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Abstract— High-aggregate bandwidth switches are those whose port
count multiplied by the operating line rate is very high; for example, a 30
port switch operating at 40 Gbps or a 1000 port switch operating at 1 Gbps.
Designing high-performance schedulers for such switches is a challenging
problem for the following reasons: (i) High performance requires finding
good matchings, (ii) good matchings take time to find, and (iii) in high-
aggregate bandwidth switches there is either too little time (due to high line
rates) or there is too much work to do (due to a high port count).

We exploit the following features of the switching problem to de-
vise simple-to-implement, high-performance schedulers for high-aggregate
bandwidth switches: (a) the state of the switch (carried in the lengths of
its queues) changes slowly with time, implying that heavy matchings will
likely stay heavy over a period of time, (b) observing arriving packets will
convey useful information about the state of the switch. The above fea-
tures are exploited using hardware parallelism and randomization to yield
three scheduling algorithms – APSARA, LAURA and SERENA. These al-
gorithms are shown to achieve 100% throughput and simulations show that
their delay performance is quite competitive with respect to the maximum
weight matching. The main contribution of this paper is a suite of sim-
ple to implement, high-performance scheduling algorithms for IQ switches.
The stability proof involves a derandomization procedure and uses methods
which may have wider applicability.

I. INTRODUCTION

Over the past few years the input-queued switch architecture
has become dominant in high speed switching. This is mainly
due to the fact that the memory bandwidth of its packet buffers
is very low compared to that of an output-queued or a shared-
memory architecture.

Output N

Input 1
11

NN

Output 1

Input N
11

NN

Matching, M

scheduler

switching fabric

Fig. 1. Logical structure of an input-queued cell switch

Fig. 1 shows the logical structure for an input-queued (IQ)
switch. Suppose that time is slotted so that at most one packet
can arrive at each input in one time slot. Packets arriving at
input i and destined for output j are buffered in a “virtual out-
put queue” (VOQ), denoted here by V OQij . The use of virtual
output queues avoids performance degradation due to the head-
of-line blocking phenomenon [2]. Let the average cell arrival
rate at input i for output j be λij . The incoming traffic is called
admissible if

∑N
i=1 λij < 1, and

∑N
j=1 λij < 1. We assume

that packets are switched from inputs to outputs by a crossbar

fabric. When switching unicast traffic 1, this fabric imposes the
following constraint: in each time slot, at most one packet may
be removed from each input and at most one packet may be
transferred to each output.

To perform well, an N × N input-queued switch requires a
good packet scheduling algorithm for determining which inputs
to connect with which outputs in each time slot. It is well-known
that the crossbar constraint makes the switch scheduling prob-
lem a matching problem in an N ×N weighted bipartite graph.
The weight of the edge connecting input i to output j is often
chosen to be some quantity that indicates the level of conges-
tion; for example, queue-lengths or the ages of packets.

A matching for this bipartite graph is a valid schedule for the
switch. Note that a valid matching can be seen as a permutation
of the N outputs. In this paper we will use the words sched-
ule, matching and permutation interchangeably. A matching
of particular importance for this paper is the Maximum Weight
Matching algorithm (MWM). Given a weighted bipartite graph,
the MWM finds that matching whose weight is the highest. For
example, Figure 2 shows a weighted bipartite graph and one
valid schedule (or matching). We shall use S(t) to denote the
schedule used by the switch at time t.

This paper is primarily concerned with designing schedulers
for “high aggregate bandwidth” switches. The aggregate band-
width of an N × N switch running at a line rate of L bits/sec
is defined to be the product NL bits/sec. Thus, high aggregate
bandwidth switches can be designed in two ways: a small num-
ber of ports (small N ) connected to very high speed lines (large
L), and a large number of ports (large N ) connected to slower
lines (small L). As discussed in [10], the former type of switch
typically resides in a “core router”, interconnecting a small num-
ber of enterprise networks via high speed lines. The latter type
of switch resides in an “edge router”, which typically has a large
number of ports running at relatively lower speeds.

There are two main quantities for measuring the performance

1We do not consider multicast traffic in this paper.
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Fig. 2. Example of weighted bipartite graph and its maximum weight matching.
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of a switch scheduling algorithm: throughput and delay. Early
theoretical work on packet switches has been concerned with
designing algorithms that achieve 100% throughput. Such algo-
rithms are referred to as “stable” algorithms. In particular, the
papers [13], [25], showed that under Bernoulli i.i.d. packet ar-
rival processes the MWM is stable so long as no input or output
is oversubscribed 2. More recently, other algorithms have been
proposed for providing exact delay bounds [4], [11], [21]. Those
algorithms in fact provide something much stronger: they allow
a switch whose fabric runs at a speedup of between 2 and 4 to
exactly emulate an output-queued switch. Thus, they are stable
and permit the use of sophisticated algorithms for supporting
quality-of-service (QoS).

