many application-driven studies have shown [67, 47, 46]. Application characteristics can specify

what is really important from an application’s perspective, identify bottlenecks in the execution

for a closer look, help evaluate current/proposed designs with real workloads, and even suggest

architectural/OS enhancements for better performance (in fact, an examination of some of our

characterization results have really led to the development of a new TLB prefetching mechanism

called Distance Prefetching [73]) While there have been characterization efforts in the context

of other processor features, caches [46], I/O and interconnects, this issue has not been looked at

previously for TLBs.

1We would like to differentiate between the terms software TLB management and software TLB han-

dling in this thesis. We use the latter to denote that the miss handling is done by the software i.e. the

operating system, and the former term is used to denote more sophisticated software that can control

placement, pinning and replacement of TLB entries. While many current systems provide software miss

handlers (see Table 2.1), software TLB management has not been investigated extensively.
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Towards addressing this deficiency, this thesis first sets out to examine the different char-

acteristics of applications from the SPEC2000 suite that affect TLB performance to answer many

of the questions raised above. The SPEC2000 [45, 61] suite contains 26 candidate C, C++ and

Fortran applications for CPU evaluations, that encompass a wide spectrum of application do-

mains containing interesting and important problems for several users. We have used all the

applications from this suite in this study to quantify their TLB behavior for different configu-

rations, but focus specifically on those incurring the highest miss rates for the characterization

effort. We limit ourselves to d-TLB (only data references) in this study since data references

are usually much less well-behaved than instructions in terms of misses (i-TLB miss rates in

our experiments are very low) Several other studies have also focussed primarily on data misses

[97].

2.1 Related Work

TLB design, implementation and management has always been and continues to be the

target for different optimizations because of its presence in the critical path of program execution.

As was mentioned earlier, many studies [43, 65, 23, 63, 94] have pointed out the importance of

the TLB and the necessity of speeding up the miss handling process.

Several studies [104, 65, 84] have looked at hardware TLB structures/organization and

their impact on system performance in terms of capacity and/or associativity. While some of

these have focussed on single (monolithic) TLBs, there have been studies which have investi-

gated the benefits of multi-level TLBs [41, 25]. There are also implementations of multi-level

TLBs in commercial processors such as MIPS R4000, Hal’s SPARC64, IBM AS/400 PowerPC,

AMD K-7 and Intel Itanium. With instruction level parallelism (ILP) being exploited by most
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current processors, there is a need a provide multi-ported TLBs to allow several concurrent in-

struction streams to access the TLB. Austin and Sohi [25] show how multiple ports can impact

access latencies, and argue for interleaved and multi-level designs. They show that combining

requests at the TLB access port (called piggybacking), to reduce the number of ports, can provide

significant benefits.

TLB miss handling costs need to be kept extremely low for good performance. Com-

mercial processors use either a hardware mechanism or a software mechanism to fill the TLB

on a miss. Unlike hardware managed TLB misses which have a relatively small refill penalty,

handlers for software managed TLBs need to be carefully crafted to both reduce misses as well

as reduce the miss handling costs. Nagle et al. [84] study the influence of the operating system

on the software managed MIPS R2000 TLB, and investigate the impact of size, associativity

and partitioning of TLB entries (between OS and application). They point out that the operating

system has a considerable influence on the number and nature of misses. Bala et al. [26] focus

in specifically on interprocess communication activities, and illustrate software techniques for

lowering miss penalties on software managed TLBs.

Superpaging is another well investigated technique to boost the coverage of the TLB and

better utilize its capacity [104, 105, 103, 55]. Studies have looked at hardware and operating

system support for providing superpage translations in the TLB. Recent work in this area [55]

is investigating memory controller support for re-mapping pages so that there is more scope for

creating superpage entries (without incurring the overheads of copying).
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Application i-TLB Missrate Application i-TLB Missrate Application i-TLB Missrate Application i-TLB Missrate

galgel 1:4� 10�8 mcf 4:4� 10�9 ammp 7:3� 10�9 apsi 2:46� 10�7

vpr 7:2� 10�9 lucas 1:1� 10�8 twolf 1:28� 10�8 facerec 8:8� 10�8

art 3� 10�9 bzip2 4:4� 10�9 parser 8:28� 10�8 vortex 2:74� 10�4

crafty 1:8� 10�8 swim 1:3� 10�8 applu 5:75� 10�8 gcc 1:08� 10�4

mesa 3:6� 10�8 mgrid 1:5� 10�8 equake 5:55� 10�9 perlbmk 3:35� 10�5

wupwise 1:2� 10�8 sixtrack 8:8� 10�8 gap 2:34� 10�8 fma3d 3:42� 10�5

gzip 5� 10�9 eon 6:8� 10�8

Table 2.2. i-TLB Missrates for all the applications using a 64-entry, 4-way set-associative i-TLB

for 7 billion instructions

2.2 Experimental Setup

We have studied the TLB behavior for all 26 applications from the SPEC2000 suite.

The benchmarks were compiled on an Alpha 21264 machine using Compaq’s cc V5.9-008, cxx

V6.2-024, f77 V5.3-915 and f90 V5.3-915 compilers using -O4(-O5 for Fortran) optimization

flags which enable loop unrolling, software pipelining using dependency analysis, vectorization

of some loops, inline expansion of small functions etc. All the simulations are conducted using

the SimpleScalar-3.0 toolset [34] that simulates the Alpha architecture. Since we are mainly

interested in the TLB behavior, we have modified sim-cache component of this toolset, by

adding a TLB simulator that traps all memory references. sim-cache does a functional (not a

cycle-by-cycle) simulation of instructions, and we only examine the memory references for the

d-TLB investigation. While there could be some possible effects due to instructions retiring in a

different order than that with a cycle accurate simulator, we do not feel that this will substantially

change the results given in this thesis since we usually find that TLB misses are reasonably
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spaced to affect the relative ordering of the misses. We also found that differences in what gets

replaced is also not significantly affected by the coarser simulation granularity.

As was mentioned earlier, we are only examining the data references (d-TLB). Table

2.2 shows the i-TLB miss rates which are very low for these applications. Some studies have

pointed out the influence of the OS on TLB behavior [84]. However, similar to what many other

studies [97, 41] have done, in this thesis we examine only application TLB references(we do

not simulate the OS) since our focus is more on investigating application level characteristics.

Issues about the interference between application and OS TLB entries, or reserving some entries

for the OS are not considered here (we understand that these issues can and have been shown to

have a considerable influence on TLB performance). The effect of coexisting applications and

context switching is not considered, i.e. TLB fills after a context switch. One could perhaps think

of the TLB being saved and restored at context switches to capture purely application effects.

Simulations have been conducted with different TLB configurations - sizes (64, 128, 256, and

512 entries), and associativities (full, 4-way and 2-way) and we assume a page size of 4KB. We

do not consider the effect of page faults on TLB behavior (the entry needs to be invalidated on

a page replacement), since we believe that page faults are much less frequent than TLB misses

to have a meaningful influence. Further, all these applications take less than 256MB of space,

which can be accommodated in most current systems.

Simulation of these benchmarks is very time-consuming as has been pointed out by oth-

ers as well [87, 37]. In fact, the recent study on quantifying cache performance for these bench-

marks mentions that it takes 30 CPU years, and their study used several workstations over several

days to conduct this evaluation. In this study, we do not attempt to execute these applications

to completion. Rather, we have examined the TLB behavior over five billion instructions after
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skipping the first two billion instructions of the execution for each application. We believe that

this ignores the initialization/start-up properties of the application, and captures the representa-

tive facets of the main execution. The simulated instructions constitute around 1%(parser)-

12%(mcf) of the application run time [37].

For gzip/bzip2,perlbmk and vortex the input files that we used are input.source,

diffmail.pl and lendian3.raw respectively.

The term, miss rate, which is often used in the following discussion is defined as the

number of TLB misses expressed as a percentage of the total number of memory references.

2.3 Characterization Results

2.3.1 What is the impact of TLB structure?

As a starting step, we first examine the overall TLB performance for the different ap-

plications for 9 different TLB configurations (combinations of three sizes - 64, 128, and 256,

and three associativities - fully associative (FA), 4-way and 2-way). The resulting miss rates are

shown in Figure 2.1, and we observe the following:

� A diverse spectrum of TLB characteristics is exhibited by these applications. We have ap-

plications such as gzip, eon, perlbmk, gap, vortex, wupwise, swim, mgrid,

applu, mesa, art, equake, facerec and fma3d which incur few TLB misses.

On the other hand, applications such as vpr, mcf, twolf, galgel, ammp, lucas,

sixtrack and apsi have a significant number (greater than 1%) of TLB misses (at

least in some of the configurations). TLB miss penalties can be quite significant. For

instance, the IBM PowerPC 603 that handles misses in software, incurs a latency of 32
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Fig. 2.1. Figure showing TLB miss rates of all the SPEC2000 applications with different TLB

sizes (64, 128, 256) and three different associativities (2-way, 4-way and FA).
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cycles just to invoke and return from the handler, leave alone the cost of loading the TLBs

[53]. Even if we optimistically assume a TLB miss penalty of 30 cycles, a 1% TLB miss

rate can result in significant overheads - around 10% of the overall execution time for a

CPI of 1.0. Other studies have pointed out that TLB miss handling overheads can be even

higher [55, 97, 56]. Applications such as bzip, gcc, crafty and parser fall between

these extremes. We focus on the six applications which incur higher TLB miss rates.

� Even though making the TLB larger helps, the benefit is not very significant in most of

these applications except vpr, twolf and mcf.

� Applications such vpr, mcf, twolf, lucas and apsi are more influenced by the as-

sociativity than the others.

These results reiterate the importance of the TLB in the execution of these applications.

Nearly a fourth of the SPEC2000 suite have reasonably high TLB miss rates to be affected by

its miss penalty. While capacity and associativity do help in cases, they are not the universal

solutions to address the TLB bottleneck.

2.3.2 Will a multi-level TLB help?

Processors, such as the Itanium IA-64 (32-entry L1, 96-entry L2), AMD Athlon (32-entry

L1, 256-entry L2) etc. provide Multi-level TLB structures, instead of a single monolithic TLB,

i.e. lookup in a smaller first level TLB, and only on a miss there do we go to the second level

TLB. With a smaller first level TLB, overall TLB lookup time can become much lower as long

as we have good hit rates in the first level. Performance of 2-level TLBs has been conducted by

others [41], but its benefit for SPEC2000 workloads has not been investigated to our knowledge.
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An in-depth investigation of the impact of multi-level TLBs requires varying numerous param-

eters for each of the levels. Rather than undertake such a full factorial experiment, we limit our

study to a 2-level TLB with a 32 entry fully associative 1st level and a 96 entry fully associative

2nd level that is similar to the Itanium’s(IA-64) structure. We also assume that the 2-level TLB

obeys the containment property(whatever is in the first level is duplicated in the second level).

Table 2.3 shows the hit and miss rates with this 2-level structure for the applications.

Application 1st Level-1 TLB 2nd Level-2 TLB Overall Miss Rate Monolithic TLB

Hits Misses Hits Misses Hits Misses

ammp 98.07% 1.93% 38% 62% 1.2% 98.87% 1.13%

mcf 89.5% 10.5% 11.2% 88.8% 9.24% 91.01% 8.99%

twolf 96.57% 3.43% 53.2% 46.8% 1.60% 98.71% 1.29%

vpr 94.5% 4.5% 56.6% 43.4% 1.95% 98.36% 1.64%

lucas 98.33% 1.67% 2% 98% 1.64% 98.37% 1.63%

apsi 97.39% 2.61% 12.6% 87.4% 2.28% 98.04% 1.96%

galgel 77.1% 22.9% 0.05% 99.95% 22.8% 77.2% 22.8%

Table 2.3. Hit and Miss Rates for the 2-level TLB configuration. Table shows the hits and miss

rates for each of the 2-levels as a percentage of the number of references to that level, as well as

the overall miss rate which is the percentage of references that do not find a translation in either

of the levels. Also shown are the miss rates for a single monolithic TLB of the same size.

To study the impact of a hierarchical TLB, we compare these results with that of a single

monolithic TLB of the same size (32 + 96 = 128 entries) in Table 2.3. It is to be expected that the

2-level TLB is making less effective use of the overall space because of the containment property

and as a result we do find slightly higher miss rates for the seven applications (especially twolf,

vpr, apsi and mcf). On the other hand, the benefit of a multi-level TLB would be felt due to
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the much lower access time of the 1st level TLB and the avoidance of accessing the second level

- which is inturn determined by the miss rates for the 1st level TLB.

Assume that the access time for a single monolithic TLB (i.e. 128 entry in this situation)

is a. Let the access time for the 1st and 2nd level TLBs in the hierarchical alternative be a1 and

a2 respectively. Let us denote the miss fraction of the monolithic TLB, the 1st level and 2nd

level of the hierarchical TLB to be m, m1, and m2 respectively. Also, let the cost of fetching a

translation that is not in the TLB be denoted by C . Then, the cost of translating an address in the

monolithic structure (Cm) is calculated by

Cm = a+m� C (2.1)

The cost of translating an address in the 2-level TLB (Cs) is given by

Cs = a1 +m1 � (a2 +m2 � C) (2.2)

The 2-level TLB is a better alternative when

a1 +m1 � (a2 +m2 � C) < a+m� C (2.3)

i.e.,

m1 <
a� a1 +m� C

a2 +m2 � C
(2.4)

Actual access times for associative memories of different sizes are hardware sensitive

and fairly accurate models have been developed. We use the model described in [82]. According
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to this model, access times for 32, 96 and 128-entry TLBs would approximately be 2:7ns, 2:9ns

and 3:0ns respectively. Plugging in these values and assuming an optimistic 30 cycle miss

penalty(C = 30), we find that the miss rate (m1) in the first level TLB has to be less than 2.97%,

10.15%, 4.05%, 4.97%, 2.44%, 3.04% and 21.71% for ammp, mcf, twolf, vpr, lucas,

apsi and galgel respectively. If we compare these numbers with the actual miss rates in the

1st level TLB in Table 2.3(column 3), multi-level structure is definitely a better choice for ammp,

twolf, vpr and apsi. For mcf and galgel, the choice is questionable since the difference

in miss rate is not significant (and we have used a very optimistic 30 cycle miss penalty). It is

only for lucas that level-2 TLB does not do as well.

2.3.3 Can we improve TLB coverage? (Superpaging)

The previous set of results showed how much we can gain by improving the structure (i.e.

capacity and associativity) of the TLB, and these gains are obtained with an increase in hardware

complexity. The recent trend [104] to improve performance without significantly increasing

hardware costs is through the concept of superpaging. TLBs that support superpaging use a

single entry for translating a set of consecutive virtual pages - the number of pages for a single

entry is typically a power of two - as long as these pages are located physically contiguous as

well. As a result, pages that are accessed at around the same time and which are adjacent to

each other virtually can share the same TLB entry, thus freeing up slots for other translations (to

improve TLB coverage).

To study the potential benefits of superpaging for these applications, we next examine the

contents of the TLB during the course of execution. In particular, we are interested in finding out

how small a TLB would suffice to hold all the translations if it supported superpaging. At every
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Fig. 2.2. Figure showing what size TLB would suffice when we combine contiguous virtual

page translations with superpage entries. A 128 entry fully associative TLB is used.
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miss (since TLB changes only on a miss), we examine all the TLB entries and find out how many

of them can be combined into a single one (they are virtually contiguous pages). The number of

resulting entries is plotted in Figure 2.2 during the course of execution (in terms of the misses

in the x-axis). It should be noted that we are not restricting ourselves to a power of two and are

assuming that the operating system will automatically allocate these virtually contiguous pages

in contiguous physical locations, since our goal here is to examine the potential of superpaging

from an application perspective. For better clarity, only a small window of the execution is

plotted (similar execution is seen over a much larger window).

We find quite different behaviors across the applications. Applications like lucas, mcf,

galgel and apsi may not benefit much from superpaging. These applications require at-least

around 100 TLB entries on the average without too much scope for combining these entries.

Provisioning superpage support may not show much improvement in the performance while

adding hardware complexity. On the other hand, applications like ammp, twolf and vpr show

the potential to benefit from superpaging mechanisms. Of these, the working set in ammp at any

time can be covered by just a handful of superpage entries (since it just sequentially scans a lot

of data).

2.3.4 Where are the Misses Occurring?

We move on to examining how the TLB misses are distributed over the execution of

the program. This can help us identify hot spots in the execution that are worth a closer look

for optimizations. Dynamically chosen/triggered optimizations based on different phases of the

execution may perhaps be beneficial, if we do find well-defined phases.



27

2 2.001 2.002 2.003 2.004 2.005 2.006 2.007 2.008 2.009 2.01

x 10
6

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r
 o

f 
M

is
s
e
s

Time (thousands of instructions)

(a) TLB misses as the application is executing(for mcf). x axis
denotes the number of instructions executed in thousands, and
y axis denotes the number of misses for every thousand in-
structions.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f 
M

is
s
e
s

Miss−Separation(In instructions)

apsi
galgel
lucas
mcf
twolf
vpr

(b) Cumulative Density Function (CDF) of miss separa-
tion/interval. x-axis shows the number of instructions between
successive misses in increasing order, and y-axis denotes the
fraction of misses that have miss separations of at most this
many instructions.



28

Since we are working with the sim-cache version of SimpleScalar, we do not have the

time stamps for the memory references and the TLB misses. Instead, we plot the TLB misses

as a function of the number of executed instructions (in thousands). Note that the scale of the

graph can make it look as though there are multiple y values for a given x, while this is actually

not the case.

From the dynamic optimization viewpoint, mcf a candidate that shows phases of varying

TLB activity as shown in the Figure 2.3.4(a). The variance over time for the others is not as

significant, and dynamic triggers in those cases may not be very helpful.

2.3.5 How far apart are the misses temporally?

The temporal separation of misses is an important characteristic for examining possible

optimizations. If most misses are fairly close to each other temporally, then mechanisms that

prefetch a TLB entry based on the previous miss may not enjoy a large enough window of over-

lap to completely hide miss latencies. In such situations, we should explore techniques for bulk

loading/prefetching TLB entries. A significantly larger window suggests that more sophisticated

prefetching techniques (which may take more time) can be viable. To our knowledge, no previ-

ous work has looked at the temporal separation of TLB misses previously. Figure 2.3.4(b) shows

the cumulative density distribution of temporal miss separations (i.e. the y-axis shows the frac-

tion of misses that are separated by at most a given value on the x-axis), where the separations

are expressed in terms of instructions. A steep curve indicates that more misses have very short

temporal separations.

For nearly all applications, a large portion of misses are separated by at most 30-50

instructions. For instance, ammp, galgel and apsi have over 90% of misses separated by
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less than 50 instructions. mcf also has small temporal separation with around 70% of misses

falling within 50 instructions. Only lucas, twolf and vpr have less steep curves. In some

applications (lucas and galgel), a few miss-distances dominate the execution, suggesting

that the TLB misses are occurring very periodically/regularly.

These results provide insight on the constraint window that prefetch mechanisms need to

operate under. As CPIs get smaller (with higher ILPs) and processor speeds increase (making

memory from where the TLB entries are fetched an even bigger problem), this window can

shrink even further.

2.3.6 Where are the misses occurring? - Static

If there are not very well demarcated phases of execution to trigger actions dynamically

based on the phase, then it may perhaps be more rewarding to examine the (static) structure

of the application programs to find out where compiler or user-directed optimizations need to

concentrate on. To identify the points in the program contributing to the TLB misses, we plot

the number of data TLB misses incurred by each program counter (PC) value in Figure 2.3.

Overall, we find that there are only a handful of instructions that contribute to the bulk of TLB

misses. These memory reference instructions are typically called repetitively (in a loop), and

in the following discussion we briefly go through each application describing the points in the

program corresponding to these instructions.

