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Abstract

We study time-series classification (TSC), a fundamen-
tal task of time-series data mining. Prior work has ap-
proached TSC from two major directions: (1) similarity-
based methods that classify time-series based on the
nearest neighbors, and (2) deep learning models that
directly learn the representations for classification in a
data-driven manner. Motivated by the different work-
ing mechanisms within these two research lines, we aim
to connect them in such a way as to jointly model
time-series similarities and learn the representations.
This is a challenging task because it is unclear how
we should efficiently leverage similarity information.
To tackle the challenge, we propose Similarity-Aware
Time-Series Classification (SimTSC), a conceptually
simple and general framework that models similarity in-
formation with graph neural networks (GNNs). Specifi-
cally, we formulate TSC as a node classification problem
in graphs, where the nodes correspond to time-series,
and the links correspond to pair-wise similarities. We
further design a graph construction strategy and a batch
training algorithm with negative sampling to improve
training efficiency. We instantiate SimTSC with ResNet
as the backbone and Dynamic Time Warping (DTW)
as the similarity measure. Extensive experiments on
the full UCR datasets and several multivariate datasets
demonstrate the effectiveness of incorporating similar-
ity information into deep learning models in both super-
vised and semi-supervised settings. Our code is avail-
able at https://github.com/daochenzha/SimTSC.

1 Introduction

Time-series classification (TSC) is a fundamental task
of time-series data mining. Given a collection of time-
series with the attached labels, TSC aims to train
a classifier to classify unseen time-series. With the
increasing amount of temporal data available, TSC has
broad applications, such as human activity recognition,
health care, and cyber security [28].

Many research efforts have been devoted to TSC.
Similarity-based (distance-based) methods are widely
used [1]. The main idea is to combine a k-NN clas-
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Figure 1: Average ranks (↓) of ResNet and DTW on the
full 128 UCR datasets, where different numbers of labels
per class is given (see Section 4.1 for more details).

sifier with a similarity measure for classification. Dy-
namic Time Warping (DTW) [23, 26], which calculates
the optimal match between two time-series, is one of
the most popular similarity measures. It is shown that
DTW plus a 1-NN classifier can achieve reasonably good
accuracy [27]. However, the similarity is often obtained
in an unsupervised fashion followed by a simple k-NN
classifier, which could be sub-optimal. Another promis-
ing research line is deep learning. Without any crafting
in feature engineering, deep learning methods perform
end-to-end training on the raw time-series and learn the
representations. Recent studies suggest that convolu-
tional layers, such as ResNet and Fully Convolutional
Networks (FCN), significantly outperform DTW and
achieve competitive performance to the state-of-the-art
TSC algorithms on the UCR benchmarks [30, 9].

While deep learning methods are simple and effec-
tive, they highly rely on the supervision of training la-
bels for automatic representation learning; they thus
often fall short when very few labels are given. Figure 1
compares the average ranks of ResNet and DTW plus 1-
NN on the full 128 UCR datasets [7] with different num-
bers of provided training labels per class. While ResNet
dominates DTW with sufficient training labels, it deliv-
ers unsatisfactory performance with very few labels. In
contrast, DTW classifies the time-series by reasoning
with pair-wise similarities instead of directly learning
time-series representations, which could be less sensi-
tive to the number of provided labels. Motivated by the
different working mechanisms within these two research
lines, we explore the possibility of connecting them in
such a way as to jointly model time-series similarities
and learn the representations.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

20
1.

01
41

3v
2 

 [
cs

.L
G

] 
 6

 J
an

 2
02

2

https://github.com/daochenzha/SimTSC


However, it is non-trivial to achieve this goal due to
the following challenges. First, it is unclear how we can
incorporate similarity information into representation
learning. The commonly used architectures, such as
CNN and LSTM, cannot model similarity. While some
papers have explored neural networks for time-series
similarity learning [2, 12], they learn the similarity
in the first place and then simply apply the learned
similarity to classification, which still relies on k-NN.
Second, even though we can enable similarity in deep
learning models, it is challenging to balance similarity
information and the original representation learning.
Incorporating too much similarity information may lead
to indistinguishable representations with poor accuracy.

To address these challenges, we propose Similarity-
Aware Time-Series Classification (SimTSC), a concep-
tually simple and general framework for incorporating
similarity information into deep learning models. Mo-
tivated by graph neural networks (GNNs) in modeling
node relationships [8, 13, 17], we reformulate TSC as
a node classification problem. Specifically, we corre-
spond each time-series to a node in a graph and each
pair-wise similarity to a link between nodes. A graph
convolution layer is then applied on the top of a back-
bone (e.g., ResNet) to jointly perform feature extrac-
tion and model time-series similarities. We instantiate
SimTSC with ResNet and DTW, which are the repre-
sentative deep learning model and similarity measure,
respectively. Extensive experiments suggest that this
simple design improves accuracy, particularly with very
few labels. We make the following contributions:

• Explore the possibility of connecting the research
efforts of similarity-based methods and deep learn-
ing models for TSC.

• Propose SimTSC, a simple and general framework
that can combine any similarity measures with any
deep learning models from the view of graphs.

• Design a graph construction strategy that focuses
on the top neighbors for efficient aggregation of
graph convolution. We also develop a batch train-
ing algorithm with negative sampling to enable the
training of SimTSC on large datasets.

• Instantiate SimTSC with ResNet and DTW. We
conduct extensive experiments on the full 128
UCR datasets and several multivariate datasets.
SimTSC outperforms ResNet, DTW, and the state-
of-the-art supervised and semi-supervised deep
models significantly, particularly when very few la-
bels are given. We also present extensive hyperpa-
rameter studies and ablations.

Table 1: Main symbols and definitions.