But, all of the above algorithms are too complicated for im-
plementation in high aggregate bandwidth switches. They re-
quire too many iterations (for example, the MWM requires
O(N3) iterations in the worst-case), and the computation of
weights used in the algorithms of [4], [11], [21] requires too
much information to be communicated between inputs and out-
puts.

Implementation considerations have therefore seen the pro-
posal of a number of practicable scheduling algorithms; notably,
iSLIP [15], iLQF [14], RPA [1], MUCS [6] and WFA [23].
However, these algorithms perform poorly compared to MWM
when the input traffic is non-uniform: they induce very large
delays and their throughput can be less than 100%.

More recently, some particularly simple-to-implement
scheduling algorithms have been proposed [3], [9] and proven
to be stable. But, [3] introduces an extra packet resequencing
problem and [9] needs multiple switching fabrics. Neverthe-
less, these algorithms make a significant point: Delivering 100%
throughput does not complicate the scheduling problem.

On the other hand, in order to keep delays small, it seems
necessary to find good matchings; and finding good matchings
takes many iterations and consumes time. And high aggregate
bandwidth switches do not leave much time for scheduling, be-
cause they are either connected to very high speed lines or they
have too many ports.

Our goal of designing simple-to-implement, high-performance
schedulers for high aggregate bandwidth switches leads to the
following question: Is it possible for an algorithm to compete
with the throughput and delay performance of MWM and yet
be simple to implement? If yes, what feature of the scheduling
problem remains to be exploited?

The answer lies in recognizing two features of the high speed
switch scheduling problem. (1) Using memory: Note that
packets arrive (depart) at most one per input (output) per time
slot. This means queue-lengths, taken to be the weights by
MWM, change very little during successive time slots. Thus,
a heavy matching will continue to be heavy over a few time
slots, suggesting that carrying some information, or retaining
memory, between iterations should help simplify the implemen-
tation while maintaining a high level of performance. (2) Using
arrivals: Since the increase in queue-lengths is entirely due to
arrivals, it might help to use a knowledge of recent arrivals in
finding a matching.

2The weights were taken to be the length of Qij originally and later work [16]
took the weights to be the age of the oldest packet in Qij .

We shall see that both these features considerably simplify
the implementation and provide a high-performance. We also
use some novel techniques for simplifying the implementation.
a. Hardware parallelism: Finding heavy matchings essen-
tially involves a search procedure, requiring a comparison of
the weight of several matchings. In Section III-A we propose
an algorithm, called APSARA, that exploits a natural structure
on the space of matchings and uses parallelism in hardware to
conduct this search efficiently. In particular, it requires a single
iteration, is stable, and its delay is comparable to that of MWM.
b. Randomization: In a variety of situations where the scalabil-
ity of deterministic algorithms is poor, randomized algorithms
are easier to implement and provide a surprisingly good perfor-
mance. The main idea is simply stated: Basing decisions upon
a few random samples of a large state space is often a good
surrogate for making decisions with complete knowledge of the
state. See [18] for a general exposition of randomized algo-
rithms, [24], [8] for application to switching, and [17], [20] for
other applications to networking.

Organization of the paper

The rest of the paper exploits the above observations and pro-
poses some new algorithms and proof techniques. The results
are divided into two parts: Section II deals with throughput and
Section III deals with delay. Section II begins by establishing
that algorithms based only upon random samples are unstable,
making it necessary to use memory. We recall the recent work
of Tassiulas [24], which presents a simple randomized algorithm
that uses memory for achieving 100% throughput. We present a
derandomized version of Tassiulas’ algorithm and prove that it
is also stable (in Theorem 3). Lemma 1 states a simple criterion
for the “goodness” of a switch algorithm, which may be useful
elsewhere.

The derandomization mentioned above leads to the algorithm
APSARA in Section III-A. APSARA is shown to be stable and
simulations show that its delay performance is very competitive
compared with MWM. In Section III-B we present a random-
ized algorithm, called LAURA, which uses memory and out-
performs Tassiulas’ scheme in terms of delay. It is based on
the observation that the weight of a heavy matching is carried
in a few of its edges; therefore, it is better to remember heavy
edges than it is to remember matchings. Finally, in Section III-C
we propose an algorithm, called SERENA, which uses the ran-
domness in the arrivals process for finding good matchings to
provide very low delays.