2.3.7 How do procedure calls influence TLB behavior?

Another possible piece of information that may be useful is how the dynamic procedure

activations are affecting TLB performance. Just as context switches are wiping out locality
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Fig. 2.3. PC Values Incurring TLB Misses
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ammp

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 6551060 0 0 0 0 0
p2 0 1985261 52 19780 0 0
p3 0 178 23616 0 0 0
p4 0 19778 0 484 0 0
p5 0 0 0 0 11854 0
p6 0 0 122 0 0 11726

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 19695293 0 95820 0 0 0
p2 0 268746139 0 26444893 0 0
p3 0 0 14366 0 0 0
p4 0 0 0 5712560 0 0
p5 0 0 19162 0 47282 0
p6 0 0 0 0 0 83840

1
CCCCCA

apsi

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 4214667 37632 1 122 0 0
p2 37629 0 0 3 0 0
p3 0 0 23106 0 0 0
p4 0 0 1 20342 0 94
p5 123 0 0 0 18922 0
p6 0 0 70 0 20 2679

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 17515172 15353856 659276 218923 0 364857
p2 25086 1680896 0 3 0 0
p3 0 0 15744440 0 0 0
p4 0 0 3 10446698 0 37629
p5 212 0 0 0 13581567 0
p6 0 0 0 0 12788 13983648

1
CCCCCA

galgel

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 118160292 0 0 0 0 0
p2 0 0 0 0 0 0
p3 0 0 0 0 0 0
p4 0 0 0 0 0 0
p5 0 0 0 0 0 0
p6 0 0 0 0 0 0

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 351241880 0 0 0 0 0
p2 0 0 0 0 0 0
p3 0 0 0 0 0 0
p4 0 0 0 0 0 0
p5 0 0 0 0 0 0
p6 0 0 0 0 0 0

1
CCCCCA

Fig. 2.4. Figure showing Use and Replace matrices for different procedures. Applications like

galgel will not benefit from procedure based TLB allocation.
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lucas

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 2134568 0 115 3 1 3
p2 128 1354750 0 0 0 0
p3 0 115 8071 2 3 0
p4 0 2 3 0 0 0
p5 0 3 1 0 0 0
p6 0 0 3 0 0 0

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 88043027 6205515 12583409 74 228 32
p2 8 116268798 0 0 0 0
p3 1 1377055 8380144 0 2 0
p4 0 1 0 53 1 0
p5 0 0 0 16 47 0
p6 0 0 0 68 75 8

1
CCCCCA

mcf

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 11515218 84758 3442 0 0 1400
p2 37495 5309290 2825387 294807 39965 34437
p3 22710 2642559 1253810 167969 23458 19619
p4 22596 394896 37779 0 7467 2
p5 3994 62796 3621 0 95966 951
p6 2723 47108 6101 0 473 1

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 341317243 33233 4325 0 0 1400
p2 42784 5684912 93639 217971 159982 5450
p3 691 11717955 26204887 555515 120620 213272
p4 168504 678494 0 2600412 1622580 36553
p5 31769 20039 1144 0 757815 397
p6 1400 49470 184 0 12915 81318

1
CCCCCA

vpr

0
BBBBB�

Replae p1 p2 p3 p4 p5 p6

p1 1534418 665568 389960 205716 185082 31914
p2 671606 295406 171910 87269 79305 10895
p3 397985 170213 93952 50505 48062 7159
p4 202392 88042 51153 26917 25409 4563
p5 181524 82155 51514 24179 21356 2921
p6 24720 14994 9401 3902 4435 1202

1
CCCCCA

0
BBBBB�

Use p1 p2 p3 p4 p5 p6

p1 115982826 18038095 13586974 18778831 31114123 0
p2 844524 3615068 1110638 0 442 0
p3 906738 925468 6021517 0 1011 0
p4 13584480 0 0 11316157 0 0
p5 15325 0 43204 0 11045628 0
p6 53010370 4102716 685043 10258594 2896227 6222597

1
CCCCCA

Fig. 2.5. Figure showing Use and Replace matrices for different procedures. mcf is a potential

candidate because of interaction between p2, p3 and p4.
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from one application to another, one could hypothesize that the working sets may also change

when a procedure A invokes B. At the same time, both procedures may also share several data

structures. These two factors can lead to interference and sharing of TLB entries between these

procedures. Identifying such characteristics could be useful in different ways. If the interference

is significantly higher, but the locality carries over from the previous time this procedure was

invoked, then one could save the TLB upon a procedure call and restore the TLB from the

last exit out of that procedure. With a little hardware support (to switch/load/save TLBs), the

software could invoke mechanisms appropriately to facilitate this. If we find a strong case for

having separate sets of TLBs, then we could even advocate supporting more than one TLB

in hardware (even though there is only one active TLB at any time), and switching from one

to the other at runtime. A strong sharing across different procedures may indicate that these

enhancements are not going to be very useful (and could in fact hurt performance). Finally, if

some procedures share entries significantly, but not all or if there is significant interference with

other procedures, then we have a TLB assignment problem for each procedure (with a small

number of TLBs how do I assign a procedure to a specific TLB) that can be interesting for future

research. To investigate this issue, we tracked how many times a procedure B brought in an

entry that evicted an entry brought in earlier by procedure A. We call this the Replace matrix,

and show this for the top 6 procedures incurring misses. Similarly, we also have a Use matrix,

that shows how many time procedure B used an entry that was brought in by procedure A. The

Replace and Use matrices are given in the Figures 2.4 and 2.5.

In general, we find no strong case advocating separate TLBs or saving/restoring TLBs.

When an element in the Use matrix is high, the corresponding element in the Replace matrix is

also high in most of the cases. There is less sharing or interference across procedures for ammp,
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apsi, galgel, and lucas, compared to the others. In fact, we even conducted experiments

with separate TLBs to explore any benefits, but the miss rates were not affected significantly.

2.3.8 How would software TLB management help?

Application 64-entry 128-entry 256-entry

OPT’ LRU OPT’/LRU OPT’ LRU OPT’/LRU OPT’ LRU OPT’/LRU

ammp 1.13% 1.47% 0.77 0.98% 1.13% 0.87 0.89% 1.06% 0.84

mcf 9.3% 9.73% 0.955 8.86% 8.99% 0.985 7.34% 8.1% 0.90

twolf 1.3% 2.08% 0.625 0.65% 1.29% 0.503 0.2% 0.53% 0.377

vpr 1.54% 2.58% 0.596 0.80% 1.64% 0.487 0.23% 0.66% 0.348

lucas 1.64% 1.64% 1.0 1.62% 1.63% 0.99 1.57% 1.61% 0.975

apsi 1.85% 2.34% 0.79 1.38% 1.96% 0.704 0.77% 1.79% 0.43

galgel 22.5% 22.8% 0.986 19.8% 22.8% 0.868 14.4% 22.7% 0.634

Table 2.4. Comparing miss rates for OPT’ and LRU replacement policies

TLB management is essentially trying to (i) bring the entry that is needed into the TLB

at some appropriate time, and (ii) evict an entry currently present to make room for this in-

coming entry. These two actions play a key role in determining performance. The first action

determines the overhead that is incurred when a miss is encountered, while the latter affects the

miss rate itself (the choice of replacement candidate will determine future misses). Hardware

TLB management, though fast, hardwires these mechanisms allowing little scope for flexibility.

Typically, the missing entry is brought in on demand at the time of a miss (if we discount any

prefetching), and the replacement is determined usually based on LRU (either global in terms

of fully associative, or within a set in case of set associative). On the other hand, selecting the

replacement candidate in software - either by the application or by the compiler - can potentially
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choose better alternatives than a hardwired LRU. This is an issue that has not been investigated

in prior research to our knowledge in the context of TLBs. Most current TLBs do not provide

such capabilities, but any strong supporting arguments in favor of this could influence future

offerings. Prefetching TLB entries to tolerate/hide the miss latency is discussed later in section

2.4.

A detailed investigation of software directed replacement techniques is well beyond the

scope of this thesis. Rather, we would like to find out what is the best that we can ever do,

so that we can get a lower bound of achievable miss rates with any software directed replace-

ment scheme. Such a study can be conducted by simulating the OPT replacement policy, i.e.

at any instant replace the entry whose next usage is furthest in the future. It can be proved that

no other replacement scheme can give lower miss rates than OPT (which is itself not practi-

cal/implementable). We simulate a TLB using OPT and compare the results with that for a fully

associative TLB using LRU of the same size. We would like to mention that simulation of OPT

exactly is extremely difficult (pointed out by others [101]) since it involves looking into the fu-

ture (infinitely). Instead, at every miss, we look ahead one million references in our simulation

(which we call OPT’). We have tried looking further into the future and the results are not very

different, leading us to believe that the results with OPT’ are very close to that of OPT. Table 2.4

compares the miss rates for OPT’ and the TLB using LRU for three different sizes (particularly

note the columns denoting the ratio of miss rates between the two approaches).

When the TLB size is very small, either scheme incurs a lot of misses, and the differences

between the schemes are less significant than at larger TLB sizes (in many cases). At the other

end, when the TLB size gets large enough that the working set fits in it, the differences between

the schemes again become less prominent. We find that in these applications, a 256 entry TLB
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is still small enough that the benefits of OPT’ over LRU continue to increase with size. ammp

and mcf are exceptions at small TLB sizes.

There are some interesting observations/suggestions we can make from these results.

First, we find that in many situations, OPT’ gives substantially lower miss rates than LRU, sug-

gesting that software directed replacement needs to be explored further. In applications such

as ammp, the reference behavior is statically analyzable, making compiler/application directed

optimizations worthy for exploration. While the dynamic reference behavior in other applica-

tions may not be readily amenable for static optimizations, our results show that it is definitely

worthwhile to explore a combination of static and runtime approaches to bring the miss rates

closer to OPT’.

Second, despite the significant improvements with OPT’, we still find that there is still a

reasonably large miss rate that any software directed replacement scheme cannot reduce. This

motivates the need for miss latency tolerance techniques such as prefetching (either by software

or hardware) which is explored later in section 2.4.

2.3.9 How far apart are the misses spatially?

Having seen the temporal separation of misses, we next move on to examining the spa-

tial distribution of the misses in terms of the virtual addresses themselves. Any observable

patterns/periodicity would be extremely useful for prefetching TLB entries from both the archi-

tectural and compiler perspectives. Figure 2.6 shows what virtual addresses (on the y-axis) incur

misses during the execution of the applications (expressed in terms of the misses on the x-axis).

In consideration of the scale of the graph, the x-axis only shows a small representative window

of the execution so that any observable patterns are more noticeable. Again, the scale of the
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graph may make it appear as though there are two y-values for a given x-value, though this is not

really the case. It should be noted that there are earlier studies which have drawn such graphs

[41, 80] for application reference behaviors. The difference is that we are looking at the misses

(not the references) since that is what TLB prefetch engines work with as is discussed next, and

also in that no one has looked at these graphs for SPEC2000 applications.

We observe that many applications exhibit patterns in the addresses that miss, which

repeat over time. For applications such as ammp, galgel, apsi, and to a lesser extent mcf

and lucas, the patterns are more discernable. In twolf and vpr, the patterns if any, are not

very clear. These patterns are a result of the iterative nature of many of these executions that

repeat reference behavior after a while.

2.4 Prefetching TLB Entries

There are several approaches to improve the delivered performance of TLBs. On the soft-

ware side - at the application, compiler or operating system level - optimizations for improving

locality can help lower the number of TLB entries needed to cover the working set of the exe-

cution at any instant. On the hardware side, TLB structure in terms of its size and associativity

has a significant impact on both the miss rates as well as on the access times [104, 41, 25]. A

technique that is employed in some commercial CPUs (MIPS R4000 [83], Hal’s SPARC64 [59],

IBM AS/400 PowerPC [33], AMD K-7 [70] and Intel Itanium [64]) based on the trade-offs be-

tween miss rates and access times, is to build the TLB as a multi-level structure. Such a structure

can reduce the access times for the most frequent lookups without significantly affecting miss

rates compared to a monolithic implementation. Trade-offs when increasing the number of TLB

ports for multiple issue machines have also been investigated [25]. Another solution to boost
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Fig. 2.6. Figure showing the data addresses that miss during the course of program execution

shown in the x-axis in terms of misses (Time).
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TLB coverage is by the use of superpaging [104, 105, 103, 55, 56, 88, 93]. The general idea

is to find contiguous virtual page translations in the TLB and combine them into a single entry.

OS issues for facilitating this and memory controller designs to find more opportunities for su-

perpaging have been investigated. Finally, on the miss handling side, a considerable amount of

effort has been expended on tuning software miss handlers [94] or for performing the necessary

actions in hardware [64, 70].

However, it is only recently [97, 89, 26] that the issue of prefetching/preloading TLB

entries to hide all or some of the miss costs has started drawing interest. Some of these [26, 89]

consider prefetching TLB entries only for the cold starts, which in many long running programs

(such as the SPEC 2000 suite) constitute a much smaller fraction of the misses. The first work

on prefetching TLB entries for capacity related misses has been undertaken in [97]. Despite the

voluminous literature on prefetching techniques available for other levels of the memory hierar-

chy, prefetching TLB entries has not gained much attention. This is, perhaps, due to the fear of

slowing down the critical path of TLB accesses (which is usually much more important than the

other levels of the memory hierarchy) and the possible cost/space of the additional real-estate

(one could make a less strong argument about this with the ability to pack in billions of transis-

tors on chip, though there is still the issue of power consumption and distribution that needs to

be considered) that may need to be provisioned on-chip. However, we need to understand the

benefits and ramifications of prefetching TLB entries inorder to be able to make these trade-offs.

In this thesis, we specifically focus on the data TLB (d-TLB), which is usually much more of

a problem than instruction TLB (i-TLB) in terms of miss rates (many previous studies [97, 55]

specifically target d-TLB as well).



40

Addressing the critical path issue, Saulsbury et al. [97] propose a new mechanism, called

Recency-based Prefetching (RP), that maintains an LRU stack of page references and prefetches

the pages adjacent to the one currently referenced (on either side of the stack). The associated

logic is placed after the TLB, i.e. it has the privilege of examining only the misses from the TLB

(and does not look at the actual reference stream). They can afford to do that since the TLB

itself keeps (and replaces) entries in LRU order in hardware automatically (assuming a fully

associative TLB). The entries that are prefetched are not loaded into the TLB directly. Rather,

they are kept in a prefetch buffer which is concurrently looked up with the TLB (and then moved

over to the TLB if actually referenced). As a result, this cannot increase the miss rate of the

original TLB. However, RP requires maintenance of the LRU stack in the page table (which

resides in the memory hierarchy), requiring two additional pointers for each entry (page table

size can get very large). Further, removal of an entry from the stack (when brought in upon a

miss) and adding an entry to the top of stack (when evicted from TLB), each require two pointers

to be manipulated. Even though this can go on in the background, there can be a lot of additional

memory system traffic that can be generated, which may not only interfere with the normal TLB

miss loading memory traffic but also with the rest of the data references in the program. These

issues have not been investigated in prior research.

A number of prefetching mechanisms have been proposed in the context of caches [108,

42, 68, 48, 69, 75, 49] and I/O [77]. To our knowledge, no prior study has investigated the

suitability of these earlier proposals for TLB prefetching. It would be very interesting to see

how these earlier proposals would work with the miss stream coming out of the TLB. While

many of these schemes may require a little more logic/real-estate on-chip than RP, they usually

do not impose as much storage and bandwidth requirements as RP.
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It is well beyond the scope of this thesis to cover a detailed survey/classification of

prefetching mechanisms or to evaluate all of them (if one is interested, a survey of these can

be found in [108]). Rather, we want to cover some representative points of the spectrum of

mechanisms in the context of TLB prefetching. In a broad sense, prefetching mechanisms can

be viewed in two classes: ones that capture strided reference patterns (using less history, such as

sequential prefetching or arbitrary stride prefetching (ASP) [48, 42]), and those that base their

decisions on a much longer history (such as markov prefetching (MP)[68] or even the recency

based mechanism (RP) discussed above). Reference behavior can also be viewed as following

broadly one of these categories: (a) showing regular/strided accesses to several data items that

are touched only once; (b) showing regular/strided accesses to several data items that are touched

several times; (c) showing regular/strided accesses to several data items, but the stride itself can

change over time for the same data item; (d) not having constant strided accesses (either keeps

changing constantly or there is no regularity in the stride at all), but repeating the same irregular-

ity from one access to another for the same data item over time; and (e) not having any regularity

either in strides and not obeying previous history either. Usually stride based schemes are a

better alternative than history based schemes for (a) (there is no history established here), while

both categories can do well for (b). Some of the more intelligent/adaptive stride based schemes

such as ASP can track (c) also fairly well, but the history based schemes are not as good for such

behavior. On the other hand, history based schemes can do a much better job than stride based

schemes for (d). In (e), it is very difficult for any prefetching scheme to be able to do a good job.
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As we can observe, neither of the classes can do well across all of (a) through (d). Instead,

we propose a new prefetching mechanism called Distance Prefetching (DP)2 in this thesis that

tries to get the better of both approaches. The idea is to approximate the behavior of stride based

mechanisms whenever there are very regular strided accesses (and capture first time references

as well which are not possible in a history based mechanism), and track the history of strides

(that is indexed by the stride itself). The hope is that whenever the stride changes, the changes

themselves form a historical pattern and we can refer to this history to make better predictions.

We find that DP can do fairly well (approximating the better of the two classes) for all of (a)

through (d). DP is a general prefetching technique, that can be used in several situations (for

caches, I/O etc.). In this thesis, apart from proposing this new general purpose technique, we

specifically illustrate its design and use for tracking TLB misses (placed after the TLB) to make

good predictions. It takes space that is comparable to that of some of the earlier history based

mechanisms such as Markov (usually a 256 entry direct mapped table suffices), while making

much more accurate predictions. It also incurs much less memory traffic compared to RP which

is the only other prefetching technique proposed and evaluated specifically for TLBs.

Using a wide range of diverse applications spanning several benchmark suites (26 appli-

cations from SPEC CPU2000 [45], 20 applications from MediaBench [76], 5 applications from

the Etch traces [107], and 5 applications from the Pointer Intensive Benchmark suite [102]), this

thesis makes the following contributions:

2Distance Prefetching also tracks strides to make predictions. In the interest of distinguishing this

mechanism clearly from the earlier stride based mechanisms, we give it an entirely different name using

the term “distance”. “Distance” and “stride” mean the same thing and refer to the spatial separation (could

be positive or negative) between any two successive references.
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� We compare the performance of two previously proposed prefetching mechanisms (ASP

and MP) that have been evaluated in the context of caches, by studying their potential

in making predictions based on the miss reference string coming out of the TLB. These

mechanisms are compared with the only other existing TLB prefetching mechanism - RP

- that has been evaluated for d-TLBs.

� We present a new prefetching mechanism, called distance prefetching (DP), that can do

a better job of capturing a wider spectrum of reference behaviors than some stride-based

(ASP) and history-based (MP and RP) mechanisms.

� We demonstrate DP to be a much better alternative than the other mechanisms for TLB

prefetching. It is able to make good predictions at a reasonable hardware cost, and incurs

much lower memory traffic overheads than RP.

� We also conduct several investigations into the design choices for implementing DP.

2.5 Prefetching Mechanisms

Since we extensively refer and compare against previously proposed prefetching mech-

anisms (including those used for caches), we briefly go over these to refresh the reader and to

point out the exact implementation that is used later on in the evaluations. We also present our

new prefetching mechanism - DP - in this section. It is to be noted that for uniformity in this

adaptation, all these mechanisms initiate prefetches only by looking at the miss stream from the

TLB, that is done in the earlier proposed RP mechanism [97] for TLB prefetching. All these

mechanisms bring the prefetched entry into a “prefetch buffer” that is concurrently looked up

with the TLB, and the entry is moved over to the TLB only on an actual reference to that entry
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from the application. Prefetching can thus not increase the miss rates of the original TLB. There

is, however, the issue of additional memory traffic that is induced by prefetching, and that is

discussed later on. In addition to a brief description of each mechanism, we also give a block

diagram showing the hardware needs/functioning of each mechanism. In ASP, MP and DP, the

prefetching engine uses a prediction table that has a given number of rows (r). MP and DP allow

aggressive predictions, and each row of the table can have s slots. In ASP, each row contains

only one slot as defined in [42] since this mechanism makes at most one prediction on a given

reference. The indexing of the rows and what goes into each slot is specific to a scheme. The

slots essentially determine what entries to prefetch, and thus s puts a bound on number of entries

that can be prefetched on a given miss. The prefetch buffer size b is the same across all the

mechanisms. A schematic of the overall prefetching hardware implementation is given in Figure

2.7.