Symbol Definition

x ∈ R A real-value in a time-series

x ∈ RT A univariate time-series with length T

X ∈ RM×T An M-dimensional time-series with length T

X ∈ RN×M×T A 3D matrix consisting of N multivariate time-series

X train A set of training time-series

ytrain The labels corresponding to X train

X test A set of testing time-series
ytest The labels corresponding to X test

Xunlabeled A set of unlabeled time-series
d(X1,X2) The similarity (distance) of two time-series

D ∈ RN×N The similarity (distance) matrix

Ã ∈ RN×N The normalized adjacency matrix in graph

X̃ ∈ RN×M The attribute information matrix in graph
α A scaling factor
K The number of neighbors for each node

2 Preliminaries

We start with a problem description and then provide
a background of time-series similarity measure, deep
learning for TSC, and graph neural networks.

2.1 Problem Statement We use lowercase alpha-
bet, e.g., x ∈ R, to represent a scalar value, lower-
case boldface letter, e.g., x = [x1, x2, ..., xT ] ∈ RT ,
to denote a vector of length T , uppercase boldface al-
phabet, e.g., X = [x1,x2, ...,xM ] ∈ RM×T , to denote
a matrix consisting of M vectors, where each vector
can have a different length, and calligraphic font, e.g.,
X = [X1,X2, ...,XN ] ∈ RN×M×T , to denote a 3D ma-
trix. We summarize the main symbols in Table 1. We
first give formal definitions of time-series.

Definition 1. (Univariate Time-Series) A uni-
variate time-series x of length T is represented as a
vector [x1, x2, ..., xT ].

Definition 2. (Multivariate Time-Series) An
M -dimensional time-series X consists of M univariate
time-series [x1,x2, ...,xM ].

Without loss of generality, we unify the above defini-
tions by expanding dimension for univariate time-series.
Specifically, we regard a univariate time-series x as a 1-
dimensional time-series X ∈ R1×T , that is, a univariate
time-series is a special case of multivariate time-series
with M = 1. We will use the unified notation X to
represent a time-series throughout the paper.

We formally describe the problem of TSC. Given
some testing time-series X test = [X1,X2, ...,XNtest ] and
the labels ytest = [y1, y2, ..., yNtest ], where N test is the
number of testing time-series, we aim to train a classifier
that can predict the labels based on X test under one of
the following settings:

• Supervised setting: The classifier is trained
based on a training time-series dataset X train =
[X1,X2, ...,XNtrain ] and its corresponding labels
ytrain = [y1, y2, ..., yNtrain ], where N train is the
number of training time-series.
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• Inductive semi-supervised setting: In addition
to X train and ytrain, the classifier can also access
some unlabeled time-series X unlabeled, which does
not overlap with X test.

• Transductive semi-supervised setting: In ad-
dition to X train, ytrain and X unlabeled, the classifier
is exposed to testing time-series X test. Note that
ytest is not accessible in training.

The above settings differ in how much unlabeled time-
series data the classifier can access. With more unla-
beled data, the classifier could better learn the underly-
ing data distributions and often achieve better accuracy.

2.2 Time-Series Similarity Measure Given two
time-series X1 and X2, we aim at providing a distance
d(X1,X2), such that similar time-series tend to have
smaller d(X1,X2). Dynamic Time Warping (DTW) [23]
is one of the most popular ones. The key idea is to
calculate the optimal match between two time-series
such that the sum of matched series has the smallest
values. The troughs and peaks of the same pattern
can be matched even if they are not perfectly synced
up. DTW is a standard tool with many efficient
implementations, such as the UCR Suite [26]. In this
work, we adopt DTW as the similarity measure; one can
also use other similarity measures under our framework.

2.3 Deep Neural Networks for TSC Numerous
deep learning models have been developed for time-
series classification [30, 15, 16, 10]. In this work, we
mainly focus on Residual Network (ResNet) since it is
shown to have superior performance on the majority
of UCR Time Series Classification Archive [9]. The
network consists of multiple residual blocks. Each block
consists of three 1D convolutional layers followed by
batch normalization and a ReLU activation function,
with shortcuts to enable a direct flow of the gradient:

H1 = ReLU(BatchNorm(Conv1d(X))),(2.1)

H2 = ReLU(BatchNorm(Conv1d(H1))),(2.2)

H3 = ReLU(BatchNorm(Conv1d(H2))),(2.3)

Ĥ = ReLU(H3 + X),(2.4)

where Ĥ is the output of residual block, Conv1d(·) de-
notes 1D convolutional, BatchNorm(·) is batch normal-
ization, and ReLU(·) is ReLU activation function.

2.4 Graph Neural Networks Graph neural net-
works (GNNs) have achieved great success in model-
ing node dependencies in graph [8, 17, 37]. To cap-
ture the node dependency, Graph Convolution Net-
work (GCN) [17] performs joint learning of feature ex-
traction and aggregation of neighboring nodes. Given

a graph G = (Ã, X̃), where Ã ∈ RN×N is the nor-

malized adjacency matrix, X̃ ∈ RN×M is the attribute
information matrix, N is the number of nodes, and M
is the feature dimension, a GCN layer performs feature
aggregation of neighboring nodes with

(2.5) Ẑ = ÃX̃W,

where W denotes trainable parameters, and Ẑ denotes
the output of the GCN layer. Similar to ResNet, we can
stack multiple GCN layers with activation functions.
While there are hundreds of GNNs, we adopt the basic
GCN to make our contribution focused; one can also
use other GNNs under our framework.