As a final comment, recall that high aggregate bandwidth
switches come in two flavors: core and edge. In Section III we
shall comment upon the suitability of the algorithms we propose
for use in either of the two types of switch. We shall also present
variants of the basic algorithms, to better suit the type of switch
being designed.

II. THROUGHPUT

We first define some notations which will be used in the rest
of the paper. A matching matrix S = [Sij ] can be represented
equivalently as a permutation π via the equation π(i) = j iff
Sij = 1 (i.e., if input i is connected to output j under matching
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S, then i is mapped j under permutation π). Thus, the matching:

S =





0 1 0
1 0 0
0 0 1





is equivalent to the permutation (π(1), π(2), π(3)) = (2, 1, 3).
Let Qij(t) denote the queue length of V OQij at time t.
The weight of matching S(t) is defined as: 〈S,Q(t)〉 =
∑

i,j SijQij(t). Given the queue-lengths at time t, S!(t) is
used to denote the corresponding maximum weight matching
and W !(t) = 〈S!(t), Q(t)〉 to denote its weight.

As mentioned in the introduction, randomized algorithms are
particularly simple to implement because they work on a few
randomly chosen samples rather than on the whole state space.
As a simple randomized approximation to MWM, consider the
following algorithm.

A. ALGO1

The MWM algorithm finds, from amongst the N ! possible
matchings, that matching whose weight is the highest. An ob-
vious randomization of MWM yields the following algorithm,
ALGO1: At each time t, let the schedule S(t) used by ALGO1
be the heaviest of d (d > 1) matchings chosen uniformly at
random.

The following theorem shows that ALGO1 is not stable, even
when d = O(N).

Theorem 1. For an N × N switch and for any d ≤ cN , where
c > 0, ALGO1 does not deliver 100% throughput.

Proof. Consider the edge Eij between input i and output j. This
edge is present in the schedule, S(t), at time t, only if it belongs
to at least one of the d randomly chosen matchings. Consider

pij = P (Eij ∈ one of the d random matchings)
= 1 − P (Eij /∈ any of the d random matchings)
= 1 − P (Eij /∈ one random matching)d

= 1 −
(

1 − 1
N

)d

≤ 1 −
(

1 − 1
N

)cN

for d ≤ cN

→ 1 − e−c.

Therefore, the service rate available for packets from input i to
output j is at most 1− e−c < 1. And, as soon as λij > 1− e−c,
we have that the switch is unstable under ALGO1.

Remark: Note that the above theorem has a much stronger im-
plication: Any scheduling algorithm that only uses d = O(N)
random matchings cannot achieve 100% throughput. Further,
there is no assumption about the distribution of the packet ar-
rival process, only a rate assumption. This adds strength to the
next algorithm, ALGO2, due to Tassiulas [24].

B. ALGO2: A randomized scheme with memory

Consider the following algorithm, ALGO2:
(a) Let S(t) be the schedule used at time t.

(b) At time t + 1 choose a matching R(t + 1) uniformly at
random from the set of all N ! possible matchings.
(c) Let S(t + 1) = arg max

S∈{S(t),R(t+1)}
〈S,Q(t + 1)〉.

Theorem 2 (Tassiulas [24]). ALGO2 is stable under any
Bernoulli i.i.d. admissible input.

C. ALGO3: A derandomization of ALGO2

Before presenting the algorithm we need the concept of a
Hamiltonian walk on the set of all matchings. Consider a graph
with N ! nodes, each corresponding to a distinct matching, and
all possible edges between these nodes. Let Z(t) denote a
Hamiltonian walk on this graph; that is, Z(t) visits each of the
N ! distinct nodes exactly once during times t = 1, . . . , N !. We
extend Z(t) for t > N ! by defining Z(t) = Z(t mod N !).
One simple algorithm for such a Hamiltonian walk is described,
for example, in Chapter 7 of [19]. This is a very simple al-
gorithm that requires O(1) space and O(1) time, to generate
Z(t + 1) given Z(t). Under this algorithm Z(t) and Z(t + 1)
differ in exactly two edges. For N = 3 this algorithm gener-
ates the matchings: Z(1) = (1, 2, 3), Z(2) = (1, 3, 2), Z(3) =
(3, 1, 2), Z(4) = (3, 2, 1), Z(5) = (2, 3, 1), Z(6) = (2, 1, 3),
Z(7) = Z(1), and Z(8) = Z(2), ...