2.5.1 Sequential Prefetching (SP)

Miss

an entry
First hit to

+
1

Prefetch Address

Prefetch
Initiate

TLB Miss

Page #

Prefetch BufferFrom

Missed

Fig. 2.8. Schematic of Hardware for SP
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This mechanism tries to exploit the sequentiality of references, and prefetches the next

sequential unit (page table entry) based on the current reference. Several variations have been

proposed, that are discussed by Vanderwiel and Lilja [108]. They point out that of all the

schemes, tagged sequential prefetching - where a prefetch is initiated on every demand fetch

and on every first hit to a prefetched unit, is very effective. Another variation proposed by

Dahlgren and Stenstrom [48] dynamically varies the number of units to prefetch based on the

success rate. However, simulations have shown only slight differences between these schemes

[108, 48]. Consequently, we limit ourselves to the tagged version of SP in this thesis. On a TLB

miss, if the translation also misses in the prefetch buffer, it is demand fetched and a prefetch is

initiated for the next virtual page translation (stride = 1) from the page table. The CPU resumes

as soon as the demand page translation arrives. In case of a prefetch buffer hit, CPU is given

back the translation (and resumes), the entry is moved to the TLB, and a prefetch is initiated for

the next translation in the background. A simplified hardware block diagram implementing SP

is given in Figure 2.8.

2.5.2 Arbitrary Stride Prefetching (ASP)

SP captures only spatial proximity, but there are several applications that have regular

strided reference patterns. Prefetching mechanisms to address this have been proposed by Chen

and Baer [42], Patel and Fu [57] and several others. It has been pointed out [108] that the scheme

proposed by Chen and Baer is the most aggressive of these. We use this scheme, referred to as

Arbitrary Stride Prefetching (ASP) in this thesis, for comparisons. ASP uses the program counter

(PC) to index a table (referred to in [42] as Reference Prediction Table (RPT)). Each row has

one slot which stores a tuple containing (i) the address that was referenced the last time the PC
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came to this instruction, (ii) the corresponding stride, and (iii) a state (PC tag may also need to

be maintained for indexing). The address field needs to be updated each time the PC comes to

this instruction, and the prefetch is initiated only when there is no change in the stride for more

than two references by that instruction (the state is used to keep track of this information). Such

a safeguard tries to avoid spurious changes in strides. This is the mechanism that is evaluated

in this thesis, though there are several variations proposed [42]. A simplified hardware block

diagram implementing ASP is given in Figure 2.9.

2.5.3 Markov Prefetching (MP)

The previous two are representative of schemes that attempt to detect regularity of ac-

cesses (by observing sequentiality or strides), and fail if there is no such regularity in the differ-

ences between successive address references. However, it is possible that history repeats itself,
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even without any regularity in strides, and MP tries to address that angle. MP attempts to dynam-

ically build a Markov state transition diagram with states denoting the referenced unit (pages in

this context) and transition arcs denoting probability of needing the next page table entry when

the current page is accessed. The probabilities are tracked from prior references to that unit, and

a table is used to approximate this state diagram. This scheme was initially proposed for caches

[68], and we have extended this to work with TLBs as discussed below.

The prediction table for MP is indexed by the virtual page address that misses. Each row

of the table has s slots, with each slot containing a virtual page address that is initially empty

(they correspond to entries to be prefetched when this address misses the next time). On a miss,

this table is indexed based on the address that misses. If not found, then this entry is added, and

the s slots for this entry are kept empty. In addition, we also go to the entry of the previous page

that missed, and add the current miss address into one of its s slots (whichever is free). If all the

slots are occupied, then we evict one based on LRU policy. As a result, the s slots for each entry

correspond to different virtual pages that also missed immediately after this page. If a missed

address hits in the table, then a prefetch is initiated for the corresponding s slots of this address.

Since the table has limited entries, an entry (row) could itself be replaced because of conflicts.

A simplified hardware block diagram of MP is given in Figure 2.10.

2.5.4 Recency Based Prefetching (RP)

While all the previous mechanisms have been proposed for caches, Recency Prefetching

is the first mechanism, to our knowledge, that has been proposed solely for TLBs. This mecha-

nism works on the principle that pages referenced at around the same time in the past will also

be referenced at around the same time in the future. It builds an LRU stack of page table entries
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to achieve this. Specifically, when an entry is evicted from the TLB it is put on top of the stack,

its next pointer is set to the previous entry that was evicted (whose previous pointer is set to

this entry). As a result, each entry has two pointers, which are actually stored in the page table

(space is thus one of the issues with this mechanism, almost tripling the page table size). When

an entry is loaded on a miss, the prefetch mechanism fetches the entries corresponding to the

next and previous pointers into the prefetch buffer in the hope that they will be needed as well

(this is the mechanism that is implemented and evaluated here, though there is a variation in [97]

with regard to prefetching some more entries). RP, thus, keeps its prediction information in the

page table itself (in memory) and does not have additional storage costs on-chip. This comes at

the cost of a significant increase in page table size. Further details can be found in [97] and a

hardware schematic of this mechanism is given in Figure 2.11.

2.5.5 Distance Prefetching (DP)

This is an entirely new mechanism that we propose, and could be used at any level of the

memory hierarchy (i.e. TLBs, caches or maybe even I/O). In this thesis, we illustrate its benefit

for TLBs.

The advantage with SP and ASP is that they take very little space to detect patterns and

initiate actions accordingly, while MP and RP can take considerably more space because they

can detect more patterns than the restricted patterns that SP and ASP can detect. They also take

a while to learn a pattern, since only repetitions in addresses can effect a prefetch for RP and

MP (not first time references). Our DP mechanism can be viewed as trying to detect many of

the patterns that RP or MP can accommodate (and maybe some that even they cannot), while

benefiting from the regularity/strided behavior of an execution. In fact, if there is so much
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regularity that SP and ASP can do very well in a reference pattern, then DP should automatically

take only as much space as these two. Remember that MP and RP need considerable space even

to capture sequential scans while SP and ASP can do this in little space.

DP works on the hypothesis that if we could keep track of differences between successive

addresses (spatial separation or stride, which we call as distance for this mechanism) then we

could make more predictions in a smaller space. For instance, let us say that the reference string

is 1, 2, 4, 5, 7, and 8. Then, if we just keep track of the fact that a distance of “1” is followed

by a (predicted) distance of “2” and vice versa, then we would need only a 2 entry table to

make a prediction as opposed to the markov mechanism where an entry is needed for each page

(6 entries in this example). This is exactly what our distance prefetching mechanism does. A

reference string touching all pages sequentially (that SP optimizes) can be captured by DP using

an entry saying distance of “1” is followed by a (predicted) distance of “1”.

The hardware implementation (as is shown in Figure 2.12) for DP requires that the table

be indexed by the current distance (difference of current address and previous address). Each

entry has a certain number of slots (maintained in LRU order) corresponding to the next few

distances that are likely to miss when the current distance is encountered (similar to how MP

keeps the next few addresses based on the current address). Pages corresponding to the distances

in these slots are prefetched when this virtual address misses. One could, perhaps, envision

indexing this table using the PC value together with the distance, or using a set of consecutive

distances. These are issues that could be investigated in future research, and are not discussed in

this thesis.
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ASP MP RP DP

How many rows? r r No. of PTEs r

What are the contents PC Tag, Page #, Page # Tag next, prev Distance Tag,

of a row ? Stride and State 2 Prediction Page #s pointers 2 Prediction Distances

Where is the On-Chip On-Chip In Memory On-Chip

Table maintained ?

How is the table PC Page # Page # Distance

indexed ?

How many memory operations

are necessary per miss ? 0 0 4 0

(excluding prefetching) (at least)

How many prefetches 1 2 1-3 2

can be initiated ?

Table 2.5. Comparing the Hardware Issues of the Schemes at a glance. s is assumed to be 2 for

MP and DP. PC Tag, Page # Tag, and Distance Tag for ASP, MP and DP respectively are needed

for tag comparison when indexing/looking up the table.

2.5.6 Review of Hardware Requirements

Table 2.5 gives a quick review of the above description by comparing the schemes in

terms of the hardware requirements and functionality. ASP usually subsumes SP, and we do not

show SP separately here or in the experimental results. For the ASP, MP and DP mechanisms,

we uniformly use a parameter r to study its effect on the resulting performance as mentioned

earlier. The previously proposed RP mechanism, keeps information (2 pointers) in each entry of

the page table. Since the number of virtual pages is usually quite large, the space taken by RP

considerably dominates over the much smaller r (32 to 1024 rows) that we consider for ASP, MP

and DP. The only benefit for RP in this regard is that the storage is in main memory, while the

other three require on-chip real-estate. These two pointers for RP refer to the previous and next

pointers of the LRU stack. Both MP and RP, index the information based on the page number

that misses in the TLB, and DP indexes using the current distance (stride). ASP, on the other
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hand, indexes using the PC value. In ASP, MP and DP, the corresponding tag information (of

the indexing field) needs to be maintained to ensure the corresponding match since more than

one entry can map on to a single row. There is, thus, not a significant difference in storage

requirements across the schemes for a single row.

ASP, MP and DP, have all the necessary information to initiate a prefetch on-chip, and

thus need not incur any additional memory references. On the other hand, removing the page

table entry that is currently required and pushing the evicted entry on top of LRU stack requires

manipulating four pointers in RP. This can become an issue in increasing memory traffic, thus

interfering not only with other prefetch actions but also with normal data traffic.

The maximum number of prefetches that can be initiated on a miss for MP and DP depend

on the chosen s values. This is, typically, quite small (around 2-4) that is not only shown to be

a good operating point later in this thesis, but has also been pointed out by [68] for MP. ASP, as

defined in [42], prefetches the address incremented by the corresponding stride. RP prefetches

entries on either side of the LRU stack upon a miss, and there is also a version discussed in [97]

that prefetches three entries. It should be noted, that the number of prefetches that are initiated

is not necessarily indicative of the performance of the scheme. Eventually, the prefetches are put

in the (small) prefetch buffer, and a more aggressive scheme can end up evicting entries before

they are used.

2.6 Qualitative Comparison of Schemes

Having given a quick overview of the five prefetching mechanisms, we next try to pro-

vide a better understanding of their pros and cons using some example reference strings. It

should be noted that for the discussion in this section, we are not commending or putting down
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any mechanism based on its performance with these strings. These strings are not necessarily

realistic of actual application references. Further, one could argue that with a different set of

parameters than what is chosen to illustrate the point, a mechanism may actually outperform the

others for the given string. On the other hand, our intention here is only to get a general idea of

how a scheme works, and to gain a better understanding of what kind of reference behavior is

better suited for a given mechanism. Uniformly, let us assume prefetch buffer size (b) is 1 entry,

MP, RP and DP fetch only 1 entry (i.e. s = 1 for MP and DP, and we follow only the next pointer

in LRU stack for prefetching in RP and do not prefetch the previous pointer’s entry). Let us also

assume that the reference string is generated by the same PC value, which becomes important

for ASP. The TLB is assumed to be 4 entry fully associative for the following discussion.

We consider four reference strings here, that are shown in Table 2.6 (each number denotes

the virtual page number being referenced) together with the number of accurate predictions by

each scheme. Note that the miss string from the TLB would be the same as the reference strings

for all of them.

Reference Strings Correct Predictions
SP ASP MP RP DP

Liner Scan(RS1) [1 2 3 4 5 6 7 8 9 10 ... 100] 99 97 0 0 97

Deterministic Iterative(RS2) [1 2 3 4 5 6 7 8 9 10] � 10 90 79 89 89 78

Alternating Pattern(RS3) [1 2 3 4 .... 20] 57 81 4 23 80
[1 3 5 7 .. 19 2 4 6 8 .. 20]
[1 2 3 4 .... 20]
[1 3 5 7 .. 19 2 4 6 8 .. 20]
[1 2 3 4 .... 20]

Alternating Stride(RS4) [1 3 4 6 7 9 10 12 13 15] � 10 40 0 89 89 77

Table 2.6. Example Reference Strings and No. of Correct Predictions for Each Mechanism.
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RS1 corresponds to a sequential access of 100 contiguous virtual pages in an application,

that is perhaps representative of the miss behavior in the initialization phase of an application

(incurring cold misses). SP will fetch all but the first page, thus predicting the next 99 page

references correctly. ASP 3 needs 3 references before it can stabilize (it needs to observe two

constant strides before making a prediction), and will then predict the rest (97) correctly. MP

and RP will not have any prior history for each referenced page, and will thus need all 100

references to get warmed up, and will not be able to make any predictions in this case. DP will

need two distances (3 references) to warm up (and create an entry in the table), and will be able

to accurately predict all other references (97).

RS2 shows ‘deterministic iterative’ behavior described in [97]. Pages 1-10 are traversed

10 times (represented by � 10 in Table 2.6). A repeated scan through an array could produce

such a miss string. As before, SP will start predicting correctly after the first page for each scan

of the array. There will be 10 mispredictions in all (each time when we come to the end of

the array), making 90 accurate predictions totally. ASP will need the first 3 page references to

warm up in the first traversal. In the next traversal, note that ASP does not update its stride to

-9 when it encounters page 1 (since it needs at-least two mispredictions to update the stride),

and will not predict only the first two references. Consequently, we have 79 (i.e. 7 + 9*8)

references predicted correctly by ASP in all. RP will not be able to predict any of the first 11

references since the LRU stack needs to build up, and will then accurately predict all the rest

(since history repeats itself exactly). Similarly, an MP with a 10-entry Markov table can capture

all the 89 subsequent references after the first 11 references required to build the state transition

diagram. DP will take 3 references to warm up the table with a prediction distance of 1 for a

3ASP is assumed to be in steady state with some other stride to begin with.
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current distance of 1. The subsequent 7 references will then be correctly predicted for the first

traversal. The subsequent page 1 reference is not going to be predicted, nor are the following

two references (the predictions for distances of -9 and 1 are not going to be set right for those).

Consequently, only 7 references in the second traversal will be predicted correctly. In each of

the subsequent 8 traversals, 8 references will be predicted correctly (since the prediction for a

distance of -9 will be correctly set to 1). DP thus gives a total of 78 correct predictions for this

string.

In RS3, we have chosen a string that has five substrings obtained by repeating two pat-

terns (each of length 20) alternately. SP will predict the latter 19 references of the first sequential

pattern whenever it occurs, and will thus make a total of 57 correct predictions. ASP will not be

able to predict the first 3 references of each occurrence of a pattern. In addition, ASP will not

be able to predict the transition from 19 to 2 and the subsequent 2 to 4 (it will however predict

the following 4 to 6). Thus, ASP will give a total of 81 correct predictions. MP will not be

able to predict any of the references correctly except the transitions from 20 to 1 after the first

such occurrence. So there will only be 3 correct predictions for MP. RP analysis is a little more

complicated, and we do not cover all the details here. It is best understood by drawing an LRU

stack, pulling out entries (letting the entries above fall down) and putting it on top. If we do such

an analysis, one would get 23 correct predictions for RP (an intuitive reason why it does better

than MP here is that when for instance entry for page 3 is pulled out of the stack, the connection

is automatically made between pages 2 and 4 in the stack by this algorithm, thus helping some

of the patterns). Finally with DP, the incorrect predictions are in the first 3 references of each
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substring. In addition, it will not predict the 11th, 12th and 13th references of the second sub-

string, and the 11th and 13th references of the fourth substring. Overall, DP will thus predict 80

references correctly.

RS4 is a repetition of a string of alternating strides (2 and 1). SP will predict only the

strides of 1, and will thus have 4 correct predictions in each repetition (40 overall). ASP does

not do even as well as SP, since it needs to observe two successive references of the same stride,

which does not happen in this string. Consequently, it will not be able to make any correct

predictions. MP and RP will build the history information for the first 11 references, and the

subsequent 89 references will be predicted accurately. DP will not predict the first 4 references

of the first repetition, By then, the entries in the table would indicate - a distance of ”2” is

followed by a distance of ”1”, and a distance of ”1” is followed by a distance of ”2”. All the

references until page 15 would then be predicted correctly. At this time, page 1 will not be

predicted nor will page 3 or page 4 since a distance of ”-14” is not set and the distance of ”2”

will now have a prediction of a distance of ”-14”. In the subsequent repetitions, pages 1 and 4

will still not be predicted but page 3 will be since the prediction for distance ”-14” is set correctly.

Consequently, DP will totally predict 77 (4 + 3 + 2*8 incorrect predictions) references correctly.

Discussion: As mentioned earlier, the above exercise is only intended to understand the suit-

ability of the prefetching mechanisms for different patterns in reference strings. It is indeed

possible for a mechanism to do better than what is mentioned above in a more realistic imple-

mentation of the scheme (prefetching more than one entry, or using PC information to differen-

tiate the strides at different points in the program). Still, this exercise has given us good insight

to make some overall remarks:
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� If there is good sequentiality in the accesses (constant strides such as RS1 and RS2), SP

and ASP are able to quickly detect this and do a good job of prediction, compared to MP

or RP. The latter two need the history to build up at an address granularity (not at a stride

granularity), and are thus not very good at predictions for first time references to a page.

DP, on the other hand, does as well as SP and ASP in quickly making use of such constant

strides even for (cold) first time references. The storage that it needs in these cases to make

predictions is also comparable to that for SP and ASP (and much lower than that needed

for MP or RP).

� RS4 represents very rapidly changing strides (in fact, alternating). In such cases, schemes

that stabilize on stride non-variability such as SP or ASP are not as good as the history-

based schemes (MP and RP) that can keep a lot more information about prior accesses. In

this case, we find that DP automatically trends towards the better prediction behavior of

MP and RP.

� RS3 falls between these extremes where there are some periods of constant stride, with

the stride length changing after some duration. Further, in this string, these changes are ef-

fected at the same addresses as the previous duration. In such cases, history based schemes

(MP and RP) falter, and SP is not good either. ASP is able to detect and adapt to such

changes. Even for this string, we find DP making as accurate predictions as the best of the

other schemes.

In these examples, the miss string turns out to be the same as the reference string be-

cause of the TLB size, and thus there is no loss/filtering of information that is available to the

mechanisms. In such cases, we find that RP which can use the TLB implicitly to extract LRU
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information based on the replacements, does not get significant gains over the others (except in

RS3 where it gains a little over MP because of this feature). We would like to mention that

we have conducted similar exercises with more complicated strings and with strings from real

applications with regular reference behavior (such as FFT and Matrix Multiplication), where the

miss string can be quite different from the reference string, and we found similar trends.

An indepth study of application behavior is needed with more realistic TLB configura-

tions and prefetching mechanism implementations, for a better comparison of the pros and cons,

which is undertaken in the rest of this thesis.