3 Methodology

Figure 2 shows an overview of Similarity-Aware Time-
Series Classification (SimTSC), which consists of three
modules: (1) a graph construction module that con-
nects the time-series based on a similarity measure (e.g.,
DTW), (2) a backbone that performs feature extrac-
tion with deep neural networks (e.g., ResNet), and (3)
a GNN module that aggregates the features of neigh-
boring time-series (e.g., GCN). The graph construction
is unsupervised so that it can flexibly adapt to all the
three settings defined in Section 2.1.

3.1 Graph Construction with Similarity This
subsection describes how we construct a graph based
on a similarity measure of time-series, e.g., DTW.

Let X = [X1,X2, ...,XN ] denote all the accessible
time-series. In the supervised setting, X is simply all the
training data. In the semi-supervised settings defined in
Section 2.1, the X consists of both labeled and unlabeled
time-series. Based on the learned similarity measure
d(·, ·), we can obtain a similarity matrix for X as
(3.6)

D =


d(X1,X1) d(X1,X2) · · · d(X1,XN )
d(X2,X1) d(X2,X2) · · · d(X2,XN )

...
...

. . .
...

d(XN ,X1) d(XN ,X2) · · · d(XN ,XN )

 .
Given the similarity matrix D, we construct the

graph as follows. First, we introduce a scaling hyper-
parameter α ∈ [0,∞) to control the importance of top
neighbors. Specifically, let Dij denote the (i, j)th entry
of D. The adjacency matrix A is obtained by

(3.7) Aij =
1

eαDij
,∀i, j,

where Aij denotes the (i, j)th entry of A. A larger α will
give more importance to the top neighbors. When α =
0, each node will equally aggregate the features of all
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Figure 2: An overview of SimTSC framework. The graph is constructed based on the pair-wise similarities
(e.g., DTW distances) of the time-series. Each time-series is processed by a backbone (e.g., ResNet) for feature
extraction. The GNN module will aggregate the features and produce the final representations for classification.

the nodes, and all the nodes will have indistinguishable
features. When α → ∞, our framework reduces to the
backbone itself since A reduces to a diagonal matrix.

Second, to filter out irrelevant neighbors, we sample
the top-K neighbors for each node. Specifically, for
each row ai in A, we only keep K entries with the
largest weights and zero out the others, which leads to
a sparse matrix. Finally, we normalize the adjacency
matrix with Ãij =

Aij∑
j′ Aij′

,∀i, j.

3.2 Joint Learning of Backbone and Graph
Convolution Layers This subsection introduces how
we optimize the backbone and the GNN module.

The backbone takes all the accessible time-series
X as inputs and produces an attribute information
matrix X̃ ∈ RN×M , where N denotes the number of
all the accessible time-series, and M denotes the feature
dimension. Here, the output of the backbone is assumed
to be flattened to be 1-dimensional. Given X̃ and Ã,
the GNN aggregates the node features and produces
the final representation followed by a softmax layer for
classification.

Let Z̃ ∈ RN×C denote the final output of the model,
where C is the number classes, and Z̃train ∈ RNtrain×C

denotes the rows that have labels. The objective is to
minimize the cross-entropy over the labeled time-series:

(3.8) L = −
Ntrain∑
i=1

C∑
j=1

Ytrain
ij log Z̃train

ij ,

where Ytrain
ij denotes the jth element of one-hot encoded

label of the ith labeled time-series. The weights of the
backbone and the GNN module can be jointly optimized
using gradient descent.

3.3 Batch Training with Negative Sampling
This subsection presents how we handle large datasets
with batch training and how we use negative sampling
to improve efficiency.

A naive training strategy is to put all the time-
series into the GPU memory in the first place and
then train the network with backpropagation. However,
this strategy has the following limitations. First, it
cannot scale to large datasets with many time-series
or very long time-series. Second, each time-series can
only interact with a fixed number of neighbors since
the constructed graph is static. However, the top-K
dropping strategy may improperly drop some important
connections, which leads to sub-optimal performance.

To overcome the above limitations, we propose a
batch training strategy with negative sampling as fol-
lows. Given a batch size B, we sample B/2 labeled
and B/2 unlabeled time-series, respectively, as a batch
for training. The unlabeled time-series are “negatively
sampled” in that we can usually access far more un-
labeled data in real-world applications. Then, we con-
struct a graph with this batch of time-series and update
the model accordingly. The above training procedure is
summarized in Algorithm 1. Here, X unlabeled will also
cover testing data in the transductive setting1.

This design has three nice properties. First, it can
scale to large datasets since we only need to put a
batch of data into GPU memory in each update step.
Second, each node will interact with more neighbors for
aggregation since a new graph will be constructed in
every randomly sampled batch. Third, compared with
random sampling, negative sampling ensures that half
of the data in each batch is labeled so that we can
have sufficient learning signals to update the weights.
In particular, if very few labels are available, random
sampling may result in very few or even no labeled data
in a sampled batch, which will reduce training efficiency.

At testing time, we similarly sample B/2 testing
and B/2 non-testing time-series in each batch to con-
struct the graph. In this way, we can aggregate some
of the non-testing representations to enhance the repre-
sentations of the testing samples.