Now consider ALGO3:
(a) Let S(t) be the schedule used at time t.
(b) At time t + 1 let R(t + 1) = Z(t + 1), the matching visited
by the Hamiltonian walk.
(c) Let S(t + 1) = arg max

S∈{S(t),R(t+1)}
〈S,Q(t + 1)〉.

We shall prove the stability of ALGO3 after establishing the
following lemma.

Lemma 1. Consider an input-queued switch with admissible
Bernoulli i.i.d. inputs. Let Q(t) be the queue-size process
that results when the switch uses scheduling algorithm B. Let
W B(t) denote the weight of the schedule used by B at time t,
and let W !(t) be the weight of MWM given the same queue-size
process Q(t). If there exists a positive constant c such that the
property

W B(t) ≥ W !(t) − c

holds for all t, then the algorithm B is stable.

Proof. To establish stability it suffices to prove that (for exam-
ple, see [12], [13]) for some δ > 0 and K > 0

E(V (Q(t + 1)) − V (Q(t))|Q(t))
≤ −δW !(t), whenever W !(t) ≥ K,

where V (Q(t)) =
∑

i,j Q2
ij(t).

Consider the following:

V (Q(t + 1)) − V (Q(t)) =
∑

i,j

[Q2
ij(t + 1) − Q2

ij(t)]

=
∑

i,j

[Qij(t + 1) − Qij(t)][Qij(t + 1) + Qij(t)].
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Let S(t) be the schedule used by B at time t and let Aij(t)
denote arrivals to V OQij at time t. We know that

Qij(t + 1) = [Qij(t) − Sij(t)]+ + Aij(t + 1)
≤ max{[Qij(t) − Sij(t)] + Aij(t + 1), 1} .

Hence, we obtain

V (Q(t + 1)) − V (Q(t))

≤
∑

i,j

[(Aij(t + 1) − Sij(t))(2Qij(t) + 1) + 1]

≤
∑

i,j

[(Aij(t + 1) − Sij(t))(2Qij(t))] + 2N2

Taking conditional expectations with respect to Q(t) yields

E(V (Q(t + 1)) − V (Q(t))|Q(t))

≤ 2
∑

ij

Qij(t)[E(Aij(t) − Sij(t)|Q(t))] + 2N2

= 2
∑

ij

Qij(t)[λij − Sij(t)] + 2N2

Since the arrival rate matrix, Λ, is admissible it is strictly
doubly sub-stochastic. Therefore, from arguments made in
Lemma 2 of [13], we may write

∑

ij Qij(t)λij = 〈Q(t),Λ〉 ≤
∑

k γk〈Πk, Q(t)〉, where the Πk are permutation matrices and
γk ≥ 0 and

∑

k γk < 1.
Let WΠk = 〈Πk, Q(t)〉 and let δ = 1 −

∑

k γk. Putting the
above observations together, we get

E(V (Q(t + 1)) − V (Q(t))|Q(t))

≤ 2

(

∑

k

γkWΠk(t) − WB(t)

)

+ 2N2

= 2

(

∑

k

γkWΠk(t) − W !(t) + W !(t) − WB(t)

)

+ 2N2

≤ 2

(

∑

k

γk − 1

)

W !(t) + 2c + 2N2

= −2δW !(t) + C where, C = 2c + 2N2

Hence, for large enough constant K > 0, we obtain for
W !(t) ≥ K:

E(V (Q(t + 1)) − V (Q(t))|Q(t)) ≤ −δW !(t)

This proves the stability of algorithm B.

Theorem 3. An input-queued switch using ALGO3 is stable un-
der all admissible Bernoulli i.i.d. inputs.

Proof. Since there is at most 1 packet arriving at or departure
from each V OQ in each time slot, we obtain for any matching
M that

〈M,Q(t)〉 ≥ 〈M,Q(t + s)〉 − sN. (1)

Let S(t) denote the schedule used by ALGO3 at time t, and
let W (3)(t) = 〈S(t), Q(t)〉 be its weight. If, for every time t,

it holds that W (3)(t) ≥ W !(t) − c for some c > 0, then by
Lemma 1 it follows that ALGO3 is stable.

Consider a specific time instant T . Let S1 and S0 denote the
maximum weight matchings at time T and T −N !, respectively.
Now, by the property of the Hamiltonian walk, there is a t′ ∈
[T − N !, T ] such that Z(t′) = S0. Then

〈S(t′), Q(t′)〉
(a)
≥ 〈S0, Q(t′)〉
(b)
≥ 〈S0, Q(T − N !)〉

−(t′ + N ! − T )N, (2)

where (a) follows from the definition of ALGO3 and (b) follows
from (1).