2.7 Performance Evaluation

2.7.1 Experimental Setup

We have conducted an extensive evaluation of the prefetching mechanisms for a wide

variety of applications spanning several benchmark suites. Our evaluations use all 26 applica-

tions from SPEC CPU2000 [45], 20 applications from MediaBench [76], 5 applications (bcc,

mpegply,msvc,perl4, and winword) from the Etch traces [107] and 5 applications (anagram,

bc, ft, ks and yacr2) from the Pointer Intensive Benchmark suite [102]. In all, we have con-

sidered 56 applications that we hope are representative enough of realistic scenarios. The Medi-

aBench applications are characteristic of those in embedded and media processing systems, and

the Etch applications are characteristic of desktop/PC applications. The Pointer Intensive suite

helps us evaluate the mechanisms for non-array based reference behavior, which can be more

irregular. The SPEC 2000 applications are really long running codes and it is extremely difficult

to simulate all of them completely, as has been pointed out by others [37, 87]. To our knowledge,
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only a recent cache study [37] quantifying miss rates has been done to completion using simula-

tion. In this thesis, we fast forward (skip) the first two billion instructions of their execution, and

present results for the subsequent one billion instructions. The simulations have been conducted

using SimpleScalar [34], using the default configuration parameters (4 way issue). Most of the

simulations are conducted using sim-cache since we are mainly interested in the memory system

references, and the prediction accuracies of the schemes. We also present one set of execution

cycle results for one billion instructions with five of the applications with high TLB miss rates

to compare DP and RP using sim-outorder (as can be imagined, these experiments take an ex-

cessively long time). The MediaBench, Etch and Pointer Intensive suite were simulated using

Shade [44]. Though it is also important to consider the effect of the OS, the evaluations are only

for application behavior in these results as in the earlier study [97].

We consider different TLB configurations - 64, 128 and 256 entries that are 2-way, 4-way

and fully associative, and different values for prefetch buffer size (16, 32 and 64 entries). We

have also varied the s and r values for the prediction table configurations of the mechanisms. We

present representative results using 128 entry fully associative TLB and 16 entry prefetch buffer.

We, however, present the impact of these parameters for our DP mechanism in isolation.

2.7.2 Comparing the Schemes

In our first set of evaluations, we compare RP, MP, DP and ASP (compared qualitatively

until now) with the 56 workloads in Figures 2.13 and 2.14. Since MP, DP and ASP predictions

depend largely on the size of the prediction table that is allowed, we have varied r (the number

of entries) as 32, 64, 128, 256, 512 and 1024. Further, we have allowed the corresponding

tables to be indexed as direct-mapped (D), set associative (2 and 4 way) and fully associative
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Fig. 2.13. Prediction Accuracy of different Prefetching mechanisms for all the SPEC CPU2000

Applications
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Fig. 2.14. Prediction Accuracy of different Prefetching mechanisms for Mediabench, Etch and

Pointer Intensive benchmark Suites. Legends are same as in Figure 2.13.
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(F). Since the graph becomes very difficult to read, we show results for DP and ASP only with

direct-mapped (D) configurations. We show F, 2 and 4 way associativity influence only for MP.

We would like to point out that the indexing mechanism for the prediction table (F, 2 or 4 way)

has very little influence on the prediction accuracy in most cases (as one would infer from the

bars for MP, and in the bars for DP later in section 2.7.3.1). In these graphs, the left-most bar

for each application is for RP, following which is a gap and then the bars for MP, a gap, bars for

DP, a gap and finally the bars for ASP. In some cases, the bars are either completely or partially

absent because the prediction accuracy is close to 0.

These mechanisms are compared in terms of their prediction accuracy, which has been

the metric used in earlier research [97] to argue the capabilities and potential of TLB prefetching.

Prediction accuracy is defined as the percentage of TLB misses that hit in the prefetch buffer at

the time of the reference. Accuracy is an important concern since it has a direct bearing on

the amount of stall time incurred by the CPU during a TLB miss. Uniformly, a prefetch buffer

of size b = 16 entries is used in all these experiments. Remember, that a mechanism which

fetches more aggressively can evict entries from this buffer before they are actually used for

the translation (and will consequently have an effect on the prefetch accuracy). One can in

fact observe this effect with ASP, when the prediction accuracy decreases for a more aggressive

r = 1024 entry table (compared to smaller prediction table sizes) in some applications like

apsi, ft and wupwise.

There are applications such as facerec, galgel, art, gap, and mesa where nearly

all mechanisms give quite good prediction accuracies. In these applications, there are regular

strided accesses that repeatedly go over the items already accessed in the same regular fashion.

Consequently, both stride-based predictions (ASP) and history-based predictions (RP and MP)
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do a fairly good job of predicting the future. The only exception is that in some cases (such as

galgel, art, mesa) MP performs poorly with small r. Since these are quite large datasets,

keeping the history for all the references needs considerably more space, and small tables are not

adequate for this purpose. RP, on the other hand, builds the history in memory and is not limited

by on-chip storage as in MP. We find that our DP mechanism gives good prediction accuracies,

being able to capture the strided patterns, without requiring the higher space requirements of MP

to maintain history. Even a r = 32 predictor table for DP, gives very good predictions. In the

following discussion, we go over each mechanism pointing out where it does the best and when

it does not do as well.

Apart from the above five where all mechanisms give good performance, we find RP

giving the best, or close to the best performance for applications such as gcc, crafty, ammp,

lucas, sixtrack, apsi, adpcm-enc/dec, gs, and texgen. These applications have

good repetition of history, i.e. the next reference after a given address is very likely to remain

the same the next time we come to this address again. RP does a very good job of capturing this

pattern.

MP gives the best or close to best performance for many of the applications that RP does

very well. However, as was pointed out a little earlier, sometimes the history information that

needs to be maintained can get quite long, and this can lead to poor predictions for small tables

(such as s = 32). In some applications, where past history is a good indication of the future

(i.e. RP does very well) such as in adpcm-enc/dec, MP performs very poorly for this very

reason. RP is able to track history for all addresses since it keeps the information in memory, but

MP does not have that luxury and may have to keep evicting its table entries from the on-chip

storage. There are some applications such as parser and vortex where MP does better than
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even RP despite this downside. The possible reason is that RP can look at only what happened

at this address the previous time the program came to it, while MP can possibly keep track of

what happened the last few times (depending on the s value of its table). In these applications, it

is possible that there is alternation (i.e. a sequence such as 1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 2, 3,

4, ... would do better with MP than RP for s = 2) in history that is leading to this behavior (this

is also the reason ASP does not do well for these applications).

ASP does very well in many of the applications that are suited to RP and MP such as

facerec, galgel, art, gap and mesa, and also in some where RP does better than MP

(adpcm-enc/dec and texgen). The regularity in strides in these applications help this

mechanism provide good accuracy. This regularity also helps ASP capture many of the first

time reference predictions that history based mechanisms are not very well suited to, as in gzip,

perlbmk,equake,epic/unepic,mipmap,pgp-enc/dec,anagram, and yacr2. The

working sets are much smaller in some of the non-SPEC 2000 applications, and cold misses do

become prominent for these. On the other hand, there are applications such as crafty and

parser where the accesses are not strided enough for ASP to perform well, but historical indi-

cations can give a much better perspective of future behavior for RP and MP.

Moving on to DP, we find that it gives very good prediction accuracies in several cases.

DP comes very close to RP or MP in several applications where history-based predictions do

the best such as gcc, mesa, galgel, gap, parser, and ammp. On the other hand, if his-

tory is not a good indication (or has not established) but strides are more determining (as in

gzip, adpcm-enc/dec, mipmap, and perlbmk where ASP does very well), DP is able to

deliver as good accuracies as ASP. Beyond coming close to the better of history or stride based

schemes, there are several applications such as wupwise, swim, mgrid, applu, mpeg-dec,
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bc, mpegply, msvc, and perl4 where DP does much better than the others. In fact, for

gsm-enc/dec,jpeg-enc/dec,ks, msvc and bc, DP is the only mechanism which makes

any noticeable predictions (even if the accuracy does not exceed 20%).

We would like to point out, that there are a few applications such as eon, fma3d,

g721-enc/dec and pgp-dec where none of the mechanisms are able to make any signifi-

cant predictions. Many of these applications (eon, g721-enc/dec, pgp-dec, bc, ks) have

so few TLB misses that a significant history does not build up nor does a strided pattern (and

TLB prefetching is not as important for them anyway). In fma3d, the irregularity makes it very

difficult for any mechanism to do well, and this motivates the need for further future work on

prefetching mechanism.

Prefetching Scheme Average Weighted Average

(� pi)/n(= 56) � (mi � pi)/(�mi)

DP 0.43 0.82

RP 0.29 0.86

ASP 0.28 0.73

MP 0.11 0.04

Table 2.7. Table showing the average and weighted average of prediction accuracy for

the prefetching schemes which was calculated using the miss rates(mi) and prediction

accuracies(pi) over all the 56 applications. s = 2 and r = 256 for DP, MP and ASP.

In summary, we would like to point out that DP gives very good predictions for many of

the applications. In fact, it provides the best or within 10% of the best prediction accuracy in

39 (and best in 36) of the 56 applications considered (the others are less than half this number).

DP does well for regular and irregular applications, and applications that have strided and/or
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history-based access patterns. Another important point to note is that DP can provide such good

predictions with just a(s =)32-256 entry prediction table, compared to the others (MP and ASP)

which may need many more entries, nor requiring the considerable storage and memory band-

width taken by RP. Examining only the miss stream from the TLB, and not the actual reference

stream (which to a certain extent can be viewed as a case in favor of RP because there is an

implicit LRU tracking within the TLB) does not seem to penalize DP in any significant way.

DP also turns out to be the best in terms of the average prediction accuracy that was

calculated over all the benchmarks((� pi)/n) for each scheme. From the second column in Table

2.7, we can see that DP and RP take the first and second places respectively. One could argue,

that it is important to not just provide good accuracies for all applications, but to those where it

really matters (i.e. the higher TLB miss rate incurring applications). To capture this effect we

present the weighted average (� (mi � pi)/(�mi)) of the prediction accuracy (i.e. the accuracy

pi for each benchmark is weighted by the corresponding TLB miss rate mi) for the schemes in

the third column of Table 2.7. As we can see, RP comes out a little in front (around 5% better)

of DP in this case because a long history helps a select set of applications with very high miss

rates (even though DP does better in a majority of applications). However, this comes at a higher

storage cost in memory, as well as the higher memory traffic. Consequently, the rest of this

subsection gets into greater detail comparing DP with RP, in terms of performance implications

of these prediction accuracies, particularly for the applications with higher TLB miss rates.

Comparing DP with RP in greater Detail: Having compared the prediction capability of the

mechanisms using all the applications and all the different configurations, we specifically focus

on 8 applications (galgel, adpcm-encoder, ammp, mcf, vpr, twolf, lucas, apsi)
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which have the highest TLB miss rates (0.228, 0.192, 0.0113, 0.090, 0.016, 0.013, 0.016, and

0.018 respectively) for a 128 entry fully associative TLB amongst all these applications. Of

these 8 chosen applications, RP provides better accuracy than DP for 5 applications - vpr, mcf,

twolf, ammp and lucas. Further, RP is the only other prefetching mechanism explored for

TLBs, and we would like to show some of the trade-offs that DP provides over RP despite

slightly lower prediction accuracies in these 5 applications (which is what tilted the balance in

favor of RP in Table 2.7).

RP requires as many as 6 possible memory references upon a TLB miss. While the CPU

resumes computation as soon as the miss is serviced, there are other memory references needed

to maintain the LRU stack. If the item was in the middle of the stack, then it needs to be removed

(taking 2 references), and the evicted item needs to be put on top (taking 2 references). After

this, the actual prefetching can proceed (since it prefetches on either side of the removed item,

this takes 2 more references). On the other hand, DP references memory only to bring in the

s (which is 2 here) predicted entries, i.e. DP does not need to update any state information in

memory similar to MP or ASP.

To briefly study the impact of the additional memory traffic imposed by RP and DP, we

conduct a simple experiment using SimpleScalar, wherein we use its memory system model to

account for the overheads associated with the prefetch operations. It should be noted that in this

examination, the prefetch memory traffic does not contend with the normal data traffic, but only

with other prefetch traffic (this in fact, is a more biased model that favors RP over DP). These

applications are run using sim-outorder (with a 4 issue width) to account for actual CPU cycles.

When the CPU incurs a TLB miss, and does not find the data in the prefetch buffer, but the

prefetch for that entry has already been issued, it is made to stall until the entry arrives. Further,



71

if a prefetch needs to be issued on a TLB miss, this memory loading operation will be impacted

by any prior issued prefetch memory transactions (such as the pointer manipulations for RP, or

the actual prefetching of entries for DP and RP). One other issue where we give the benefit of

doubt for RP in its implementation is that, if there is a TLB miss soon after the previous one

(and not for the same entry) and the prefetching initiated earlier is not complete, we only wait

for the LRU stack to get updated and do not prefetch those items at that time (this is as though

there was a wrong prediction, but we are not going to incur the corresponding memory traffic in

fetching the nearby entries at that time). In this case, there would be only 4 memory transactions

instead of 6.

We present the results from this experiment in terms of both the number of additional

memory transactions (traffic) beyond that taken in servicing misses for the two schemes (nor-

malized with respect to that taken by DP in Figure 2.15), as well as in terms of the cycles taken

for execution of the programs (the billion instructions considered) that is shown in Table 2.8.

The results are presented for the five benchmarks where RP has better accuracy over DP.
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Fig. 2.15. Normalized Memory Traffic (in terms of requests) generated by RP and DP with
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Application (1 billion) (100 million)

RP DP RP DP

vpr 0.995 0.989 0.99 0.98

mcf 1.09 0.984 1.09 0.95

twolf 0.98 0.985 0.98 0.99

ammp 0.968 0.866 0.97 0.86

lucas 1.002 0.99 1.002 0.99

galgel 0.16 1.89 0.16 1.90

apsi 1.08 0.93 1.15 0.88

Table 2.8. Comparing DP with RP: Normalized execution cycles(w.r.t. no prefetching) for RP

and DP for 1 billion instructions after the first 2 billion instructions. s = 2 and r = 256 for DP.

We find that despite the slightly higher prediction accuracy that RP provides for these

applications, DP still comes out in front when considering execution cycles. This is because RP

generates substantially larger volume of memory traffic as can be seen in Figure 2.15 ranging

from anywhere between 2-3 times that for DP with r = 256. As was pointed out, DP gives fairly

good predictions even with r = 32 which incurs even lower traffic. It should be remembered

that in this simulation, we are in fact more biased towards RP, since the prefetch traffic does not

interfere with the normal data traffic, and consequently a more realistic model would favor DP

further.

2.7.3 Fine-tuning Distance Prefetching

Having demonstrated the potential of DP over the other schemes, we focus on this mech-

anism in the rest of this thesis and the eight applications with the highest TLB miss rates.
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Fig. 2.16. Influence of Prediction Table Parameters on DP accuracy

2.7.3.1 Number of Rows and Associativity of the Prediction Table

Figure 2.16 shows the prediction accuracies of DP for the eight applications varying the

table sizes (r =32 through 1024 entries) and associativity for indexing this table (D, 2, 4 and

F). As we can observe, except for lucas, the prediction is not significantly affected for most

table configurations. DP is able to capture the reference patterns (of the current working set)

in a very small space for galgel, ammp, apsi and adpcm. In the others, there is either that

much irregularity, or a lot of history needs to be maintained, that changing prediction table con-

figurations in the ranges experimented with do not produce significant differences in prediction

accuracy. Even in lucas, associativity is more important than size (perhaps, due to some con-

flicting distances). Though not explicitly shown here, we would like to mention that we find

similar observations for most of the 56 applications. Consequently, we suggest using a simple

direct mapped (or at most 2-way) structure for DP scheme with 32-256 entries, that can perform

fast look-ups.
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Fig. 2.17. Impact of number of slots(s) on DP accuracy(r = 256, b = 16)

2.7.3.2 Number of prediction entries

Another table parameter that needs to be studied is the number of slots s (predictions)

to make for each row. We consider values of 2, 4 and 6 slots in Figure 2.17, and find that the

prediction accuracy is quite insensitive to the choice for s. This is because even if we are very

aggressive in predicting and bringing in more entries, the prefetch buffer can hold only 16 entries

here and the fetched entries may not remain long enough to be useful. Another reason why it may

not have much effect is that not all the slots are being utilized (i.e. there are not too many varying

strides). Increasing the number of predictions is not only having little effect on applications

where we have good accuracy, but also in those where we have poor predictions (vpr, mcf,

twolf, lucas). Since increasing s can increase memory traffic (and hardware costs), we

suggest using s = 2 for the prediction table since we are not seeing significant improvements in

prediction with higher values of s (a similar observation was made for MP in [68]).

2.7.3.3 Prefetch Buffer Size

As was pointed out in the previous results, the choice of prefetch buffer size can influence

the performance of the prefetcher. We consequently study the effect of three different prefetch
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Fig. 2.18. Impact of Prefetch Buffer Size (b) on DP accuracy(r = 256, s = 2)

buffer sizes (b = 16; 32; 64) on the prediction accuracy of DP. We find that there are not signifi-

cant improvements in prediction accuracies with these considered buffer size increments. There

are, of course, likely to be points in the working set where one could see large jumps in improve-

ment at some buffer sizes. But we do not see those points for these small prefetch buffers that

we consider (we want this to remain small so that it can be associatively looked up in parallel

with the TLB as described in [97]). Hence, we advocate a prefetch buffer of 16 or 32 entries for

DP.

2.7.3.4 Influence of TLB Size

One could argue that as the TLB gets larger, it can satisfy more of the references, thus

filtering the miss string further coming out of it. It is possible that this can result in less regularity

in the miss string, making prefetching that much more difficult. To study if DP is still able to

perform well with such possible effects, we compare the prediction accuracies for DP with TLB

configurations of 64, 128 and 256 entries that are all fully associative in Figure 2.19. We find

that DP still does a good job across these TLB sizes, and the changes in accuracy are not very
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Fig. 2.19. Influence of different TLB sizes on DP Accuracy(r = 256, b = 16, s = 2)

significant. We observe that the filtering effect can both decrease (twolf) and increase (ammp)

prediction accuracy.

2.8 Concluding Remarks

Keeping current trends in mind, it is important to optimize for the TLBs. This thesis first

of all filled a big hole in the literature for the TLBs - lack of a characterization study. Our thor-

ough characterization study yields several good insights into the application characteristics based

on which we develop a novel TLB prefetching technique. Our technique is simple, yet powerful,

and it adapts to applications as they execute. Our prefetching mechanism is generic and can be

applied to other domains as well(like caches). We applied it to the TLBs and demostrated its

potential using a variety of applications.
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Chapter 3

Memory Management in the runtime environment

One way to improve the performance of the processor-memory path is by using hardware

mechanisms as described in the previous chapter. This can also be done in software. On the

software optimizations for caches, which can also have effect on the TLBs, a lot of work has

been done on compiler transformations and data reorganization with regard to enhancing locality

[40, 98, 72, 52]. Increasing complexity of applications (and hence that of application code) will

make compiler optimizations more difficult in future. Also, most of these optimizations target

static data and arrays but not dynamic memory, which is managed by the runtime environment.

Dynamic memory allocation is a necessity for many applications today. A lot of re-

search has gone into designing good memory allocators over past 40-50 years and a number of

strategies have been proposed and implemented for this purpose [110]. If we look at dynamic

memory allocators today, on one side are general-purpose memory allocators that can be used

with any application and at the other extreme are application-specific custom allocators. The

general purpose allocators are standard allocators that are shipped with the operating systems.

They are the default allocators that work with all applications. Consequently, they are not opti-

mized on a per-application basis. Therefore, these allocators are slow. Even a very highly tuned

general-purpose allocator could take hundreds of cycles for a single allocation [54]. On the

other hand, custom-allocators are written for specific applications (often, on a per-application
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basis). These allocators are shipped with the application and ’understand’ the application allo-

cation/deallocation patterns. Therefore, they are well-optimized for the application and provide

good performance. In general, it is not possible for a general-purpose allocator to beat the per-

formance of a custom-allocator, for a given application.

3.1 Problems with Custom Allocators

Custom allocators may not be easy to write. Often, it may not be possible to know the

application allocation/deallocation pattern. In such cases, it becomes even more difficult to write

a custom allocator, especially as applications become more complex. Writing custom code to

replace general purpose memory allocators may not be a good software engineering practice.