1In the supervised setting, we only sample labeled time-series.
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Algorithm 1 Batch training of SimTSC with negative
sampling

1: Input: Labeled time-series X train, unlabeled time-
series X unlabeled, similarity measure d(·, ·), batch
size B

2: X ← {X train,X unlabeled}
3: Precompute the similarity matrix D for X based on

Eq. 3.6
4: for each epoch do
5: for each batch X train

batch of size B/2 in X train do
6: Sample a batch X unlabeled

batch of size B/2 from
X unlabeled

7: Xbatch ← {X train
batch,X unlabeled

batch }
8: Obtain submatrix Dbatch from D with sampled

indices
9: Construct adjacency matrix A from Dbatch

based on Eq. 3.7
10: Compute normalized matrix Ã with Ãij =

Aij∑
j′ Aij′

,∀i, j

11: Obtain model output Z̃ with Xbatch and Ã
12: Update the model weights based on Eq. 3.8
13: end for
14: end for

4 Experiments

We evaluate SimTSC across various settings to an-
swer the following research questions: RQ1: How
does SimTSC compare with existing deep learning and
similarity-based methods (Section 4.2)? RQ2: Can
SimTSC also enhance other neural architectures, such
as MLP and FCN (Section 4.3)? RQ3: How will the
number of graph convolutional layers impact the per-
formance (Section 4.4)? RQ4: How will graph struc-
ture impact the performance of SimTSC (Section 4.5)?
RQ5: Is the proposed negative sampling strategy ef-
fective (Section 4.6)? RQ6: Can SimTSC also be
applied to multivariate time-series classification tasks
(Section 4.7)? RQ7: How does SimTSC learn the rep-
resentations with similarity information (Section 4.8)?

4.1 Experimental Setup As suggested in [7], we
evaluate the performance on the full 128 UCR datasets2.
We merge the original training and testing data to
create new splits for all the datasets to simulate the
three settings defined in Section 2.1. First, we ran-
domly split 20% of the data as the hold-out set for
testing purposes, denoted as X test. Second, we vary
the number of training labels per class from the set
{1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} to test different lev-
els of supervision and sample a subset from the remain-

2https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

ing 80% of data as the training data to create few-shot
settings, denoted as X train. Third, the time-series out
of the above two splits will serve as another split of
some unlabeled data, denoted as X unlabeled. We further
consider four multivariate datasets: Character Trajec-
tories [3], ECG [25], KickVsPunch [5], and NetFlow [5].

Metric. For UCR datasets, we follow previous
work [7, 9] and rank the algorithms on each dataset
according to the mean accuracy and report the average
ranks across the 128 datasets. We perform Wilcoxon
signed-rank test with a significance level of 0.05. For
the multivariate datasets, we report accuracies.

Baselines. For deep learning models, we con-
sider four supervised architectures, including MLP,
Fully Convolutional Network (FCN) [30], ResNet [11],
and InceptionTime [10], and a state-of-the-art semi-
supervised framework TapNet [33]. For similarity-
based methods, we include DTW with a 1 Nearest-
Neighbor (1-NN) classifier [27]. We train SimTSC in
supervised, inductive semi-supervised, and transduc-
tive semi-supervised settings, denoted as SimTSC-S,
SimTSC-I, and SimTSC-T, respectively.

Implementation Details. We use DTW as the
similarity measure and ResNet as the backbone. The
hyperparamters are set based on the accuracy on the
training data, with the scaling factor α as 0.3, the num-
ber of neighbors K as 3, one GCN layer, the batch size
as 128, and the number of epochs to be 500, across all
the experiments. For a fair comparison, the backbones
used in SimTSC are exactly the same as the baselines.
We use the authors’ implementations of InceptionTime3

and TapNet4 with the default hyperparameters. We run
five times and report the average accuracy. More details
of the neural architectures, hardware, and the dataset
statistics are provided in supplementary materials.

4.2 Performance Comparison on Benchmarks
To study RQ1, we report the average ranks of SimTSC
on the UCR datasets in Table 2, separately present
TapNet in Table 3 because TapNet does not support
batch training and suffers from memory explosion on
45 datasets. We make the following observations.

First, SimTSC outperforms the baselines with very
few labels. Given 1, 5, or 10 labels per class, SimTSC
trained in all the settings achieve better ranks than
ResNet significantly. Given more labels, i.e, 15, 20, 25,
30 , or 35, SimTSC also beats ResNet consistently. An
interesting observation is that SimTSC-S performs well
even though it only uses very few time-series to con-
struct the graph. A possible explanation is that the
graph may serve as a regularizer for ResNet to help

3https://github.com/hfawaz/InceptionTime
4https://github.com/xuczhang/tapnet
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Table 2: Average ranks (↓) of SimTSC and baselines on the full 128 UCR datasets with different numbers of
training labels per class. †, N, and O to denote the cases where SimTSC-S, SimTSC-I, and SimTSC-T are
significantly better than the other algorithms w.r.t. the Wilcoxon signed rank test (p < 0.05), respectively.

Algorithm
Labels

1 5 10 15 20 25 30 35 40 45 50

DTW 3.776 4.163 4.465NO 4.738NO 4.824†NO 5.048†NO 4.965†NO 5.160†NO 5.309†NO 5.199†NO 5.211†NO
MLP 5.504†NO 5.496†NO 5.438†NO 5.309†NO 5.316†NO 5.256†NO 5.367†NO 5.477†NO 5.195†NO 5.402†NO 5.348†NO
FCN 4.630NO 4.310 4.383NO 4.508NO 4.723†NO 4.803†NO 4.699†NO 4.910†NO 4.773†NO 4.883†NO 4.852†NO
ResNet 4.846†NO 4.857†NO 4.617†NO 4.047 4.449NO 4.039 4.102 4.090 4.086 3.840 3.895
InceptionTime 5.484†NO 5.302†NO 5.438†NO 5.434†NO 5.215†NO 5.145†NO 5.168†NO 4.914†NO 4.941†NO 5.066†NO 5.039†NO

SimTSC-S 4.224N 4.278NO 4.074 4.277NO 4.141NO 4.044O 4.148N 3.988 3.887 3.918 4.047
SimTSC-I 3.724 3.817 3.793 3.836 3.746 4.031NO 3.762 3.734 3.852 3.867 3.797
SimTSC-T 3.811 3.778 3.781 3.852 3.586 3.632 3.789 3.727 3.957 3.824 3.812

Table 3: Average ranks of TapNet and SimTSC on 83
datasets, on which TapNet does not suffer from memory
explosion. O suggests SimTSC is significantly better.