For every t, it follows from (1) and the definition of ALGO3
that

〈S(t), Q(t)〉 − N ≤ 〈S(t), Q(t + 1)〉 ≤ 〈S(t + 1), Q(t + 1)〉.

Using this repeatedly in the following, we obtain

〈S(T ), Q(T )〉 ≥ 〈S(t′), Q(t′)〉 − (T − t′)N
(c)
≥ 〈S0, Q(T − N !)〉 − NN !
(d)
≥ 〈S1, Q(T − N !)〉 − NN !
(e)
≥ 〈S1, Q(T )〉 − 2NN !.

where (c) follows from (2), (d) follows from the fact that S0 is
the maximum weight schedule at time (T −N !), and (e) follows
from (1).

Since T was arbitrary, we have shown that W (3)(t) ≥
W !(t) − 2NN ! for every t. This completes the proof of Theo-
rem 3.

Lemma 1 and Theorem 3 together provide a general method
for establishing the stability of algorithms whose weight is
“good enough”. Thus, they may be applicable to a wider class
of algorithms than those that use memory.

III. DELAY

For a scheduling algorithm to have a good delay performance
in addition to providing 100% throughput, it needs to do extra
work. In the following sections we describe three different algo-
rithms that respectively use parallelism, randomization and the
information in arrivals to achieve 100% throughput and a good
delay performance.

A. APSARA

As noted in the introduction, determining the maximum
weight matching essentially involves a search procedure, which
can take many iterations and be time-consuming. Since our
goal is to design high-performance schedulers for high aggre-
gate bandwidth switches, algorithms that involve too many iter-
ations are unattractive.

Our goal is to design a high-performance scheduler that only
requires a single iteration. Therefore, we must devise a fast
method for finding good schedules. One method for speeding
up the scheduling process is to search the space matchings in
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parallel. Fortunately, the space of matchings has a nice combi-
natorial structure which can be exploited for conducting efficient
searches. In particular, it is possible to query the “neighbors” of
the current matching in parallel and use the heaviest of these as
the matching for the next time slot. This observation inspires the
APSARA algorithm, which employs the following two ideas:
1. Use of memory.
2. Exploring neighbors in parallel. The neighbors are defined
such that it is easy to compute them using hardware parallelism.

Definition 1. (Neighbor) Given a permutation π, let S be the
corresponding matching: Siπ(i) = 1 for all i. A matching S′ is
said to be a neighbor of S iff there are exactly two inputs, say i1
and i2, such that S′ connects input i1 to output π(i2) and input
i2 to output π(i1). All other input-output pairs are the same
under S and S′. The set of all neighbors of a matching S is
denoted N (S).

Essentially, a neighbor, S′, of S is obtained by swapping two
edges in S, leaving the other N − 2 edges of S fixed. Note that
the cardinality of N (S) is

(N
2

)

. For example, the matching S
for a 3 × 3 switch and its 3 neighbors S1, S2 and S3 are given
below:

S = (1, 2, 3)
S1 = (2, 1, 3), S2 = (1, 3, 2), S3 = (3, 2, 1)

A.1 APSARA: THE BASIC VERSION

Let S(t) be the matching determined by APSARA at time t.
Let Z(t + 1) the matching corresponding to the Hamiltonian
walk at time t + 1. At time t + 1 APSARA does the following:
(i) Determine N (S(t)) and Z(t + 1).
(ii) Let M(t + 1) = N (S(t)) ∪Z(t + 1) ∪ S(t). Compute the
weight 〈S′, Q(t + 1)〉 for all S′ ∈ M(t + 1).
(iii) The matching at time t + 1 is given by:

S(t + 1) = arg max
S′∈M(t+1)

〈S′, Q(t + 1)〉.

APSARA requires the computation of the weight of neighbor
matchings. Each such computation is easy to implement since a
neighbor S′ differs from the matching S(t) in exactly two edges.
However, computing the weights of all

(N
2

)

neighbors requires
a lot of space in hardware for large values of N .

To overcome this, we make a different definition of what it
means to be a neighbor, thereby restricting the size of the neigh-
bourhood set. In particular, we are aiming for a neighbourhood
of size O(N), as opposed to the order O(N2) as in APSARA.