If an application is written using custom code, standard memory detection and debugging tools

cannot be used to for debugging purposes. Custom code needs to be replaced by calls to general-

purpose memory allocators for debugging purposes in such cases since memory allocated by

either of the two cannot be managed by the other. The greatest problem with custom allocators

is the burden on the application developers. These developers sometimes even run the application

for a few inputs to see its allocation/deallocation behavior and then write a custom allocator.

Custom allocators do have some advantages. The main advantage with a custom allocator

is performance gain. Apart from this, at times, there can be other advantages. For example,

region based allocators simplifies memory management in some applications [54] like gcc and

Apache. At the same time there are some other disadvantages with such approaches [54] - for

example, objects allocated within a region cannot be freed until the whole region is freed.

Many allocators today have been optimized for a variety of purposes. For instance,

Slab Allocator [31] intends to optimize for incoming requests for a particular size. Hoard [29],
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Vmem-Magazines [32] and Nakhimovsky [85] try to address the problems in multi-threaded en-

vironment. Barrett [27] tries to optimize based on predicting life-times of the requests. Vmalloc

[109] proposes use of multiple regions with different policies etc. In all, custom allocators pro-

vide performance but at the cost of software engineering. General-purpose allocators are good

to use but do not perform well.

Applications have their own characteristics and any application which does dynamic

memory allocation would ideally require its own custom-allocator - i.e., the application behavior

and the allocator behavior go hand-in-hand to give good performance. In an attempt to achieve

this, traditionally, the solution has been to write custom allocators. In this thesis we take a

different approach by proposing an Adaptive Memory Allocator that can observe the incoming

patterns of sizes that an application allocates and tune itself to these patterns to provide better

performance. The design of this memory allocator is not only driven by the idea of the adap-

tivity itself but also by some of the common characteristics which today’s applications exhibit.

In addition to designing and implementing an adaptive allocator we do a thorough performance

evaluation using both applications and synthetic workloads and show where adaptivity can be of

use.

We first look at the basic operations of a memory allocator followed by the issues that are

important in designing such an allocator. We then look at allocation/deallocation characteristics

of few applications and finally present the design and evaluation of our adaptive allocator.

3.2 Basic Operations of a Memory Allocator

This section briefly discusses the basic operations of a memory allocator. Memory alloca-

tors typically provide malloc/free interface to the application programs. When applications
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need dynamic memory, they call the malloc function by passing a size argument to it. The

memory allocator returns the pointer to the object of that size. Once the application is done with

the memory, if frees the object by calling the free function and giving back the above returned

pointer to the allocator. Thus, from the application view point, malloc/free should be of

minimal overhead as this will directly impact the execution time. We now discuss various issues

that need to be kept in mind when designing such a memory allocator.

3.3 Issues in designing a memory allocator

3.3.1 Issues considered in designing a traditional memory allocator

Traditionally, the following issues are important in the design of a memory allocator.

� Low Response Time : When a request reaches the allocator, it should be serviced as soon

as possible - response time has a direct implication on the application run time.

� Low Fragmentation : Fragmentation is the situation where the total free space in the allo-

cator is greater than or equal to the size of the request but the allocator still cannot satisfy

the request because this space is not contiguous. It is important to keep number of such

situations as low as possible because fragmentation leads to excessive searching (for free

space) and can even lead to an operating system call.

� High Utilization of Memory : Memory Allocators typically borrow memory from the op-

erating system (using the sbrk() system call) and manage that memory. Ideally, the

amount of memory borrowed from the OS must be equal to the memory that is required
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by the application. But this is generally not the case, as the allocator needs space for book-

keeping. Utilization is defined as the ratio of the memory required by the application to

that borrowed from the OS. It is important to keep it as high as possible.

� Locality: If requests can be satisfied using the same cache lines and same TLB entries

(without incurring additional cache and TLB misses), it would benefit applications. Lo-

cality refers to reducing the number of cache misses and TLB misses by trying to re-use

them as much as possible.

The above issues are not only to be considered while designing but they also represent

the metrics by which an allocator will be evaluated.

3.3.2 Next-generation memory allocator

While all of the above issues are still important in the design of a memory allocator, al-

locators for the future applications also need to be adaptive. Adaptivity tries to fill in the gap

between the application and the allocator by tuning the allocator towards the ideal allocator for

that application. Developing an adaptive allocator that can tune itself to optimize all of the above

metrics is a very challenging problem. In this thesis, we focus on adaptivity which will help to

keep the response time low and this is accomplished by observing incoming patterns of sizes and

tuning for these. In other words, this allocator might sacrifice in optimizing other metrics like

utilization or fragmentation in an attempt to keep the response time low. Response time is one

important metric of a memory allocator and increasing virtual address spaces and physical mem-

ories further make it more important than other metrics like utilization or fragmentation. Even

from an application viewpoint, minimizing response time will have direct impact on reducing
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application runtime. Before designing such an allocator, we first of all see if there is any scope

for adaptivity.

3.4 Is there any scope for adaptivity ?

It is important to see how today’s applications behave, in terms of their dynamic memory

allocation, to see if there is any scope for adaptivity at all. An application characterization

can not only reveal us of any scope for adaptivity but also give us more hints with regard to

the allocator design. A brief application characterization for memory allocation has been done

by Dirk Grunwald [112] where characteristics of five heap-intensive applications were brought

out. In this paper we consider more applications and also look at more characteristics from an

adaptive viewpoint. All these characteristics together with the idea of adaptivity drive the design

of this allocator.

Application Allocations Deallocations

boxed Simulation of Polyhedrals 1135111 1125591
cfrac An implementation of the 10886503 10886503

continued fraction algorithm
espresso Two-level optimization 1675490 1668277
gawk A search utility 2272645 2272394
gunzip A decompression utility 32507 32507
make GNU Make 15302 0
ptc Pascal-to-C converter 102706 0
twolf Standard Cell Placement and

Global Routing Program (SPEC 2000) 574553 492713

Table 3.1. Applications that were used for malloc study.
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The applications which we have chosen for this study are a set of heap-intensive applica-

tions (which were also used in the previous study by [112]), a set of normal day-to-day applica-

tions which have significant number of allocation/deallocation requests and SPEC 2000 bench-

mark which has many allocations/deallocations. Table 3.1 shows the applications used along

with the number of allocations/deallocations. Number of allocations/deallocations varies a lot.

On one hand are the applications like cfracwhich have large number of allocation/deallocation

requests (10 million) where significant part of the application run time is spent in the malloc

code. On the other hand there are applications like make which have a few mallocs (in thou-

sands) and where memory allocation is up to 5% of the application run time. Applications like

make, gunzip and gawk are very commonly used day-to-day utilities.

3.4.1 Application Characterization w.r.t. Adaptivity

3.4.1.1 How many ’Distinct Sizes’ do these applications have and what is their frequency

?

Application Percentage covered by top n sizes

4 6 8 10 12 Distinct Sizes

boxed 99% 99% 99% 99% 99% 69
cfrac 88% 99% 100% 100% 100% 10
espresso 84% 87% 89% 91% 92% 756
gawk 64% 74% 85% 94% 95% 37
gunzip 94% 98% 100% 100% 100% 8
make 75% 92% 96% 97% 97% 63
ptc 98% 99% 99% 100% 100% 10
twolf 93% 96% 98% 99% 99.9% 74

Table 3.2. Table showing percentage of requests covered by the most frequent sizes
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Optimizations have been proposed in the past to reduce allocation/deallocation times of

requests of same size appearing again [31]. To see whether such optimizations can be used,

we fist start looking at the number of distinct sizes and the frequency distribution of these sizes

that the applications have. The frequency distribution of sizes might indicate whether size based

adaptivity may be useful for this application. If the application has large number of distinct sizes

and the frequency distribution is more or less uniform, adaptivity may not help much since the

overhead in implementing size-based optimizations might overshadow the performance gains.

On the other hand, large number of requests for fewer sizes is a positive indication. Table 3.2

shows the percentage of requests covered by the top n sizes where n varies. We can see from

the table that most of the requests can be captured by top 10 requests. Similar observation has

been made by Dirk Grunwald [112]. In fact, if we look at the number of distinct sizes, only

espresso has significant number of sizes. If we can keep track of these frequently incoming

sizes and lower the response time for these, it would benefit the applications. So, adaptivity

based on monitoring frequency could be useful.

3.4.1.2 What are these sizes ?

It is also important to see what these sizes are as they might effect the optimizations

we want to perform with them. For example, if the sizes are small, the allocator could keep a

large chunk and peel it of when required. On the other hand, if the sizes are large, then keeping

such chunks would become expensive. Also, traditionally, it has been observed that small sizes

typically have small lifetimes and large sizes are long-living. Thus, it is necessary to service

smaller size requests quickly (compared to requests of larger sizes). Also, if some larger size

requests are not frequent, then we can afford to spend more time to service these. Table 3.3
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Application < 256B < 1K < 4K < 16K > 16K

boxed 99.98% 0.01 0.01 10�5 10�5

cfrac 100% 10�7 - - -
espresso 97% 2% 0.68% 0.14% 0.19%
gawk 89.5% 10.4% 0.05% 0.05% -
gunzip 92% 4.14% 1.53% 2.33% -
make 99.5% 0.5% - - -
ptc 99.6% 0.4% - - -
twolf 99.6% 0.3% - - -

Table 3.3. Table showing percentage of requests within a specific size

shows the distribution of requests w.r.t. size. As we can see, most of the requests are less than

256 Bytes. So, from the application view point, it is necessary to optimize for small sizes.

3.4.1.3 What are the lifetimes for these sizes ?

It has been typically observed that smaller sizes are short-living and larger sizes are long-

living. This is probably because the number of operations that need to be performed depends on

the size and a smaller size indicates fewer operations on that data structure. To our knowledge no

study has substantiated this observation of relation between the size and life till now. In [112],

sizes, inter-arrival times and lifetimes are all treated independently and the relationship between

size and life (if at all there is any) is not established. Table 3.4 shows the variation of the lifetime

of objects (in terms of number of allocation/deallocation requests) with the size i.e., the lifetime

of a object is the sum of number of allocations and deallocations between its allocation and

deallocation. It can be seen from the table that in general there is no regular behavior, although

the values towards the right end of the table are typically high showing that large allocations

actually live for long time. One reason for observing no trend in Table 3.4 is that number of



86

Application 0-256B 256B-1K 1K-4K 4K-16K > 16K

boxed

cfrac 2593.31 1.07x107 - - -
espresso 349.82 87.20 273.6 1691.9 45152.4

gawk 24.71 18.0 83.0 2.27x106 -
gunzip 23.7 1.24 0 41.0 -
make - - - - -
ptc - - - - -
twolf 14548 2398 2926 77917 149725

Table 3.4. Table showing average lifetime for the requests (in requests)

actual operations between the allocation/deallocation requests is not captured. In order to do

this, we show the variation of lifetime with size in terms of the absolute number of seconds in

Table 3.5.

From Table 3.5, we can see that there is a general trend of life times increasing as we

go towards higher sizes. Thus for these applications, it is important to optimize for small sizes

quickly compared to large ones. At the same time it is also possible that there are some other

applications which actually allocate and deallocate larger sizes more frequently. So, apart from

optimizing smaller size requests (as mentioned in the previous subsection), the system design

should make sure that these optimizations will not become a penalty for some other applications

having large sizes.

3.4.1.4 Is there a Working-set ?

The discussion above focused on size distribution w.r.t. frequency and lifetimes but it

does not capture the temporal behavior of requests. Adaptivity will work well when there is

a Working-set of sizes for the application that is either a constant or that changes slowly. If
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Application 0-256B 256B-1K 1K-4K 4K-16K > 16K

boxed 0.026 0.08 3.82 x x
cfrac 0.015 64.2 - - -
espresso 0.002 0.000544 0.00176 0.011 2.98
gawk 0.000176 0.00013 0.00064 15.9 -
gunzip 0.0035 0.0059 0.00003 0.005 -
make - - - - -
ptc - - - - -
twolf 12 3.4 0.17 53 106

Table 3.5. Table showing average lifetime for the requests (in seconds)
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adaptivity be applied to a random sequence of sizes, it might increase the run-time instead of

decreasing it because of the overhead involved in the adaptivity itself (which will not be useful

as the sizes are random). To capture whether these applications have such a working set, we plot

the number of distinct sizes in a given window as the window moves across the requests. Figure

3.1 shows this metric for two of the applications (others are similar). x-axis is the time (in terms

of number of requests) and y-axis shows the ratio of the number of distinct sizes to the window

size. The graphs were plotted for a window size of 512. The lower the curve, the less the number

of distinct sizes in the window and adaptivity might be more useful. For gawk the curve is really

low which means that the working set is small and more or less a constant. On the other hand,

if we look at the curve for espresso which has 756 distinct sizes, the working set variation is

high. Adaptivity can still be useful in some phases for this application (where the curve is low).

Overall, from the adaptivity viewpoint, these applications show promising characteris-

tics. The number of sizes are quite less and the working set of the sizes is not very large.

3.5 System Design

We now present our allocator design. Our allocator is based on and uses the Slab Al-

locator [31] extensively. Therefore, we first discuss the Slab Allocator and then present our

design.

3.5.1 Background : The Slab Allocator

The Slab Allocator [31] optimizes the pattern of incoming requests of a single size by

removing the constraint of maintaining an address order. A slab is a chunk of memory created

for a given size. The components of a Slab are a large chunk of memory (which is typically
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a multiple of requested size) and a stack pointer. On an allocation request, if the stack is not

empty, the top element is popped (which is a chunk of requested size) and returned to the user.

If the stack is empty, then the larger chunk is peeled off and that element is returned. On a free,

the element is simply pushed onto the stack. There is a tag associated with the element returned

to the user which directly points to this slab. Thus, freeing is O(1). Allocation is O(1) if we

know the slab. Other variations such as coalescing with the larger slice when an element is freed

(if they are merge-able) etc. can be implemented. The Slab allocator has typically been used in

the kernel of several operating systems. We have used slabs extensively in our allocator design.

3.5.2 Design

Summarizing the observations from the previous sections :

� Optimization to service smaller sizes quickly

� Adapting to frequently incoming sizes - small or large

� It is not essential to service larger-infrequent sizes quickly

� At the same time, it will be good if we can bound the allocation time.

This section describes the three essential components of the memory allocator. These

components are built to satisfy the above goals. This section also talks about how these compo-

nents should be glued together for better performance.

We first start with our initial design which had two components - the Adaptive Cache and

the Address-Ordered List. We then change our design by introducing more component - the Slab

Cache that further improves the performance. The key point of the allocator is to dynamically

create slabs for frequently incoming sizes.
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3.5.2.1 The Adaptive Cache - for frequently incoming sizes

The main component of the allocator is called the Adaptive Cache (AC). AC is responsi-

ble for monitoring frequently incoming patterns of sizes and optimizing for them. AC itself has

three components :

L1-Adaptive Cache (aL1)

The aL1 is an array of pointers to various slabs, each for a different size. When a request reaches

aL1, the complete array needs to be searched to satisfy the current request. This array is meant

to capture the current active pattern of sizes. If the slab for the requested size can be found here,

then its an aL1 hit and a slice can be immediately popped/peeled from that slab and returned.

If this slab becomes empty after servicing this request, then its becomes an agedOut slab and is

thrown out (of the system - information is never maintained for such slabs - explained later). If

a slab for a size is not found in aL1 then the request goes to L2-Adaptive Cache.

L2-Adaptive Cache (aL2)

When a request arrives, the size is used to determine an index and the linked list of slabs at this

index is searched. If a slab of this size can be found in that list, then a slice is popped/peeled

from this slab and this slab is now inserted into the aL1 (if it is still not empty). aL2 contains all

the slabs in the allocator, of which the hot slabs (which represent the current pattern)are present

in aL1. While inserting a slab into aL1, another slab might be evicted from the aL1 (since the

size of aL1 is limited) - this is done based on the L1-Priorities which are maintained in aL1.

There are also L2-Priorities what are maintained in aL2. As the linked list is traversed in aL2,
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the L2-priorities for the slabs which are ’along the path’ are decremented. If this priority for a

particular slab falls below a threshold, then that particular slab is treated as an agedOut slab and

it evicted out of aL2.

Detecting frequent Sizes

In case a size is not found in aL2, the following criteria will determine whether this size is

frequently incoming size :

An array of N1(=16) entries contains the most recent N1 sizes along with their frequen-

cies and recencies. On every request, the frequency of that size (if it exists) is incremented and

the recency for all the other sizes are decremented. If a particular size cannot be found, then

the least recency size is replaced with the new size. When the frequency for a size reaches a

threshold, then that size is considered as a frequently incoming size and a slab is created for this

size. This size is then removed from this array. The newly created slab is inserted into aL2 (is

also added to the list of the slabs corresponding to the same aL2 index and this slab will be the

first in that list). This slab is also inserted into aL1. Thus, the criteria to create new slabs is based

both on frequency and recency of the requests.

Usefulness of Adaptive Cache

The adaptive cache is designed to perform well for the applications which have a working-set of

sizes. The evictions of slabs from aL1 and promotions from aL2 to aL1 represent the changes in

the working set. If the working set is a constant or fits in aL1, interaction between aL1 and aL2

will be very less.

For rarely occurring sizes, adaptivity will not be useful. These sizes (and the first few requests

of the frequently occurring sizes until the threshold to create a slab is reached) are directly
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served from a different component (Address-Ordered-List of Red-Black-Tree - explained later).

But these sizes still incur the overhead involved in monitoring the sizes, and making a decision

whether the sizes are frequently incoming or not. If an application does not have a working set

at all, then this overhead will be experienced by the requests unnecessarily. Thus, adaptivity

need not always improve the application performance. In an attempt to tune the allocator to the

application, performance may be lost i.e., the overhead in observing the sizes and maintaining

book-keeping information for the sizes might actually overshoot the performance gain. Adap-

tivity will improve the performance of those applications which have a good working set where

the gain obtained from serving frequent sizes quickly is more than the loss incurred due to rarely

incoming sizes.

Tolerance in allocation

When a slab is created for a larger size in the adaptive cache, it is being done with the hope that

there will be more requests for this size. It there are no more requests for this size, then that

memory will not be utilized (until all the requests allocated from that slab are not freed). To

reduce this problem (and to increase the hit rate in the Adaptive cache), adaptive cache allocates

with some slack. In other words, when a request reaches the adaptive cache and the slabs are

being checked if they can satisfy the request, a slab need not be of exactly the same size to satisfy

that request. Even if it is a little larger size (up to 3% larger), that request is serviced from that

slab. By doing this, the overhead of creating a new slab can be avoided but we are sacrificing

utilization.

Deallocation

Deallocation of requests serviced from the slabs is O(1) operation. There is a tag associated with
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each of the slices given to the user (this tag is stored one word before the user pointer). This tag

is nothing but the pointer to the slab. So, when a user frees the memory, the slab can be reached

in O(1) operations as there is no search involved. Pushing into the stack is again O(1). So,

deallocations are very quick. The tag has a bit which indicates if this request has been serviced

from a slab. If not, then this deallocation is routed to other component (discussed later).

Aged-Out Slabs

Aged out slabs are the slabs which either got completely empty or which were evicted from aL2

(due to low priority). There is a status field in the slab which indicates if it is an aged-out slab.

As the deallocations occur, the slab is checked to see if it is full (i.e., if all the deallocations are

done - remember that the slab is a contiguous piece of chunk and cannot be freed unless all the

memory in it has been released). If the slab is full and the status is aged-out, then this slab can

be freed to wherever it was allocated from (next section). Thus, aged-out slabs are actually not

present in AdaptiveCache. They are not even linked anywhere in the data structures. The only

way to reach them is when the user deallocates. The advantage of this is that the allocator does

not need to keep any state information for these slabs which anyway cannot service requests.