Algorithm
Labels

5 10 15 20 25

TapNet 1.645O 1.524 1.548 1.536 1.530
SimTSC 1.355 1.476 1.452 1.464 1.470

Table 4: Average ranks of using MLP and FCN as
backbones. †, N, and O suggest SimTSC-S, SimTSC-
I, and SimTSC-T are significantly better, respectively.

Algorithm
Labels

10 20 30 40

MLP 3.137†NO2.906†NO2.879†NO2.898†NO
SimTSC-S with MLP backbone 2.738NO 2.633NO 2.618NO 2.578NO
SimTSC-I with MLP backbone 2.078 2.258 2.414O 2.258
SimTSC-T with MLP backbone2.047 2.203 2.090 2.266

FCN 2.672 2.695O 2.641 2.563
SimTSC-S with FCN backbone 2.523 2.492 2.504 2.438
SimTSC-I with FCN backbone 2.500O 2.590O 2.539 2.547
SimTSC-T with FCN backbone 2.309 2.223 2.316 2.453

alleviate the overfitting issue. Second, similarity infor-
mation is less effective when we have sufficient labels.
Given 40, 45, or 50 labels, ResNet and SimTSC achieve
similar ranks. Nevertheless, the results suggest that
SimTSC can still deliver competitive performance with
enough labels, which shows the flexibility of SimTSC.
Third, SimTSC tends to perform better with more un-
labeled data. With very few exceptions, SimTSC-T >
SimTSCI > SimTSC-S. This is because we can con-
struct a better graph to capture the underlying data
distributions with more unlabeled time-series. Fourth,
SimTSC consistently outperforms TapNet across all dif-
ferent numbers of labels when both evaluated under
transductive semi-supervised setting. The result again
verifies the effectiveness of SimTSC.

4.3 Results on Other Neural Architectures To
investigate RQ2, we show the results of applying
SimTSC on MLP and FCN on the UCR datasets in
Table 4. SimTSC can also enhance these two neural
architectures. In particular, we observe significant per-
formance gains when applying SimTSC on MLP.
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Figure 3: Impact of the number of GCN layers.
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Figure 4: Impact of α.

4.4 Analysis of Graph Convolutional Layers
To answer RQ3, we report the ranks using more
GCN layers. We focus on the transductive setting
with 10 and 20 labels per class (Figure 3). SimTSC
achieves the best performance with only one GCN
layer. We speculate that this is because the graph is
constructed based on the pair-wise similarity, which
can fully capture the relationship between each pair
of time-series. As such, stacking more GCN layers
will not introduce more information but instead makes
the model more susceptible to over-smoothing [35, 36].
Nevertheless, stacking more GCN layers could help in
larger time-series datasets by computing a submatrix
and leverage multiple GCN layers to capture the multi-
hop connections, which is deferred as our future work.

4.5 Analysis of Graph Structure For RQ4, we
vary the hyperparameters of graph construction. In Fig-
ure 4, we vary α from the set {0.1, 0.3, 0.5, 0.7, 0.9, 1.1}
with K fixed to be 3. We observe a significant perfor-
mance drop when α = 0.1. This is because when α→ 0,
each node will aggregate more information from the
neighbors, and the resulting representation will become
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Figure 5: Impact of K.

Table 5: Comparison of negative and random sampling
on the full UCR datasets (top). Comparison with the
variant without batch training on 121 UCR datasets
(bottom), on which w/o batch training does not suffer
from GPU memory explosion. N suggests negative sam-
pling is significantly better than the other algorithms.

Algorithm
Labels

10 20 30 40

random sampling 1.637N 1.609N 1.547 1.582N
negative sampling 1.363 1.391 1.453 1.418

random sampling 2.152N 1.979N 1.868 1.926N
w/o batch training 2.068N 2.277N 2.331N 2.322N
negative sampling 1.780 1.744 1.802 1.752

less distinguishable. There is also a performance drop
when α = 1.1. A larger α will reduce the similarity in-
formation in the model, which suggests that incorporat-
ing similarity information is indeed helpful. In Figure 5,
we vary K from the set {1, 2, 3, 4, 5, 6} with α fixed to
be 0.3. The best performance is achieved with K = 2.
When K = 1, our framework reduces to backbone itself
since there will be only self-connections in the graph.
When K becomes larger, the performance also drops
since aggregating more information from the neighbors
makes the representations less distinguishable. Over-
all, we find that incorporating an appropriate amount
of similarity information lead to the best performance.

4.6 Ablation Study For RQ5, we consider two ab-
lations to study the effectiveness of negative sampling.
First, we consider a variant that uses random sampling
for batch training. Second, we consider a variant that
puts all the time-series into GPU memory without batch
training. Unfortunately, this variant will explode the
GPU memory for 7 of the datasets so that only 121
datasets are reported. We perform a grid-search of K
and find that K = 10 achieves the best performance.

Table 5 summarizes the results. First, we observe
that negative sampling outperforms random sampling
significantly. Second, the variant without batch training
does not perform well. A possible explanation is that
the graph is pre-constructed so that each time-series
can only interact with a limited number of connected
neighbors, which may lead to sub-optimal performance.
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Figure 6: Learned representations of ResNet and
SimTSC on Coffee with 56 time-series, two classes
marked in blue and green, respectively, and only one
time-series labeled in each class (circled in red).