Definition 2. (Linear-Neighbor) A matching S′ is said to be a
linear-neighbor of another matching S iff there are exactly two

inputs, i1 and i2
$= (i1 + 1 mod N), such that S′ connects

input i1 to output π(i2) and input i2 to output π(i1). All other
input-output pairs are the same under S and S′. The set of all
neighbors of a matching S is denoted NL(S).

Note that the cardinality of NL(S) is exactly N . Denote by
APSARA-L the version of the basic APSARA algorithm when
neighbors are chosen from NL(S).

Fig. 3. A schematic for the implementation of APSARA. The old matching,
S(t), and the new arrivals, A(t+1), are used to compute the weights of the
k neighbor matchings in parallel. The new matching, S(t + 1), is the one
with highest weight among all the neighbors. Note that this architecture is
parallel and can be easily pipelined

Further, suppose that hardware space constraints allow the use
of at most K * N modules, then how can the search procedure
required by APSARA(or APSARA-L) be conducted efficiently?

One obvious solution is to the search the neighborhood set
over multiple iterations by reusing the K modules. After all, at
low line speeds there is more time for scheduling packets, al-
lowing one to conduct more iterations. However, if line speeds
are high and one is only allowed one iteration, then the question
arises as to which K neighbors should be chosen. A determin-
istic procedure for choosing the K neighbors will usually result
in poor choices since, a priori, it is not clear which neighbors
are heavy. It is better to choose K neighbors at random and use
the heaviest of these. This motivates the following variant of
APSARA.

A.2 APSARA-R: THE RANDOMIZED VARIANT

Suppose hardware constraints only allow us to query K
neighbors. Let NK(S(t)) denote the set of K elements picked
uniformly at random from the set N (S(t)). APSARA-R deter-
mines the matching S(t + 1) as follows:
(i) Determine NK(S(t)) (note that it is not necessary to gener-
ate N (S(t))). Determine Z(t+1), the status of the Hamiltonian
walk.
(ii) Let MK(t + 1) = NK(S(t)) ∪ Z(t + 1) ∪ S(t). Compute
〈S′, Q(t + 1)〉 for every S′ ∈ MK(t + 1).
(iii) S(t + 1) = arg max

S′∈MK(t+1)
{WS′(t + 1))}.

Remark: We conclude the description of APSARA by men-
tioning one last point. APSARA generates all the matchings
in the neighborhood set oblivious of the current queue-lengths.
The queue-lengths are only used to select the heaviest match-
ing from the neighborhood set. It is therefore possible that the
matching determined by APSARA, while being heavy, is not of
maximal size. That is, there exists an input, say i, which has
packets for an output j, but the matching S(t) connects input i
to some other output j′ and connects output j some other input
i′, and both Qij′(t) and Qi′j(t) are equal to 0. Thus, input i and
output j will both idle unnecessarily.

If needed, it is easy to complete the matching S(t) determined
by APSARA into a maximal matching. We shall call the max-
imal version MaxAPSARA. There are several simple ways to
maximize APSARA, and pretty much any one can be chosen.
We note from simulations that the maximization step leads to
relatively very small improvements in the performance of AP-
SARA and, therefore, may be avoided altogether.
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A.3 APSARA THEOREMS

Theorem 4. The algorithms APSARA, APSARA-L and
APSARA-R are all stable under admissible Bernoulli i.i.d. in-
puts.

Proof. All versions use the Hamiltonian walk. Therefore,
Lemma 1 and Theorem 3 apply and the stability of algorithms
follows.

Theorem 5. Let S(s) denote the schedule obtained by APSARA
at time s, and let WS(s) = 〈S(s), Q(s)〉 denote its weight. If
S(t) = S(t− 1), that is the schedule does not change from time
t − 1 to time t, then

W S(t) ≥ 1
2
W !(t),

where W !(t) is the weight of maximum weight matching at time
t.

Proof. Without loss of generality, assume that the maximum
weight matching, S!(t), at time t is the identity permutation;
that is, input i is matched to output i under the maximum weight
matching. Let the permutation corresponding to the schedule
S(t) be π. That is, S(t) matches input i to output π(i). Let
wij denote the weight of V OQij at time t. Consider any i,
1 ≤ i ≤ N . Suppose π(i) += i. Let π−1(i) be the input matched
to output i under S(t). Since S(t−1) = S(t), from the property
of APSARA, it follows that for every i,

wiπ(i) + wπ−1(i)i ≥ wii.

Now summing over i, we obtain
∑

i

wiπ(i) + wπ−1(i)i ≥
∑

i

wii.

But,
∑

i

wiπ(i) =
∑

i

wπ−1(i)i, since π is a permutation, and

hence
∑

i

wiπ(i) ≥
1
2

∑

i

wii.