Address-Ordered-List/Red-Black-Tree

The third component of this framework can be compared to any other traditional memory

allocator. The idea here is to service the requests as quickly as possible but with less fragmen-

tation and high utilization (note that in creating slabs, we are actually sacrificing these to an

extent). An address-ordered-list (AOL) which serves on a first-fit based policy (and is simple to

implement) is a possible data structure that can be used here. In an AOL, the bound to service

a request is O(n) when there are n free blocks. On the other hand, balanced tree structures
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like red-black trees guarantee a bound of O(log(n)). It is difficult to say that one of these data

structure performs better than the other - this depends on several factors including the patterns of

sizes that are requested, how many requests reach this component etc. If very few requests come

to this component, it probably does not matter too much and one might choose to go with simple

structures to avoid balancing operations and the complexity (simple structures like a linked-list

or a cartesian tree). On the other hand, a large number of requests could imply degradation

in performance when such simple structures are used. Section 3.6 brings out these differences

quantitatively. The requests that reach this component include the rare large size requests from

the application and requests from the AdaptiveCache to allocate and deallocate slabs.

3.6 Performance Evaluation

3.6.1 Experimental Setup

All the experiments were conducted on an IBM Regatta machine that has 1.1 GHz

Power4 processor and 2 GB Memory. The applications were compiled using IBM’s xlc compiler

with aggressive optimizations. The applications were instrumented using hardware counters to

measure the total instructions and cycles spent over the complete application run as well as in

the malloc code. We are using the HPM performance monitoring tools developed at IBM for this

purpose [8]. The time spent in the malloc code was further split into time spent at different com-

ponents. Numerous statistics with regard to hit and miss rates at different components, number

of allocations and deallocations of slabs, number of average traversals during allocations/frees

etc. were also collected to get further insight. Though we collected both cycles and instructions

for all the experiments, we primarily deal with instructions when we talk about response time
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since the variance in nummber of cycles was quite high. We compared our allocator mainly with

the traditional AIX Allocator that is available on the AIX platform.

This section presents the quantitative comparison of various components followed by

performance evaluation with applications.

3.6.2 Quantitative comparison of the components

The allocator infrastructure comprises of all components discussed in the previous sec-

tion. These components can be glued to a specific architecture (this can be done simply by using

an environment variable in our implementation). We first examine each of these components

quantitatively and determine the conditions under which one would do better than the other.

Such an understanding will not only give further insight into the performance results but can

also be used by the user to select an architecture that would benefit applications (this can be

done by setting the environment variable mentioned). We make observations (which are valid

for this OS/Hardware) that can help users to make decisions regarding selecting an architec-

ture for the allocator. If the OS/Hardware platforms are different, then the user can run similar

experiments and make decisions based on those results.

3.6.2.1 Adaptive Cache

As mentioned earlier, Adaptive Cache (AC) is very useful when there is a working-set of

sizes. Now, since the resources in the AC are limited, there is a limit on the working set for which

the AC will perform well - i.e. AC will not be able to capture very large working sets (in such

cases, AC can be disabled using the environment variable). To see this limit on the working-set

size, we constructed a synthetic workload which generates requests randomly from a working
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set of sizes. We then plotted a graph (Figure 3.2) varying the working-set, with the size of the

working-set on the x-axis and response time on the y-axis for all the components (Note that for

comparison, even AIX malloc is being treated as a different component here).

We see that AOL starts breaking down for working sets if size as low as 10 but until

then, it performs better than both AIX and RB. This is because AOL requires a search through

the linked-list where as AIX and RB are tree structures. The number of operations involved in

balancing the trees dominates till the working-set size is 10 after which it is the traversals that

matter. AIX does not have as many balancing operations as RB (even if it has the balancing

operations, they are only w.r.t. address and not w.r.t size). So, AIX does better than RB but

worse than AOL initially. But as the working set increases (beyond 10), RB which balances

both based on size and address really starts performing well. In fact, the response time growth

in RB is the least of all and RB does very well even for huge working sets also (thousands as

can be seen from the graph). Coming to AC, AC is the best as long as the working set is < 128.

For smaller working-sets, the number of slabs created will be really small (as we can see from

Figure 3.3(a)) and the aL1 hit ratio will be high (Figure 3.3(b) shows the absolute number of

hits in aL1 for a million requests). As the working set gets larger, the number of slabs created

increases (aL1 hit rate more or less remains the same) and then decreases because the frequency

of the same size to appear decreases. This behavior can be seen in the Figure 3.3(b). Note that

one important reason why AC keeps its hit rate quite high even after the working set increases

is that the slab need not be exactly of the same size to satisfy the request. As mentioned, a slack

up to 3% is allowed.
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Overall, we quantitatively determined that AC can be useful if the working set is small

(� 128). AOL and AC, both do a good job for very low working sets (� 10). From an asymptotic

view point, RB is good candidate.

3.6.2.2 AOL/RB

Theoretically, RB is a better choice since it gives a bound of O(log(n)) where as with

an AOL, the bound is O(n). These bounds hold true as n grows large. When n is small,

multiplying constants make a difference. Therefore, a user simply cannot assume that RB will

always perform better than AOL. For smaller values of n, the constants associated with these

bounds also come into picture and it is necessary to investigate and determine the value of n

from where (as n increases) RB really performs better than AOL. To determine the value of n,

we did a simple experiment where a list of n free blocks is always maintained and the allocations

and -allocations are always done in such a manner that the list is not disturbed (i.e. the free blocks

in the list will not be able to satisfy the requests and each allocation/deallocation will traverse n

blocks in the AOL). A similar experiment is done with RB where the blocks will be arranged in

form of a tree. We then vary n and plot the response time of AOL and RB as shown in Figure

3.4

AOL initially performs better than RB because when the list is small since the the over-

head of traversing the list is less than that caused due to balancing operations. At n = 25, the

curves intersect after which RB is a better choice. So, if the user has some basic idea of the

allocation/deallocation patterns, he can select the AOL configuration (using the environment

variable) instead of RB. The graph also shows the curve for AIX. AOL is better than AIX for n

� 15.
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3.6.3 Performance Evaluation using applications

3.6.3.1 The Adaptive Cache

The performance of the adaptive cache entirely depends on the application. Since most

of these applications have small working sets (top 10 sizes capture more than 90% of the requests

as seen in Section 3.4), we expect the adaptive cache to do well.

In order to capture the dependency of the performance of the adaptive cache on the work-

ing set, we first plot a graph which shows the hit rate in the adaptive cache (Figure 3.5) and

compare it with the working set graph shown in Figure 3.1. Comparing these two graphs, we see

that hit rate increases as the working set decreases and vice versa.

Application AC/AOL Requests Average Searches Hits Slabs
aL1 aL2 aL1 aL2 Created

cfrac 0.50 10886503 2.65 1.1 99% 31
espresso 0.81 1675490 11.1 3.9 97% 9 req 7162
gawk 1.12 2272645 14.4 0 72% 28 req. 43
gunzip 0.56 32507 1.62 0 99% 8 req 19
make 1.52 15200 9.05 0.19 80% 32 req 123
ptc 1.15 102706 2.67 2.72 99% 10 req 77
twolf 2.0 574553 8.5 0.02 98% 20 req 128
synthetic1 0.44 108000 2.50 2.16 99% 4 req 52

Table 3.6. Adaptive Cache Statistics

Table 3.6 shows the performance of the Adaptive Cache for all the applications. The first

column is the normalized runtime for all the applications w.r.t to the AIX malloc. AC/AOL stands

for an Adaptive Cache/Address-Ordered-List hierarchy where slabs are dynamically created and

maintained in the two levels of the adaptive cache. Large request sizes and infrequent sizes fall



102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

D
is

tin
ct

 S
iz

es
 in

 W
in

do
w

/W
in

do
w

 S
iz

e(
=

51
2)

Time(in Requests)

Hit Ratio in Adaptive Cache

gawk

gawk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

D
is

tin
ct

 S
iz

es
 in

 W
in

do
w

/W
in

do
w

 S
iz

e(
=

51
2)

Time(in Requests)

Hit Ratio in Adaptive Cache

espresso

espresso

Fig. 3.5. Hit Rate in the Adaptive Cache



103

back on the AOL. Also seen in the table is synthetic1 - an artificial workload of working set of

16 sizes which we have created.

Whether AC performs better than AIX depends on the application. Two main factors

contribute to this - working set and the total number of requests. If the total number of requests

is very low, even if the working set is small, the overhead in adapting (creating slabs in this case)

will not be useful. Small working set with large number of requests is the ideal condition for

adaptivity. As we can see, AC performs better than AIX in a few applications and worse than

AIX in others. For applications like cfrac which have a large number of allocation requests,

AC does a good job. The main reason for AC not to do well in other applications is the number

of operations required to find a slab. Since AC creates and maintains slabs dynamically (as

said earlier), when a request comes, AC will first search in the aL1 level to find a slab for that

request. If the slab is found, then allocations is request is satisfied. From Table 3.6, we see that

the number of operations spent in aL1 to an attempt to service requests is quite high. This is the

main factor for AC to not perform as well as AIX. In fact, though 90% of the requests hit in aL1

in many applications, the overhead in searching is still high. A good thing to note in the table is

that search in aL2 does not seem to be a big overhead. Thus overall, AC by itself is on par with

the AIX malloc. Below, we show further optimizations that can be made which will improve the

performance of the allocator.

So, AC is better than AIX for some of the applications. We also conducted experiments to

see how the other configurations (AOL and RB) perform for these applications and compare then

with AIX and AC. Table 3.7 shows these results. The first three columns show the normalized

time spent in the malloc for the AOL, RB and AC respectively. In the absence of AC, all the

requests directly go to AOL/RB - this number is shown in the fourth column followed by the
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Application AOL RB AC/AOL Without Adaptive Cache With Adaptive Cache
Requests AOL-Tr RB-Tr Requests AOL-Tr RB-Tr

cfrac 5.32 1.16 0.50 10886503 143.9 2.2 55 1.5 2.2
espresso 0.44 1.03 0.81 1675490 8.5 5.2 44053 130 4.4
gawk 0.36 1.24 1.12 2272645 1.6 3.3 624974 0.34 3.9
gunzip 0.43 1.66 0.56 32507 0.48 1.5 54 1.0 0.6
make (no frees) 0.54 1.53 1.52 15200 0.014 0.004 2675 0.008 0.004

ptc (no frees) 0.57 1.63 1.15 102706 10�4 10�4 109 0.013 0.13
twolf 125 3.5 2.0 574553 1500 7 10265 3.0 3.2
synthetic1 93.3 1.51 0.44 108000 3500 9 73 5.0 1.25

Table 3.7. AOL and RB operations and timings, AC timings - comparison

average number of traversals in AOL/RB (AOL in fifth column and RB in the sixth). In the

presence of AC, lot of requests get satisfied in AC itself. Some infrequent requests and requests

for Slabs will be sent to AOL/RB - this number is shown in the next column followed by the

average number of traversals for these requests.

The first observation to make is that AOL is doing better than AIX malloc in many cases.

This is because, if the average length of the AOL is < 15, AOL is a better choice (from pre-

vious section) and for these applications, the average number of traversals (listed in the fifth

column) are less than 25 (except for cfrac, twolf and synthetic1 and AOL is not doing

good in these cases). So, if the user is aware beforehand or has some hint about the alloca-

tion/deallocation patterns, he can make use of AOL. The second observation is that RB is con-

sistently bad compared to AIX and this happens because of the same reason (average traversals

are > 25 only for cfrac, twolf and synthetic1). The third observation is that AC is

doing much better than RB. We can see from the table that most of the requests get satisfied in

the adaptive cache (by comparing columns 4 and 7). Still AC itself is performing worse than the
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AIX malloc in a few cases and it is necessary to optimize further. For this we propose the slab

cache.

3.6.4 Slab Cache

3.6.4.1 The Slab Cache - servicing smaller sizes quickly

SlabCache is an array of slabs that are created for smaller sizes. Its purpose is to service

the smaller sizes very quickly without search. When an allocation request for a size s(< S,

where S is the maximum size the SlabCache can serve) is generated, an array of slab pointers is

indexed using s. If the array slot is not empty, then the request can be serviced immediately by

popping/peeling out a slice from that slab. If that slot is empty, then a new slab is created for this

size, the request is serviced and a pointer to that is stored in that slot. This new slab is obtained

by making a call to a different component (discussed later).

Thus, servicing a request through SlabCache requires no search. If the slab is found, the

request can be serviced inO(1) operations. The size of the Slab that needs to be created depends

on the demand for this size. The slabs which are created initially are smaller ones which can

service a few requests. If a Slab becomes completely empty due to the demand for that particular

size, then that slab is called an agedOut Slab (agedOut slabs are discussed later). Each time an

agedOut slab is replaced by a new slab, the new slab will have double the size of the original

slab. Therefore, servicing smaller sizes very efficiently is accomplished with SlabCache.

The conditions under which a slab cache would be very useful are obvious. If the slabs

can be created up to size S, applications would significantly benefit from slab cache if most of

the requests are � S. Even if many of the requests are > S, application run time can still be

improved as long as there are some sizes (� S)that repeat - this being at an expense of utilization.
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Nevertheless, since most of the short size requests are short-living, it is important not to spend

too much time in allocating/deallocating these and SlabCache is a good idea to speed up such

request allocations.

Application AOL RB SC/AOL SC/RB SC/AC/AOL SC/AC/RB

cfrac 5.32 1.16 0.32 0.32 0.32 0.32
espresso 0.44 1.03 0.22 0.23 0.23 0.23
gawk 0.36 1.24 0.30 0.30 0.30 0.30
gunzip 0.43 1.66 0.40 0.42 0.40 0.40
make 0.54 1.53 0.58 0.59 0.61 0.62
ptc 0.57 1.63 0.62 0.62 0.62 0.62
twolf 125 3.49 0.78 0.78 0.78 0.78
synthetic1 103 1.01 0.33 0.23 0.79 0.43

Table 3.8. Effect of the Adaptive Cache

Finally, we evaluate the effect of having a SlabCache on the applications. The fact that

more than 90% of the requests are less than 256 Bytes is an indication that the SlabCache will

improve the performance. Table 3.8 shows the performance of SC with and without AC. The first

column is the normalized time spent in malloc for AOL configuration (w.r.t. AIX), the second

column is for RB, third is for SC/AOL and so on (as listed).

Introducing an SC improves the performance drastically. In espresso, improvement is

about 5 times (compared to AIX malloc). In no application does the performance worsen since

most of the requests are for smaller sizes. Thus, it seems to be a very good idea to have SC.

The other important observation is that SC/AC configurations (with AOL or RB underneath AC)

perform almost the same as SC configurations (without AC). In other words, using adaptivity

below SC is at least not hurting these applications. Since most of the sizes are small, SC is able
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to satisfy them but if we have an application which would have patterns of larger sizes, then the

effect of AC would come into picture.

Having seen that SC is an important component, the next question to address it - what

size of SC do we use ? In order to answer this, we ran experiments varying the size of SC from

32 bytes to 4K (by saying that size of SC is S, we mean that all the requests of size � S would

be satisfied in the SC). Other requests will be sent to AOL underneath it. Figure 3.6 shows the

ratio of the time spent in malloc to the ratio of time spent in AIX malloc for all the applications

as the size of the SlabCache varies. From the figure, we can see that after a SlabCache size of

128, the improvement is negligible. We recommend an SC of size 256/512 entries to get good

performance.

3.6.5 Summary

Overall, we observe the following from this comparison :

� Having the Slab Cache enabled is a good idea

� For working set sizes < 128, adaptivity might help a lot.

� If the working set is < 10, AC and AOL are more or less the same

� If the application does not have a working set but if there is an indication (obtained by

looking code structure and how mallocs and frees are being made) that the AOL length

will be � 15, AOL is better than AIX. If AOL length � 25, AOL is better than RB.

� Asymptotically RB is the best configuration.

Overall, SC/AC/RB seems to be a good organization - it has the ability to serve the

smaller sizes quickly, adapt to larger sizes which are frequent by creating slabs only for those
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sizes which are really frequent and finally, serving rare large sizes using a red-black-tree in a

best fit manner in a bounded time. We finally recommend SC/AC/RB configuration.

3.7 Conclusion

Dynamic memory allocation is a necessity of many application programs today. For

good performance of heap-intensive applications, programmers typically write custom alloca-

tors. These are not flexible and have high software engineering overhead. On the other hand,

general purpose allocators are slow. In this thesis, we take a different approach by proposing an

adaptive memory allocator that tunes itself to the application programs.

Adaptive allocator performs well compared to other traditional allocators like AIX al-

locator. Adaptivity does not come for free, it has its overheads as well. After looking at the

application characteristics we find that most of the objects allocated are usually small. There-

fore, a small optimization performs much better. Nevertheless, adaptivity will be useful when

there is a working-set of large sizes.
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Chapter 4

Memory Management in the Operating System

Applications which fit in the main memory will benefit from the hardware/software op-

timizations done in the processor-memory path discussed in the previous two chapters. Many

applications today do not fit into the memory. For these applications, it is important to minimize

the disk access. Disk access times are orders of magnitude higher than the memory access times.

Therefore, optimizations in the operating system to prevent disk access will have a good impact

on the performance of such applications.

The component of an Operating System (OS) that is responsible for maintaining im-

portant data in the memory and minimize disk access is called the Virtual Memory Manager

(VMM). The behavior of VMM plays a significant role in determining the performance of many

applications. While other system components like processor architecture, cache design, memory

design etc. are important and do have an impact on the performance of an application, the large

difference between access times of memory and disk make VMM more important, especially for

those applications that do not fit into the memory.

The performance of an Operating System VMM mainly depends on two factors: the algo-

rithm of the VMM (the page-replacement algorithm) and the parameters associated with this al-

gorithm. Over the years, much work has been done on designing, simulating, implementing and

evaluating page-replacement algorithms [39, 71, 96, 92, 38, 79, 78, 106, 99]. Models have been

proposed to capture and use program behavior [51, 50, 81] to improve the performance of VMM.
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Compiler based approaches have also been proposed to improve the performance of VMM [79].

Other runtime approaches to improve VMM performance include approaches like compression

of virtual memory [74, 3]. On the other hand, improving performance of VMM by changing the

parameters in the VMM has received much less attention in the past. The parameters of VMM

play an important role in many key decisions as to what pages to keep in the memory and what

to throw out. Setting these parameters to the right values can improve the performance of ap-

plications drastically. In fact, it is already well-known to the community/OS developers that the

values of these parameters do have significant impact on the application performance [11]. To

our knowledge, no one has attempted to study and understand these parameters in great detail.

In order to get a good hand on them, it is important to study their functionality, classify them,

qualitatively reason out their influence on different kinds of applications and finally quantita-

tively support these arguments. One main impediment to do this, we think, has been increasing

complexity of operating systems. It is extremely time consuming and one might have to spend

months to browse through thousands of lines of code and make inferences out of it. The only

work in this context, to our knowledge, can be found on some of the open source mailing lists

[11] where people exchange ideas about improving performance of applications by changing

these parameters. A significant amount of discussion and experimentation goes into setting each

of such parameters. This is also true with commodity operating systems which are not open

source. In such cases, when end-users start complaining about performance, the OS developers

start tuning these parameters by massive experimentation. Due to large number of parameters in

a typical OS (including various other components like networking, scheduling, I/O etc.), it may

not possible to tune every parameter. As a result, tuning is typically need-based i.e., only when

a user/customer is not satisfied or starts experiencing performance degradation in a particular
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subsystem. Also, tuning in such cases is limited to improving the performance of specific ap-

plications. Consequently, there is a lack of thorough understanding of such parameters and their

influence on the application performance.

Methods to self-tune these parameters dynamically would help enterprises as well as

open source communities. It is not only economical in terms of time and cost, but can also buy

more performance. While attempts are being made to develop such techniques [24], it is first

necessary to have a thorough understanding of behavior of such parameters before developing

techniques to dynamically tune them. Specifically, with in the scope of VMM, we would like to

gain insights on the following questions:

� First of all, what are all the important VMM parameters in a typical operating system?

� What are the functions of each of these parameters and what role do they play in the

VMM? Are all these parameters known (exposed) to the users?

� Can we make qualitative arguments about effects of these parameters on various applica-

tions?