4.7 Results on Multivariate Datasets For RQ6,
we evaluate SimTSC on multivariate time-series classi-
fication tasks in Table 6. First, SimTSC outperforms
ResNet and DTW with very few labels. Given 5, 10, or
15 labels, at least one of the SimTSC variants achieves
the best performance. Second, when more labels are
given, the similarity information helps on some datasets
but worsens some others’ performance. SimTSC deliv-
ers poor performance on ECG in the transductive set-
ting given 50 labels, while we observe a consistent im-
provement on CharacterTrajectories and NetFlow.

4.8 Visualization of Learned Representations
To answer RQ7, we conduct a case study on the Coffee
dataset from UCR Archive. Figure 6 visualizes the
learned representations of SimTSC and ResNet as well
as the constructed graphs. We observe that there is an
overlap between the two classes’ representations learned
by ResNet. Thus, ResNet cannot distinguish those
overlapped time-series and only gives 83% accuracy.
Whereas, the representations learned by SimTSC form
clear clusters so that SimTSC achieves 100% accuracy.
A possible reason is that the overlapped time-series
tend to be close to those in the same class in terms
of DTW, and thus their representations are corrected
by aggregation. SimTSC achieves better accuracy by
jointly performing feature extraction and aggregation.

5 Related Work

Deep Learning for TSC. Prior deep learning models
for TSC can be mainly grouped into (1) learning rep-
resentations of time-series in an unsupervised manner
and then applying a classifier to the learned represen-
tations [22], and (2) training a classifier in an end-to-
end fashion [11, 4, 15]. However, the existing models
mainly focus on feature extraction but cannot capture
similarity information. Although [32] has introduced
GNNs to capture time-series dependencies, they focus
on time-series forecasting and can only model the de-
pendencies among multivariate time-series. Whereas,
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Table 6: Classification accuracy on multivariate time-series datasets across different numbers of training labels
per class. For KickvsPunch, we only report the performance up to 15 labels since there are less than 15 labels
per class. TapNet is not reported on Character Trajectories and Netflow due to memory explosion.

Dataset
Algorithm

Labels
5 10 15 20 25 30 35 40 45 50

Character
Trajectories

DTW .847±.014 .881±.005 .895±.009 .900±.014 .908±.014 .907±.013 .906±.010 .906±.007 .909±.010 .913±.008
ResNet .834±.024 .898±.017 .920±.010 .937±.010 .939±.008 .941±.009 .949±.008 .956±.011 .958±.007 .958±.007
InceptionTime .883±.010 .939±.007 .947±.006 .968±.006 .964±.003 .974±.005 .979±.003 .978±.005 .979±.001 .986±.003
TapNet - - - - - - - - - -
SimTSC-S .894±.020 .939±.009 .949±.007 .947±.017 .964±.011 .975±.003 .977±.011 .975±.004 .981±.007 .982±.005
SimTSC-I .914±.012 .944±.009 .951±.015 .953±.012 .969±.011.978±.006.981±.007 .979±.005 .977±.008 .980±.003
SimTSC-T .903±.014 .946±.005.957±.011 .964±.009 .967±.012 .973±.009 .976±.009 .981±.006 .983±.008 .986±.004

ECG

DTW .605±.124 .670±.086 .740±.112 .755±.103 .805±.043 .825±.050 .805±.053 .800±.057 .805±.053 .800±.057
ResNet .745±.048 .795±.037 .805±.058 .800±.079 .860±.030.855±.048 .850±.052 .855±.029 .830±.037 .870±.029
InceptionTime .750±.045 .805±.033 .785±.020 .800±.037 .820±.037 .830±.043 .825±.016 .850±.027 .855±.0010 .850±.016
TapNet .770±.043 .780±.012 .755±.025 .795±.048 .810±.037 .795±.029 .785±.025 .815±.037 .830±.019 .845±.024
SimTSC-S .795±.043 .810±.020 .855±.040.840±.051 .830±.056 .840±.020 .860±.041 .825±.047 .830±.071 .860±.025
SimTSC-I .790±.062 .765±.072 .830±.070 .730±.159 .740±.087 .800±.091 .830±.048 .750±.052 .790±.108 .735±.108
SimTSC-T .810±.041.815±.046 .770±.108 .815±.115 .730±.118 .745±.075 .745±.099 .780±.051 .775±.071 .710±.101

KickvsPunch

DTW .433±.082 .433±.082 .433±.082 - - - - - - -
ResNet .667±.183 .833±.149 .833±.183 - - - - - - -
InceptionTime .667±.000 .533±.125 .567±.226 - - - - - - -
TapNet .700±.125 .767±.082 .733±.013 - - - - - - -
SimTSC-S .733±.200 .767±.133 .867±.125 - - - - - - -
SimTSC-I .700±.125 .833±.105 .800±.125 - - - - - - -
SimTSC-T .600±.133 .767±.133 .767±.082 - - - - - - -

NetFlow

DTW .611±.016 .559±.128 .607±.132 .595±.118 .546±.103 .568±.125 .523±.154 .481±.203 .503±.217 .504±.214
ResNet .613±.074 .714±.063 .749±.022 .763±.038 .739±.058 .767±.050 .769±.054 .767±.049 .787±.026 .797±.039
InceptionTime .418±.052 .456±.046 .484±.058 .618±.049 .642±.036 .657±.024 .678±.014 .675±.036 .681±.018 .681±.015
TapNet - - - - - - - - - -
SimTSC-S .519±.108 .720±.071 .705±.055 .709±.089 .738±.082 .786±.036 .765±.091 .790±.045 .784±.063 .799±.047
SimTSC-I .766±.043 .788±.036 .689±.139 .776±.042 .731±.084 .755±.104 .834±.037 .798±.066 .810±.065 .839±.035
SimTSC-T .769±.052.805±.035.785±.101 .766±.095 .745±.092.825±.029 .801±.065 .827±.059 .847±.023 .852±.028

we adopt GNNs to jointly perform feature extraction
and model the time-series similarities for TSC.