Now
∑

i

wiπ(i) is the weight of the APSARA schedule and

∑

i

wii is the weight of the maximum weight matching. Thus,

WS(t) ≥ 1
2W !(t) and the theorem is proved.

A.4 IMPLEMENTATION

All versions of APSARA involve a Hamiltonian walk. This
was done for purely theoretical reasons: to ensure their stability
(Theorem 4). We have found that, in practice, the Hamiltonian
walk is not necessary; that is, the algorithms provide virtually
the same delay and throughput even without it. Thus, while the
walk is extremely simple to implement, we do not consider it
either in implementation or in performance evaluation 3.

The main feature of APSARA is that it can be implemented
in a parallel architecture very efficiently. Figure 3 shows a
schematic for the implementation of APSARA with K modules.

3Note that eliminating the Hamiltonian walk can only worsen the perfor-
mance, the actual algorithms perform even better.

A.5 THE SIMULATION SETTING

Before presenting the performance of APSARA, we outline
the simulation setting that will be used throughout the rest of the
paper. We have conducted extensive simulations of all the algo-
rithms we present under all the different types of traffic men-
tioned below. In addition, we have also conducted simulations
of switches with 64 and 1024 ports. Due to limitations of space
and for uniformity of comparison, we only present a subset of
simulations which represent “critical” loading conditions. Fig-
ure 10 shows the average queue length of each VOQ for differ-
ent algorithms under uniform traffic. Not surprisingly, all algo-
rithms perform well under this loading uniform traffic; thus, it is
not “critical”. More extensive simulations may be found in [7],
[22].
Switch: No. of ports: N = 32. Each V OQ can store up to
10,000 packets. Excess packets are dropped.
Input Traffic: All inputs are equally loaded on a normalized
scale, and ρ ∈ (0, 1) denotes the normalized load. The arrival
process is Bernoulli i.i.d.

Let |k| = (k mod N). The following load matrices are used
to test the performance of APSARA:
1. Uniform: λij = ρ/N ∀i, j. This traffic does not test much
since all algorithms perform well under it(see figure 10).
2. Diagonal: λii = 2ρ/3, λi|i+1| = ρ/3 ∀i, and λij = 0 for
all other i and j. This is a very skewed loading, in the sense
that input i has packets only for outputs i and |i + 1|. It is more
difficult to schedule than uniform loading.
3. Logdiagonal: λij = 2λi|j+1| and

∑

i λij = ρ. For exam-
ple, the distribution of the load at input 1 across outputs is:
λ1j = 2N−jρ/(2N−1). This type of load is more balanced than
diagonal loading, but clearly more skewed than uniform load-
ing. Hence, the performance of a specific algorithm becomes
worse as we change the loading from uniform to logdiagonal
to diagonal. In this paper we do not presents simulation results
for logdiagonal traffic, since they are qualitatively similar to the
results for diagonal traffic.
Performance measures: We compare the queue-lengths in-
duced by different algorithms, the delays can be computed using
Little’s Law4. The simulations are run until the estimate of the
average delay reaches the relative width of the confidence inter-
val equal to 1% with probability ≥ 95%. The estimation of the
confidence interval width uses the batch means approach.

Figure 4 compares the average queue-sizes induced by AP-
SARA, MWM, iSLIP (with N iterations) and iLQF (with N it-
erations) under diagonal traffic. As seen, APSARA and MaxAP-
SARA perform very competitively with MWM under all load-
ings. On the other hand, both iLQF and iSLIP incur severe
packet losses and delays under heavy loading. We also note that
under low loads, APSARA deviates from MaxAPSARA since it
is not maximal. Therefore, it may cause certain V OQs to idle.
But, the difference is very small – no more than 10 packets on
average.

We see that APSARA-L only 32 modules, performs quite
well when compared to APSARA, which uses

(32
2

)

= 496 mod-
ules; even at high loads, the difference between queue sizes is

4Note that Little’s Law holds also for non-work-conserving stable systems,
like IQ switches.
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Fig. 4. Mean IQ length for APSARA under diagonal traffic.

very small. While APSARA-R(32) does not perform as well as
APSARA-L, when the number of modules K * N , then ran-
domization appears to be the best option.