� Using a variety of applications from different classes, can we support these qualitative

arguments with quantitative results obtained by varying all these parameters across rea-

sonable ranges?

� Do all the parameters have significant effect on the performance of the applications? If

not, what are the important ones? Are there optimal values for these across various appli-

cations? Are the optimal ranges same for different applications?
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� Finally, can we correlate the effect of these parameters to pure application characteristics

(based on application memory references)? or Can we correlate them to application char-

acteristics that can be observed with in an operating system (application-OS characteristics

obtained by observing page-faults alone) ?

Answering some of the above questions would not only provide good insight into characteristics

of the parameters but also would help us to propose techniques to make the system self-tune the

parameters dynamically.

In an attempt to answer some of these questions, this thesis makes contributions by study-

ing all the parameters in the Linux [12] Operating System’s Virtual Memory Manager, classify-

ing them both based on their functionality as well as their influence on applications, qualitatively

and quantitatively analyzing their effect on applications from different classes, relating these ef-

fects to application characteristics and/or application-OS characteristics, providing a few sug-

gestions with regard to exposing these parameters to the open source communities, and finally

by providing a good motivation to tune these parameters dynamically.

The rest of this shapter is organized as follows: Section 4.1 presents an overview of the

Linux Memory Manager, Section 4.2 describes all the parameters and their effect (qualitatively),

Section 4.3 presents a quantitative analysis of all the parameters with a discussion and finally,

Section 4.4 concludes.
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4.1 Overview of the Linux VMM

.. ..

Active List Inactive List

Reference Bit = 1
Set it to 0

Reference Bit = 0
Set it to 1

10

Dirty Pages
Write back

Clean Pages
Reclaim

Reference Bit = 1
Set it to 0

Kswapd (Phase I)
Kswapd (Phase II)

1 0 0

Fig. 4.1. Linux Page Management Policy

This section presents a brief overview of the Linux Virtual Memory Manager. As we

describe the algorithm, we also refer and relate to the parameters of the algorithm, and try to

bring out how both together determine the behavior of the Linux VMM. Since the Linux Kernel is

continuously evolving, we chose a particular version of it for our study. The following discussion

is based on Linux Kernel version 2.5.74.

Linux VMM keeps all the pages in the physical memory in two lists: The Active List

and the Inactive List (actually a few, relatively small number of pages are locked for the kernel

code and data structures - we ignore this for now). These lists are maintained using a FIFO-like

policy. The pages in the Active list represent ’hot’ pages that have been recently accessed and

the pages in the Inactive List are ’cold’ pages that have been accessed sometime ago and could

potentially be candidates for replacement.
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As the application keeps executing, requiring more memory for its execution, memory

is allocated to it from a free-pool where pages are managed according to buddy system [91].

When the number of free pages in this free-pool falls below a threshold called LowWatermark,

the system is said to be under memory pressure. At this point, a pager-daemon called kswapd is

activated to reclaim pages (explained later). When the system is under memory pressure, appli-

cations are still allocated memory from the free pool until the number of free pages falls to the

next threshold called MinWatermark. If the number of free pages falls below MinWatermark,

VMM stops allocating pages to the applications. Only kernel allocations go through. This is

to prevent applications from clogging all the memory and blocking the kernel from perform-

ing its other activities. Thus, the parameter MinWatermark determines the critical point when

applications are denied memory.

As mentioned above, kswapd gets activated when the number of free pages falls below

LowWatermark. The purpose of kswapd is to free pages i.e., to reclaim clean pages and write

back dirty pages. Kswapd functions in two phases (Figure 4.1). In the first phase, it parses the

active list, starting from its tail. As it scans, it checks the pages for accessed bit in the Page-table

Entry (PTE) of the page (the bit is set in the TLB when an application generates a reference -

hardware takes care of propagating the bit into the PTE). Pages that have been accessed (that

have the accessed bit set) are moved to the head of the active list and those that have not been

accessed are moved to the head of the inactive list. There is a limit on number of pages that are

scanned in the active list. This limit is determined by a parameter called ActiveInactiveRatio.

This parameter indirectly determines the ratio of the active list to the inactive list. Before moving

pages from active list to the inactive list, it is also determined whether mapped pages (pages
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that not pure file pages) should also be candidates for the move. This is determined using the

parameter VMSwappiness.

The first phase of kswapd, therefore, is the movement of pages from the tail of the active

list to the heads of the active and inactive lists. After this phase, kswapd enters the second phase

where it starts scanning from the tail of the inactive list. All the pages that are accessed (note

that pages in the inactive list also have their page-table mappings and accessed bit gets set even

for these pages when they are accessed) are moved to the head of the active list. Now, among

the pages that are not accessed, clean pages are reclaimed and sent to the free-pool and dirty

pages are written back. The number of pages that should to be reclaimed in the inactive list is

determined by another parameter called HighWatermark. When kswapd gets activated, it fixes

itself a goal of reclaiming target(= [HighWaterMark �NumFreePages℄) pages i.e., after

kswapd is done with its job, the system will approximately have HighWatermark free pages.

Kswapd goes back to sleep as soon as it reclaims its target number of pages. There is also a limit

on the number of pages that kswapd scans in the inactive list. If kswapd is unable to reclaim

target number of pages in one scan, then it increases this limit and scans more number of pages

in the next pass. Thus, kswapd, in a single activation keeps increasing this limit and repeatedly

scans more number of pages in the inactive list until it reclaims target number of pages. The

rate at which this limit of scanning increases is determined by the parameter PriorityIncrement.

After scanning the inactive list, kswapd is done with its job and goes back to sleep to be woken

up again when the number of free pages falls below the LowWatermark and then the whole

process repeats.

Page-reclamation also occurs through a direct-reclaim path. When the number of pages

in the free-pool reaches below MinWatermark, applications, unable to allocate, start doing the
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work of kswapd by themselves (in their context). They reclaim a handful of pages and proceed

with their computation instead of waiting for kswapd complete its work. The number of pages

which are reclaimed this way in the context of applications is the parameter SwapClusterMax.

Overall, the Linux VMM algorithm can be called as an approximate-LRU algorithm. A

page that is placed at the head of the active list slowly trickles down to the end of the active list.

If it is accessed in between it goes back to the head of the active list. Otherwise, it trickles down

the inactive list and is finally reclaimed. It is to be noted that while this discussion is almost

exact, some minor details are omitted for the sake of clarity and brevity. The above discussion

briefly mentioned the parameters and their usage in the algorithm. Next section describes the

parameters and their function at a greater detail.

4.2 Description and Qualitative Analysis of Parameters

In this section, we give a qualitative description of the parameters and their effects, clas-

sify them based on their functionality, summarize them and briefly describe which all parameters

are exposed to the users. Note that while some of these parameters are easy to find since they

are exposed through specific interfaces (such as /proc), others are buried in the code. In fact,

some of them just appear as constants at a few places in the source code. In this thesis, we give

names to all such parameters (based on their function and context) for the ease of discussion.

We now go through all the VMM parameters, describing the function and possible influence on

application performance for each parameter. We start with the first parameter, LowWatermark.

1. LowWatermark: LowWatermark determines the activation of kswapd. For our evalua-

tion, LowWatermark is described using notation l. kswapd is activated when the amount
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of free memory in the system falls below M=l where the ratio M=l is the LowWatermark.

In the Linux Kernel, the number of pages that are to be reclaimed when number of free

pages falls below LowWatermark is also a function of the LowWatermark. In other words,

the ratio between the HighWatermark (which determines the number of pages to be re-

claimed) and LowWatermark is fixed. Thus, changing LowWatermark not only affects the

kswapd activation but also the number of pages that will be reclaimed on each activation.

As the value of l increases, the LowWatermark (M=l) decreases, effectively giving more

pages to the applications. Therefore, as we increase l, we can expect increase in the per-

formance. However, on further increase, there would be too few free pages in the system

and this would not only increase the number of times kswapd gets woken up but also the

I/O time of the applications as they have to wait for pages to be written back to disk to get

free pages (otherwise, this would happen in the background). Thus, increasing l can ben-

efit applications to a certain extent but increasing it aggressively might hurt. The default

value for l is 64.

2. MinWatermark: MinWatermark determines the critical condition when applications are

denied memory and only the kernel has privilege to allocate physical memory. MinWa-

termark is always less than LowWatermark and we parameterize it as a percentage of

LowWatermark. m denotes the percentage of LowWatermark which the MinWatermark is

set to. As m increases, MinWatermark increases thereby reducing the scope for applica-

tions to allocate memory (under memory pressure). Therefore, a higher value of m would

probably hurt applications (since it occurs only at extreme memory pressure).
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3. ActiveInactiveRatio: ActiveInactiveRatio determines the number of pages that need to be

moved from the active list to the inactive list on each activation of kswapd. Indirectly, this

parameter determines the ratio of the length of the active list to the inactive list, expressed

as percentage. The exact number of pages that move from the active list to the inactive list

is given by the T � A�100
I�a

where T is the target number of pages that need to be reclaimed

by kswapd, A is the length of the active list, I is the length of the inactive list and a is

the ActiveInactiveRatio parameter. The default value of this parameter is 200, which

indirectly means that the active list is twice the inactive list. Note that pages in the inactive

list are the only pages for direct reclaim. kswapd never directly reclaims pages from the

active list. Therefore, having a larger active list (larger value of a) would make the pages

stay for a longer time in the memory. If the application size fits in the physical memory

but not in the active list, then increasing a would help such an application. At the same

time, extreme values of a could leave very few pages in the inactive list (for reclamation)

causing kswapd to get activated too often. This might increase kswapd overhead and

worsen the performance of the application. On the other hand, if an application does not

fit into the memory at all, then increasing a might hurt the application since the pages are

unnecessarily kept in the active list.

4. HighWatermark: HighWatermark determines the number of pages that need to be re-

claimed when kswapd gets activated. Pages will be reclaimed until the number of free

pages reaches HighWatermark. HighWatermark is described in terms of h which denotes

the value of HighWatermark as a percentage of LowWatermark. A value of 150 would

mean that HighWatermark is one-and-half times LowWatermark. The default value in the
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Linux Kernel is 150. A very low value of h can mean repeated activation of kswapd since

it will not reclaim enough number of pages each time, thereby increasing the overhead of

the system. A very high value of h can be too aggressive to throw out many useful pages

at once, hurting application performance.

5. Priority Increment: Priority Increment is the rate at which the scan length of the inactive

list is increased in case kswapd is unable to reclaim enough number of pages (it will

reclaim more by scanning more). It also determines the number of times inactive list will

be scanned. In other words, this parameter determines how the aggressiveness of kswapd

increases each time it gets activated. We think that this parameter may not have too much

impact on the performance of the applications. Either kswapd wakes up a few number

of times, each time making more number of scans through the inactive list, or it wakes

up very frequently, each time scanning fewer times. We think that ultimately, the total

number of scans through the inactive list will even out. We refer to this parameter as i and

its default value is 1.

6. SwapClusterMax: SwapClusterMax is the number of pages to be reclaimed in the direct

reclaim path (when the system is under extreme pressure). Behavior of this parameter can

be expected to be like HighWatermark. A high value would be too aggressive in reclaiming

pages and a very low value will not serve its purpose. We refer to this parameter as s and

its default value is 32.

7. VMSwappiness: VMSwappiness determines how aggressively mapped pages (pages that

are not pure file pages) should be moved to the inactive list . If this parameter is 100, then

all the mapped pages are candidates for swap and are moved to the inactive list. A low
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value of 0-10 will try to keep in mapped pages as much as possible. The default value of

this parameter is 60. A pure virtual memory intensive application might need a low value

and an application which is more file based would prefer a high value for this parameter.

This parameter is denoted by v.

8. PageCluster: While all of the above parameters come into effect during the page-reclaim

process, there is also a parameter which plays role during the page-fault process. This is

called PageCluster and represents the number of pages that need to be prefetched from the

swap area (on the disk) during a page-fault. These extra pages can be prefetched without

much extra overhead since there is no seek time involved in prefetching these pages. If an

application exhibits good amount of sequentiality (if pages are accessed in sequence), then

a high value for this parameter might benefit the application. On the other hand, irregular

applications might be hurt with a high value for this parameter. We refer to this parameter

as p and its default value is 8.

Classifying the Parameters

The parameters described above can be briefly classified into several classes based on

their functionality.

Page-reclamation process can be viewed as three-step process - (i) Activation of kswapd

(ii) Scanning the Active and Inactive Lists and (iii) Reclaiming the Pages (actually reclamation

happens while scanning - we logically separate these two operations). Parameters come into

play in each of these logical steps.

Table 4.1 shows the three categories of parameters. It can easily be seen, based on the

discussion in the previous Section, as to which parameters fall into which category. Table 4.1



122

Class Parameters

Activation-related Parameters LowWatermark, MinWatermark
Scan-related Parameters ActiveInactiveRatio, PriorityIncrement

Reclaim-related Parameters HighWatermark, SwapCluster, VMSwappiness
Page-fault related Parameters PageCluster

Table 4.1. Table showing a classification of VMM parameters based on their functionality

also shows another category called Page-fault related parameters. While the first three classes

refer to the parameters that play active role in page-reclamation process (throwing out pages),

PageCluster is used during a page-fault (while bringing in pages).

Table 4.2 summarizes all the parameters in the Linux VMM. The first column shows the

parameter and the second column gives a brief functional description of that parameter. The

default values of the parameters are shown in third column. Note that sometimes, for conve-

nience, the notation used to denote the parameters does not directly denote the parameter but

indirectly reflects its value. For instance, we use l to denote LowWatermark parameter, but the

actual LowWatermark is M=l. This is just for convenience when we present quantitative results.

Column 4 in the table shows this notation and finally, the last column shows whether that param-

eter is exposed to the users today. As we can see, the first five parameters are not exposed to the

users. Such decisions as to what to expose are purely based on the intuition of the developers.

We shall revisit this issue after the quantitative analysis section.
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Parameter Brief Description Default Notation Exposed
Value

LowWatermark Determines Kswapd Activation 64 l No

MinWatermark Determines Critical Condition of few free pages 50 m No

HighWatermark Determines the number of pages to 150 h No
reclaim from the inactive list

ActiveInactiveRatio Decides the ratio of the active 200 a No
list to the inactive list

PriorityIncrement Decides the rate at which the scan length of 1 i No
inactive list is increased

VMSwappiness Priority in reclaiming anonymous pages 60 v Yes
[100) aggressive]

SwapClusterMax Number of pages to be reclaimed 32 s Yes
on the direct page-reclaim path

PageCluster Number of pages to prefetch on 8 p Yes
a page-fault [disk-contiguous]

Fig. 4.2. Summary of various parameters in the Linux VMM
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4.3 Quantitative Analysis of Parameters

4.3.1 Experimental Setup

Application Brief Description Physical
Memory Used

dbt3 An Open Source Database application 163MB
running TPC-H like Queries [17]
(we executed 20 Queries in each run)

gzip A common compression utility 95MB
(also part of SPEC 2000) [7, 19]

apsi A Meteorology application 192MB
(Pollutant Distribution) (SPEC 2000) [19]

mummer A Genome Sequence analyzer [14] 159MB
lucas A number theory application used for 155MB

primality testing (SPEC 2000) [19]

Table 4.2. Applications used

In this section, we present quantitative analysis of all the VMM parameters. All the

experiments were done on a 2.8GHz Pentium 4 machine running Linux 2.5.74 Kernel. Since all

the parameters were not exposed to the users by the default kernel, we provided hooks using the

/proc filesystem to set the parameters dynamically as the system is running. We have chosen 5

applications from different domains for this study so that we do not make any biased inferences

about effects of varying these parameters. Table 4.2 shows all the applications that were used. All

the applications were executed onto completion. Table 4.2 also shows the amount of physical

memory that was used with each application. Note that providing more physical memory is

always a solution to improve performance. At the same time, there are always applications that

do not fit into the memory. The goal here is to to observe the effect of these parameters when



125

memory is a constraint. If applications fit well into the memory, no parameters of an OS will

have effect on the application performance. At the same time, if the memory is too small so that

applications incur large number of page-faults and become outrageously slow, again parameters

of OS will not matter. It is the range in between where there is some amount of disk access

and where applications proceed at a reasonable rate, that we feel is interesting. For this study,

we observed the amount of memory that applications need and chose slightly lesser physical

memory sizes so that there would be reasonable amount of disk access.

4.3.2 Quantitative analysis

In this section, we evaluate the effect of varying all the parameters on the applications.

The main metric of comparison is the normalized number of page-faults across the range each

parameter was varied. We have chosen number of page-faults (Major faults in Linux Kernel) as

the main metric as opposed to the application run time because we think that number of page-

faults is a metric that is more immune to noise in the system. runtime. In any case, for most of

the runs of all the applications, we observed a direct correlation between the number of page-

faults and the application runtime. So, our conclusions would not be any different even if we

had compared application run time. While varying each parameter, all the other parameters are

fixed (to their default value in the Linux Kernel) so that we can observe the effects of parame-

ters individually. For each parameter, we chose a reasonable range that also covers the current

default value in the Linux Kernel. We begin with Activation-related Parameters, starting with

LowWatermark.
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Fig. 4.3. Figure showing the effect of LowWatermark and MinWatermark
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LowWatermark

To quantitatively see the effect of LowWatermark, we varied l from 64 to 4096, in powers

of 2. Figure 4.3(a) shows the effect of varying l on all the applications. In the figure, y-axis is

the normalized number of page-faults w.r.t. the minimum value that is attained over the x-range

i.e., maximum performance is the point with y-value equal to 1. As we can see from the figure,

increasing l (decreasing LowWatermark) helps all the applications. This is not just because

more pages remain in the memory but that they also remain in for a longer time (applications

effectively get more free memory). Increasing l to values greater than 1000 hardly benefits

applications. This can be explained using the LRU stack distance table (Table 4.3) which was

derived from application memory references that were collected using the Valgrind [20] tool.

Valgrind instruments application binaries and generates memory references on the fly. We pass

this stream of references to an LRU stack. Table 4.3 shows the frequency of references at LRU

stack depth measured in MB i.e., a reference that was at a stack distance of 1024 (pages) would

be treated as a reference at a depth 4 MB. This way, it is easy to see how many references will hit

within the memory as parameters (like LowWatermark) are changed. Now, remember that the

Linux VMM algorithm is approximate-LRU (as described in Section 4.2). It is for this reason

that we can approximately explain the behavior of these applications using the LRU stack depth

table.

For example, if we consider apsi which was executed with a physical memory of

192MB (with some memory being reserved for kernel code, data structures, DMA etc.), as

the value of l increases beyond 1000, the amount of memory in the active list becomes close

to 180MB. If we look at the columns for apsi in Table 4.3, we see that there are hardly any



128

references that are accessed from LRU stack depth of 180MB to 192MB. Also, as the value of l

increases, the rate at which more pages are available to the application decreases. It is for these

reasons that apsi does not gain much in performance on further increasing l. Similar explana-

tions can be given for other applications as well using the LRU stack depth table. We show in

Table 4.3, LRU stack depth information for three applications. It can be expected, on the other

hand, that as l increases more, there would be performance degradation (as said in qualitative

discussion of LowWatermark, Section 4.2). Though this does happen, it happens at extreme val-

ues of LowWatermark (= 10-15 pages) at which point the system becomes unbearably slow. We

do not consider such values in our experimentation since we think they are unreasonable.

For lucas, the performance improvement is significant. lucas is an application that

accesses addresses quite iteratively all over the address space. Access pattern graphs for lucas

are shown in Figure 2.6. As we increase the LowWatermark, lucas fits more and more into

memory thereby performing well. Iterative nature is not this high for other applications. As a

result, they do not benefit much with increasing LowWatermark.

Overall, LowWatermark is an important parameter since it can effect performance of

applications significantly. There exists optimal range for it which is good across all the applica-

tions. Fixing the values of such parameters (like LowWatermark) based on one time experimen-

tation might be good enough.