Similarity-Based TSC Methods. Similarity-
based methods first obtain time-series similarities and
then use a k-NN classifier for classification [24, 31].
Recently, some similarity learning approaches have been
proposed to learn the similarities [2, 12]. However, they
often rely on a separate procedure for classification. In
contrast, we connect time-series similarity with deep
models under a unified framework.

Leveraging Unlabeled Data in Time-Series.
Prior work has explored semi-supervised learning [29],
domain adaptation [20], and anomaly detection [21, 34,
18, 19] on the unlabeled data, most of which do not
target deep models. Recently, [14] proposes a deep TSC
method with auxiliary forecasting tasks. [33] augments
networks with task-adaptive projection. However, they
do not support batch training. Unlike the previous
work, our framework brings benefits to not only semi-
supervised setting but also the supervised setting.

6 Conclusions and Future Work

This work explores connecting the research efforts of
time-series similarity measuring and deep learning for
TSC. To jointly model feature extraction and similarity
information, we formulate TSC as a node classification

problem in graphs and introduce GNNs on the top of
a backbone to enable end-to-end training. We instanti-
ate our framework with ResNet and DTW with exten-
sive experiments on the full 128 UCR datasets and sev-
eral multivariate datasets. Experimental results suggest
that incorporating similarity information can improve
deep models significantly. In the future, we will investi-
gate differentiable DTW [6] for graph construction.
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Table 7: Statistics of the multivariate time series
datasets.

Dataset
Attribute

Data SizeDimension# ClassesLength

Character Trajectories 2858 3 20 109-205
ECG 200 2 2 39-152
KickvsPunch 26 62 2 274-841
NetFlow 1337 2 4 50-997

A Experimental Details

A.1 Datasets We use both univariate datasets and
multivariate datasets in our experiments. We provide
detailed descriptions below.

Univariate Time-Series Datasets. The experi-
ments are conducted on the full 128 datasets from the
UCR Time Series Classification Archive5 [7]. These
datasets are collected from various domains, includ-
ing Image, Spectro, Sensor, Simulated, Device, Motion,
ECG, Traffic, EOG, HRM, Trajectory, and Hemody-
namics. These datasets also have diverse data sizes,
numbers of classes, and lengths. For example, Elec-
tricDevices, one of the largest datasets in the archive,
has 16,637 time-series in total, while BeetleFly only has
40 time-series. Similarly, ShapesAll has 60 classes, while
many other datasets have only 2 or 3 classes. The time-
series length can also be up to 2,709 and can also be
as short as 60. Moreover, 11 of the datasets have vary-
ing lengths for different time-series. Thus, the UCR
datasets provide a rigorous test for time-series classifi-
cation.

Multivariate Time-Series Datasets. We focus
on four multivariate datasets from different domains
with varying characteristics.

• Character Trajectories: is a handwriting
dataset captured at 200Hz by a WACOM tablet.
The three dimensions are the positions of the x-
axis, the y-axis, and the pen tip force. The data
has been numerically differentiated, and Gaussian
smoothed, with a sigma value of 2.

• ECG: traces the electrical activity recorded during
heartbeats. The two classes are the normal heart-
beat and the myocardial infarction.

• KickVsPunch: is a motion capture dataset col-
lected by CMU-MOCAP. Each dimension is a mo-
tion marker. The two classes are the two actions,
i.e., the kick and the punch.

• NetFlow: is the traffic flow of websites.

We summarize the statistics of the above datasets in
Table 4.

5https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

A.2 Data Preprocessing For both univariate and
multivariate time-series data, we store them as 3-
dimensional Numpy arrays, where the first dimension is
the number of time-series, the second dimension is the
number of time-series (for univariate time-series, there
is only one time-series), and the third dimension is the
length of the time-series. We impute missing values with
zeros for the datasets with varying lengths to make the
time-series have the same length. All the time-series are
z-normalized before feeding into the models.

A.3 Data Splitting The original splits in UCR
datasets are very diverse. For example, ElectricDevices
has 8,926 training samples, while ECGFiveDays only
has 23 training samples. This makes it difficult to un-
derstand how the models will behave under different
amounts of supervision. Specifically, when an algorithm
performs well, it is hard to tell how it performs when we
have very few labels and how it will perform when we
have enough labels. Motivated by few-shot learning, we
simulate the settings where different numbers of labels
per class are given. Specifically, we merge the original
training and testing data to create new splits as follows.
First, we merge the Numpy arrays of training and test-
ing data, where the training data is put before the test-
ing data. Second, we randomly shuffle all the indices.
Third, we separate out the last 20% of the shuffled in-
dices as the hold-out testing time-series. Fourth, given
the target number of labels per class, we iterate over
the first 80% of the shuffled indices sequentially until
we find enough number of labeled data for each class.
It is possible that we can not find enough labeled data
for some classes even after iterating all the indices. In
this case, we simply use as many labels as we can. For
example, for a class A and a target number 10, if the
number of class A data in the first 80% of the shuffled
indices is only eight, we simply use eight training data
for class A. The remaining data in the first 80% of the
shuffled indices will serve as the third split (unlabeled
data).

The above three splits are used to simulate the
supervised, inductive semi-supervised, and transductive
semi-supervised settings defined in Section 2.1. The
performance will be evaluated on the hold-out testing
set. The above splitting procedure is applied to all
the univariate and multivariate time-series data. Since
data splitting may significantly affect the performance,
particularly when we have very few labels, we run each
experiment 5 times on different splits.