MinWatermark

We now move on to the next parameter, MinWatermark. As said in Section 4.2, as m

increases, MinWatermark increases thereby reducing the scope for applications to allocate mem-

ory under memory pressure. Therefore, a higher value of m would probably hurt applications.
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mummer gzip apsi

LRU Stack Depth Frequency LRU Stack Depth Frequency LRU Stack Depth Frequency

120 - 124 MB 1355382 80 - 84 MB 105343 160 - 164 MB 130964
124 - 128 MB 1286964 84 - 88 MB 63317 164 - 168 MB 67121
128 - 132 MB 1208009 88 - 120MB 0 168 - 172 MB 71630
132 - 136 MB 1112525 > 120MB 70913 172 - 176 MB 77352
136 - 140 MB 817316 176 - 180 MB 772758
140 - 144 MB 10312 180 - 192 MB 0
144 - 148 MB 3721 192 - 196 MB 13679
148 - 152 MB 2373 > 196 MB 48918
152 - 200 MB 0
> 200 MB 37564

Table 4.3. Table showing LRU stack depth frequency for some applications. This is a pure

application characteristic that was derived from application memory references.

Figure 4.3(b) shows the effect of m on all the applications. We varied m from 10 to 90

(default value is 50). First observation from the figure is that MinWatermark is not as influential

a parameter as LowWatermark. The maximum performance difference that MinWatermark can

make is around 20% (for lucas). MinWatermark is not so influential because, once the number

of free pages fall below LowWatermark, kswapd is activated and it starts freeing the pages in

the background. Thus, its not too often that the number of free pages falls below MinWatermark

for the application performance to be hurt significantly. We can see from the figure that the

performance of applications is quite random as we vary this parameter. It is important to note

that the system under consideration is quite complex. There are a number of events happening

inside the kernel and it is not possible to monitor all of these. We attribute such minor variances

(up to 10%) in performance to ’noise’ in the system.

In all, although MinWatermark is an interesting parameter, it is ’shielded’ from the above

by the LowWatermark. Therefore, its not as influential as LowWatermark. From the view point

of applications, setting this parameter to a non-extreme value seems to suffice.
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ActiveInactiveRatio

We now move on to the next class of parameters summarized in Table 4.1, Scan-related

parameters. ActiveInactiveRatio determines the number of pages that need to be moved from

the active list to the inactive list. As discussed in Section 4.2, a very high value of this parameter

might lead to a large kswapd activation overhead and a very low value might allow useful pages

to be reclaimed.

Figure 4.4 shows the effect of a on all the applications. We varied a from 10 to 10000

(default value is 200). From the figure, we can make several observations. First, a is effecting

all the applications significantly. There is at least a difference of 25% in performance for all

the applications across different values of a. In fact, lucas suffers performance degradation

of as much as 200% if the value of a is not chosen appropriately. Second, a more interesting

observation, different applications have different optimal ranges for a. For gzip and dbt3,

maximum performance is achieved at a value around 2000 where as values around 100 seem to

be good for apsi and mummer. For lucas, 10 is the best value. The reason for this behav-

ior, again, can be related to characteristics of the applications. In fact, the LRU stack distance

Table (Table 4.3) can be used to explain the influence of this parameter as well. If increasing a

captures higher frequencies in the Table 4.3, then the application will benefit. Otherwise, its per-

formance will not change much or worsen. For example, if we take mummer, a value of a=1000

corresponds to LRU stack depth of 140MB and we can see from Table 4.3 that mummer does

not have too many references after 140MB. Therefore, its performance drops on increasing a to

values greater than 1000. Another interesting observation from Figure 4.4 is the performance of

lucas which drops consistently. This is because the working set of lucas does not fit into the
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Fig. 4.4. Figure showing the effect of ActiveInactiveRatio on applications
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memory. Increasing a keeps pages in memory for longer time, only not to be used by lucas

thereby dropping its performance.

Note that setting this parameter to a value based on one application would hurt others.

At the same time, if all the applications are considered, there is no common optimal value. In

fact, from the figure, we see that a value of 200 seems to be reasonable for 4 of the applications

though lucas would still suffer. Interestingly, this is the default value in the Linux Kernel.

We think that a parameter like ActiveInactiveRatio, that has different optimal ranges

across different applications is very interesting. It gives us motivation to set such parameters

dynamically as the applications execute, by monitoring their characteristics. On the other hand, a

tougher problem is that it may not be possible to monitor characteristics. Note that the LRU stack

depth table was obtained from pure application memory references collected from the Valgrind

tool. Such information will not be available in the operating system. Setting these parameters

dynamically, by using only those characteristics that can be observed in the OS, we think is a

challenging problem. We move on to our next Scan-related parameter, Priority Increment.

Priority Increment

Priority Increment determines the rate at which the scan length of the inactive list is

increased and also the number of times the inactive list will be scanned. We already said in

Section 4.2 that this parameter may not matter much. Figure 4.5 (a) shows the impact of this

parameter on the application performance. Most of the applications get effected only up to 5%

or so. It is only for gzip that this parameter makes any difference. The reason this parameter

was not expected to have much impact was already pointed out in Section 4.2. Also, value of 1,

which is the default value seems to be good for all the applications.
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Fig. 4.5. Figure showing the effect of PriorityIncrement and HighWatermark



134

HighWatermark

We now move on to the next class of parameters, Reclaim-related parameters (Table 4.1).

We start with HighWatermark. Figure 4.5(b) shows the effect of varying h. Except for mummer,

h hardly has any effect on other applications. HighWatermark also has a range that is optimal

across all the applications. Values around 100-200 seem to be the best. Incidentally, the default

value of this parameter is 150.

The behavior of HighWatermark to an extent is also determined by other parameters. For

example, VMSwappiness, which determines whether mapped pages should be reclaimed also

affects number of pages that will be reclaimed. Setting a high value for HighWatermark and

not reclaiming mapped pages will effect the applications in a certain way where as reclaiming

mapped pages might affect in the opposite way (depending on the application). This raises

an interesting issue of influence of multiple parameters simultaneously. These effects, though

important, are not in the scope of this thesis.

VMSwappiness

VMSwappiness determines the aggressiveness to move mapped pages (pages that are not

pure file pages) to the inactive list. As discussed in Section 4.2, a high value for v will imply

that mapped pages will also be candidates to be moved to the inactive list. Once moved to the

inactive list, the probability to reclaim these pages will increase. Most of these applications are

virtual memory intensive rather than file intensive. Therefore, increasing v will only hurt the

performance. Figure 4.6 shows the effect of changing v on the applications. As can be expected,

almost all the applications suffer with increasing v. mummer is the only application that does

not degrade much in performance because of some file activity (about 20MB of file activity).
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Fig. 4.6. Figure showing the effect of VMSwappiness
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Though not seen in the graph clearly because of the scale, performance of mummer actually

improves a little (actually, a small rising edge can be seen in the graph on the left, near y-axis) as

v is increased to 30. This is because, file pages get some priority to stay back in the memory. But

further increase degrades the performance slightly since anonymous pages become candidates

to be reclaimed.

Overall, VMSwappiness is an important parameter that can effect application perfor-

mance as much as 10 times! All the applications seem to have an optimal value range around

20-40. The default value of this parameter is 60. While one could say that setting this value

after some experimentation to an optimal value would be good enough, the risk of severe perfor-

mance loss, if the value is not optimal for some other application, becomes a big concern. Unlike

LowWatermark (which also has same optimal range across all the applications) for which setting

a wrong value does not affect the application performance significantly, setting a non-optimal

value for VMSwappiness could kill the application performance. One should be more careful in

dealing with such parameters. We will revisit the observations made here towards the end of this

Section.

SwapClusterMax

SwapClusterMax denotes the number of pages that are to be reclaimed in the direct re-

claim path, which happens when the number of free pages falls below MinWatermark (which

signifies extreme memory pressure). This parameter is also used at some other places in the

kernel but those cases are not relevant for this discussion. A very high value of SwapClusterMax

could unnecessarily reclaim more pages from the inactive list. A very low value will not serve

its purpose. Note that this parameter is quite important in extreme critical condition. Figure
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4.7 shows the influence of this parameter. As expected, applications benefit initially but suffer

on increasing s to very high values. Also note that performance degradation is around 25%

for some applications. Values around 32-50 seem to be optimal. In fact, default value for this

parameter is 32. If we observe closely, different applications do have different optimal values

which motivates us to set this parameter dynamically by self-tuning mechanisms.

Page Cluster

The last parameter which we move onto is PageCluster. While all the other parameters

come into effect in the page-reclamation path, PageCluster is used during a page-fault. This

represents the number of pages that will be prefetched from the disk during a page-fault. Note

that pages which are prefetched are those that are contiguous on the disk (in the swap area).

These pages could belong to different processes or different areas of same process. Since we are

dealing with single applications here, physical contiguity on the disk also corresponds to virtual

address space contiguity to a large extent. As said earlier, a high value for this parameter could

hurt applications that do not exhibit good sequentiality.

Figure 4.8 shows the effect of PageCluster (p) on all the applications. There are sev-

eral observations that can be made from the figure. First, PageCluster is yet another important

parameter that influences application performance significantly. Performance difference for ap-

plications is as much as 4 times. Second, increasing the value of p initially benefits all the

applications but starts hurting some of the applications later on. We explain the reason for such

influence of page-cluster using the page-fault characteristics of the applications.
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PF Distance 1 2 � 4 � 8 � 16 �32 �64 �128 �256 �512 > 512 Negative

mummer 133 52 641 157 157 0 6 5 15882 1484 20796 24700

apsi 33 3 344420 1696 93 0 3 231 612263 11688 503289 91786

Table 4.4. Table showing page-fault distances and their frequency for apsi and mummer

The characteristic of page-faults using which we explain the influence of PageCluster is

called ’Page-fault Distance’ (PF Distance). PF Distance is the difference between two consecu-

tive page-faults in number of pages (i.e., (Y-X) if page-fault for page X is followed by page-fault

for page Y). PF Distance can give an indication as to whether prefetching contiguous pages can

be useful. Table 4.4 shows PF Distance for 2 applications apsi and mummer categorized into

several bins. This data is derived from the page-fault data which we collected for the applica-

tions. If we look at mummer in Figure 4.8, performance of mummer does not get affected until

p reaches a value of 64. This is because, although extra pages are prefetched on page-faults

(prefetch is only initiated, need not necessarily complete), mummer does not have too much to

gain, as can be seen from the Table 4.4 where the number of PF Distances which are less than 64

are quite less. At p = 128, mummer starts suffering drastically because, while pages are being

prefetched aggressively, those pages are not at all useful as can be seen from Table 4.4, where

only 5 new page-faults add up when the PF Distance is increased to 128. On further increasing

p, mummer really starts benefiting. This can again be seen from the Table which shows that

significant number of PF Distances are present for values > 128. Similar explanation can be

given for other applications as well.

Note that though overall optimal range for p seems to be around 512, it is important

to remember that all these experiments have been done in the context of a single application.
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In multiple application scenario, increasing the value to such large values might degrade the

performance of other applications.

Summary and Discussion

Parameter Influential? Exposed? Same Optimal Range?

MinWatermark No No Yes

PriorityIncrement No No Yes

LowWatermark Yes No Yes

HighWatermark Yes No Yes

VMSwappiness Yes Yes Yes

SwapClusterMax Yes Yes No

PageCluster Yes Yes No

ActiveInactiveRatio Yes No No

Table 4.5. Summary of influence of parameters

Section 4.2 presented a classification of parameters based on their functionality. From

an application performance view point, as well as from an OS developers view point, a clas-

sification based on the influence of these parameters would be more interesting. We classify

the parameters into three categories based on their influence. Table 4.5 presents this summary.

The first column of the table lists the parameters. The second column says if this parameter has

significant influence (> 20%) on the performance of at least one application. The third column

shows if the parameter is exposed to the users today (otherwise, it is buried as a constant in the

code!) and the last column shows if the parameter has same optimal value range across all the

applications.
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The first category of parameters that we classify are those that do not have significant

impact on the performance of the applications. MinWatermark and PriorityIncrement fall under

this category (first two rows of the table). Note that both the parameters have same optimal range

for different applications. This means that it is not really necessary to expose them. In fact, Table

4.5 shows that both of them are indeed not exposed to the users. The second class of parameters

are those that do have significant influence on the application performance but have same optimal

ranges across various applications. LowWatermark, HighWatermark and VMSwappiness come

under this category. Only VMSwappiness is exposed to the users. The other two parameters

are constants which cannot be changed - happy news is that at least the default values of these

constants in the Linux Kernel fall into the optimal range for all the applications. Finally, what

we think are more interesting are the third class of parameters, which not only have significant

effect on the application performance but also that different applications have different optimal

ranges for these parameters. It is interesting to note that some of these important parameters

are not exposed to the users. For instance, ActiveInactiveRatio is such a parameter that has not

been exposed for tuning (we think it should have been). We are not blaming the OS developers

for this but our point is that finding such parameters and exposing the necessary ones requires

a lot of effort and experimentation, and it is not economical in terms of time and cost. While

one could think that exposing all the parameters is a solution, it would only increase the state

space (for tuning) for the users and confuse them even more. Exposing all the parameters is

not a solution. At the same time, it does not mean that OS developers should spend months in

determining which parameters to expose. This is not a solution too.
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We think that the solution to this problem lies in developing and integrating algorithms

into the system which will self-tune the parameters. Developing algorithms that observe application-

OS characteristics (application characteristics that can be observed in the operating system) and

translate these observations into policies that can self-tune these parameters, we think, is a chal-

lenging problem. Self-tuning parameters will not only relieve users of the burden of tuning but

also allow OS developers to actually focus on the real developments in the system.

Pronouncements

Overall, on the basis of our qualitative and quantitative analysis, we make several state-

ments with regard to the parameters:

� Its not just the algorithm! First of all, our study showed that its not just the algorithm

that matters but also the parameters associated with the algorithm. Parameters affect the

performance of applications by as much as 10 times in a few cases. Therefore choosing

the right values for the parameters is extremely important for good system performance.

� Correlation can only be approximate. In our study, we have tried our best to explain the

influence of parameters by correlating them to the properties of application references or

application page-faults. Behavior at times cannot be explained using these characteristics

- we attribute this to the noise component in the system. We think that in a such a complex

system where there are a number of external events on which the system is dependent

on, (for example, time interrupts, network packets, cache effects on the processor etc.),

correlation can only be approximate.
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� Expose the right parameters! Our study clearly shows the importance of exposing the

right parameters. We understand that this is a non-trivial task (as we discussed above) but

we see this as yet another impediment in improving system performance.

� Dynamically Self-tuning has scope. Parameters like PageCluster and ActiveInactiveR-

atio, which have application dependent optimal value ranges, are a solid motivation to

develop techniques for self-tuning the parameters. Self-tuning not only has scope in terms

of improving application performance but as said, will save a huge investment, both for

users and OS developers.

� Application characteristics can be useful. If application chacacteristics can be used to

explain the influence of the parameters, then they probably can also be used to tune the

parameters. It should be noted that in our study, application characteristics were used

to explain the behavior of about half of the parameters and that those half were very

influential parameters. This gives us motivation to use these characteristics to dynamically

set the parameters.

4.4 Conclusion and Future Work

As application sizes increase, memory management, whose goal is to provide efficient

data access becomes all the more important. Memory management policies in an operating sys-

tem have significant effect on performance of many applications. Approaches taken in the past

have focused on improving the performance of VMM by developing new algorithms. In this

thesis, we take a different approach and, through a study of VMM parameters, quantify that its

not only the algorithm that matters, but also the parameters of the algorithm. The contributions
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here are in identifying VMM parameters, classifying them based on their function as well as on

their influence, analyzing them qualitatively and quantitatively, relating the influence of these pa-

rameters to application/application-OS characteristics, and finally providing solid motivation to

dynamically set these parameters. We also believe this thesis contains suggestions and material

that could be valuable to the open source community.
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Chapter 5

Conclusions

Increasing application sizes re-iterate the importance of effective and efficient memory

management. Increasing application and system complexities stress the need for self-management.

At the same time, diverse requirements of different applications ask for memory management

optimizations to be provided at all the levels. The research presented in this thesis takes a step to-

wards making memory management self-optimizing by proposing and evaluating memory man-

agement optimizations at all the levels.

Summary of Contributions

� Hardware Enhancements for the TLB: On the hardware front, this thesis first presents

a thorough characterization for the TLBs. Using these characteristics as a solid base,

it proposes a novel prefetching mechanism called Distance Prefetching that dynamically

adapts to the application behavior and finally demonstrates its ability to outperform exist-

ing mechanisms.

� Adaptive Dynamic Memory Allocation: On the software side, this thesis proposes and

evaluates a novel adaptive dynamic memory allocator that can tune itself to applications

by observing their characteristics.

� Towards a self-optimizing VMM: Finally, on the OS front, this thesis undertakes a thor-

ough study of several VMM parameters and their effect on the application performance.
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It shows that a few parameters have significant impact on the performance of the appli-

cations, qualitatively and quantitatively analyzes their effect on applications, relates these

effects to application/application-OS characteristics, and finally provides a solid motiva-

tion to self-tune these parameters dynamically.

In all, this thesis presents optimizations at different levels of memory management. How-

ever, the problem of making memory management self-optimizing is by no means solved. The

remainder of this chapter presents some future directions in this area.

5.1 Future Research

Research presented in this thesis introduces several interesting problems. In particular,

on the hardware side, applicability of Distance Prefetching (DP) to other domains remains an

important question. While researchers have already started evaluating DP for caches [86], DP

could also be applied in operating systems for predicting I/O requests etc. A very attractive fea-

ture of DP is that it is simple. Developing more sophisticated prefetching mechanisms using DP

as basis, we think, is a challenging problem by itself. Distance Prefetching is a simple and pow-

erful mechanism. Hardware resources required by DP are much less than those required by other

prefetching mechanisms. A detailed evaluation of Distance Prefetching for caches using cycle-

level simulations, investigation of trade-offs between hardware costs and performance benefits,

and finally working with a product development team to incorporate DP into a processor is a

possible direction for future research. The TLB work in this thesis focused on single applica-

tions with user-level memory references. Though it might be expected that multi-programming

may not effect the performance of DP significantly (typically, the granularity of time given to
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each application between context switching is large enough to cause thousands of TLB misses

which are sufficient for DP to recreate its history and predict), an investigation of the effects of

multi-programming and that of operating system references (that might disturb the application

reference patterns) on DP is necessary before incorporating it into a real design.

The user-level adaptive memory allocator presented in this thesis can be extended to ker-

nel. Many operating system kernels today do explicit slab management for good performance.

A set of limited sizes and their frequent allocation makes kernel an important candidate for opti-

mization using the adaptive allocator. Incorporating such an adaptive allocator into an operating

system and evaluating it is a non-trivial task. Nevertheless, as operating systems get more com-

plex, from a software engineering view point, this would be really beneficial to the operating

system developers.

On the OS front, this thesis looked at stand-alone effect of each parameter of the Vir-

tual Memory Manager of an operating system. Developing techniques to set these parameters

dynamically is a very challenging problem and we think this requires significant amount of the-

oretical research as well. Influence of multiple parameters varying simultaneously would further

complicate matters. In spite of our best efforts to keep the noise component minimal by isolating

systems to the maximum, some cases of unexplainable behavior only re-iterate the complexity

of such a system. In such a complex system, what we have presented are our observations that

stand out at a coarse granularity. Dealing with such a system at a finer granularity and isolating

the noise component will be very useful information to the community. This is one area where

we hope to work in future. Moving to multi-programming environment would be a challenge in

itself. Even if we come up with techniques to set these parameters dynamically in the context



148

of single applications, demonstrating their applicability in the presence of multiple applications,

we think, is tough.

In this thesis, we have looked at adaptive optimizations at different levels in the memory

management system. As systems get larger and complex, manually managing them is not only

difficult and cumbersome but also not economical in terms of time and cost. As the world moves

into a different era of developing self-managing systems, we believe that this thesis took a small

step towards self-optimizing memory management.
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