A.4 Dynamic Time Warping Dynamic Time
Warping (DTW) is s standard algorithm for measur-
ing the similarity between two time-series. The main
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idea of DTW is to calculate the optimal match between
two time-series such that the sum of matched series has
the smallest values. In this work, the DTW is computed
based on a Python wrapper of The UCR Suite6. This
suite provides a highly efficient C++ implementation of
DTW via dynamic programming. For all the datasets,
we set the size of the warping window to be 100. If ei-
ther of the two time-series is shorter than 100, we use
the shortest time-series length.

For multivariate datasets, we compute independent
DTW. Specifically, we first compute the DTW for each
pair of univariate time-series and then sum them up to
represent the distance between two multivariate time-
series. We have uploaded the pre-computed DTW to
Google Drive for reproducibility.

Since most of the datasets are small, it will not take
much time to compute the full similarity matrix. For
most of the datasets, the computation of DTW can be
finished in minutes. For some larger datasets, it takes
at most a day using one CPU core.

A.5 Neural Architecture of Backbone We use
PyTorch to implement all the neural networks. For most
of the experiments, we use ResNet as the backbone.
The network consists of three residual blocks. Each
residual block consists of three 1-D convolution layers.
The kernel sizes of the three convolution layers are 7,
5, and 3, respectively. After each convolution layer,
we use a 1-D batch normalization layer to stabilize
training, followed by a ReLU activation function. The
number of channels is set to be 64 for all the convolution
layer. We find that using more channels will lead
to unsatisfactory performance with very little training
data due to overfitting issue. A skip connection is
added in each block to enable direct flow to alleviate
the gradient vanishing issue. The three blocks are
stacked sequentially to perform feature extraction. To
reduce the feature dimension, we add a global average
pooling layer to the last residual block’s output. For
our SimTSC, we directly use the global average pooling
layer’s output as the extracted features. For the ResNet
baseline, these features will be further processed by
a fully-connected layer with a softmax activation for
classification purposes. The weights of the networks
are initialized with the default initializers in PyTorch.
Figure 7 summarizes the neural architecture of ResNet.

6https://www.cs.ucr.edu/~eamonn/UCRsuite.html
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5x1 conv, 64

3x1 conv, 64

Global Average Pooling

Figure 7: Neural architecture of ResNet. Each layer
is followed by a batch normalization layer and a ReLU
activation.

For the MLP baseline, we use four fully-connected
layers with a hidden size of 500. We use a ReLU activa-
tion function after each fully-connected layer followed by
a dropout layer to avoid overfitting. The dropout rates
are set to be 0.1, 0.2, 0.2, 0.3 for the four layers. We flat-
ten the time-series into one dimension so that it can be
directly used in MLP. Different from convolution layers,
MLP can not capture temporal information, which leads
to unsatisfactory performance. For the FCN baseline,
we use three 1-D convolution layers. Each convolution
layer is followed by a batch normalization layer. The
kernel sizes are set to be 7, 5, and 3. Similar to ResNet,
the number of channels is set to 64. For both MLP and
PyTorch, we use the default initializers in PyTorch to
initialize the weights.

Note that, for all the experiments, we use exactly
the same architecture for the backbone of SimTSC and
the baseline. The only difference of SimTSC is adding
a GCN layer on the top of the backbone. Thus, the
comparison is fair. The performance gain is solely
attributed to modeling the similarity information.

A.6 Graph Convolution Layers The graph con-
volution layers are implemented based on the standard
implementation of GCN7. Specifically, each GCN layer
takes node features and an adjacency matrix as the
input, where the adjacency matrix is a sparse tensor.
Then it aggregates the neighbors’ features by perform-
ing matrix multiplication of the input features, weights,
and the adjacency matrix. Finally, a bias term is added

7https://github.com/tkipf/pygcn
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to the obtained features. For multiple GCN layers, we
add a dropout layer after each GCN layer to avoid over-
fitting.

The adjacency matrix used in the graph convolution
layers is constructed as follows. We maintain a full pre-
computed similarity matrix in the memory. In each
update step, we sample a batch of indices for training.
We then use the sampled index to obtain a submatrix
of the full similarity matrix. This submatrix will only
contain the indices in this batch. Further, we rank each
row’s values in ascending order and only keep the top-K
similar neighbors for each row. We finally use the top-K
neighbors to construct the graph, which is represented
by a sparse matrix. The above constructing procedure
is efficient since we only need to take care of a batch of
indices instead of all the indices.

A.7 Hyperparameter Settings We summarize the
hyperparmeters of graph, optimizer, and how we train
SimTSC and all the baselines as follows.

• Graph Construction: We set the scaling factor
α = 0.3 and number neighbors for each node
K = 3.

• Graph Convolution: We use one GCN layer
for most of the experiments. For multiple GCN
layers, the feature dimension is set to be 64, and
the dropout rate is set to be 0.5.

• Optimizer: We use Adam optimizer. The learn-
ing rate is set to be 0.0001. The ε is set to be 10−8.

• Training Procedure: For SimTSC and all the
baselines, we use the model that achieves the best
performance on the training data for evaluation.
Specifically, we calculate the accuracy based on
the training data after each training epoch and
store the model’s weights with the highest accu-
racy. Then the stored weights will be reloaded for
evaluation purposes. For all the models, we train
500 epochs. While validating on the training data
may lead to overfitting, we find in practice that it
works better than separating a validation set from
the training data. This is because a separated vali-
dation set will be too small to perform a meaningful
evaluation.

A.8 Hardware and Software Descriptions We
conduct all the experiments on a server with two AMD
EPYC 7282 16-Core processors, four GeForce RTX 3090
GPUs, and 252 GB memory. We use Ubuntu 18.04.5
LTS system and PyTorch 1.7.0.
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