B. LAURA

As shown by Tassiulas [24], ALGO2 provides 100% through-
put. However, its delay performance is quite poor (as we will
see in Figure 6). This is because of its particular use of mem-
ory: it carries matchings between iterations via memory. But,
when the weight of a heavy matching resides in a few heavy
edges, it is more important to remember the heavy edges than it
is to remember the matching itself. This simple observation mo-
tivates the next algorithm LAURA, which iteratively augments
the weight of the current matching by combining its heavy edges
with the heavy edges of a (non-uniformly) randomly chosen
matching.

There are three main features in the design of LAURA.
1. Use of memory.
2. Non-uniform random sampling.
3. A merging procedure for weight augmentation.

B.1 THE LAURA ALGORITHM

Let S(t) be the matching used by LAURA at time t. At time
t + 1 LAURA does the following:
(a) Generate a random matching R(t + 1) using the RANDOM

procedure.
(b) Use S(t+1) = MERGE(R(t+1), S(t)) as the schedule for
time t + 1.

The RANDOM Procedure

Let Fη(M) denote the minimal set of edges in the matching
M carrying at least a fraction η (0 ≤ η ≤ 1) of its weight. We
shall call η the selection factor.

RANDOM is the following iterative procedure: Initially, all
inputs and outputs are marked as unmatched. The following
steps are repeated in each of I iterations, where I is typically
log2 N :
(i) Let i be the current iteration number. Let k ≤ N be the
number of unmatched input-output pairs. Out of the k! possi-
ble matchings between these unmatched input-output pairs, a
matching Si(k) is chosen uniformly at random.

Old Matching M1 Random Matching M2

Merge

40
30
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20
60

W = 160 W = 150

70

10

10

10

W =250 

Fig. 5. An illustration of the MERGE applied to matchings M1 and M2. The
final matching is the maximum weight matching on the subgraph defined by
edges of M1 and M2.

(ii) If i < I , retain the edges corresponding to Fη(Si(k)) and
mark the nodes they cover as matched. If i = I , then retain all
edges of Si(k).

The MERGE Procedure

Given a bipartite graph and two matchings M1 and M2 for
this graph, the MERGE procedure returns a matching M̃ whose
edges belong either to M1 or to M2. MERGE works as follows.

Color the edges of M1 red and the edges of M2 green. Start
at output node j1 and follow the red edge to an input node, say
i1. From input node i1 follow the (only) green edge to its output
node, say j2. If j2 = j1, stop. Else continue to trace a path of
alternating red and green edges until j1 is visited again. This
gives a “cycle” in the subgraph of red and green edges.

Suppose the above cycle does not covers all the red and green
edges. Then there exists an output j outside this cycle. Starting
from j repeat the above procedure to find another cycle. In this
fashion find all cycles of red and green edges. Suppose there are
m cycles, C1, ..., Cm at the end. Then each cycle, Ci, contains
two matchings: Gi which has only green edges, and Ri which
has only red edges. The MERGE procedure returns the matching

M̃ =
m
⋃

i=1

arg max
S∈{Gi,Ri}

〈S,Q(t)〉.

Figure 5 illustrates the MERGE procedure. It is easy to show
that the final matching M̃ is the maximum weight matching on
the subgraph defined by edges of M1 and M2.

B.2 LAURA: COMPLEXITY AND STABILITY

It can be shown that the running time of LAURA is bounded
by O(IN log2 N + N). In our simulation study, we set I =
log2 N . Thus running time of algorithm is O(N log2 N).

The following theorem is about the stability of LAURA.

Theorem 6. LAURA is a stable algorithm, i.e. it achieves 100%
throughput under admissible Bernoulli i.i.d. inputs.

Proof. This follows from the proof of Theorem 2, since the
probability that R(t + 1) equals the maximum weight match-
ing is lower bounded by a positive constant for all time. And, as
shown in Theorem 2, this is sufficient to ensure its stability.
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B.3 PERFORMANCE

The simulation setting is identical to that for the APSARA
algorithm. We set the selection factor η = 0.5, and the num-
ber of iterations I = 5 = log2 N . LAURA is compared with the
MWM, iSLIP, iLQF and ALGO2 algorithms under diagonal traf-
fic. The results are shown in Figure 6. The algorithms LAURA
and MaxLAURA (which outputs a maximal matching, similarly
to what happens with MaxAPSARA) perform quite competi-
tively with respect to MWM. We see that iSLIP and iLQF suffer
large packet losses at high loads. Strangely enough, although
ALGO2 is provably stable (as opposed to iSLIP and iLQF), its
performance in terms of average backlog is the worst. Note that
this is not surprising, if the Lyapunov’s criteria for the stability
is carefully understood. The switching system is stable if in-
finite queue sizes are allowed. This fact, in some sense, gives
stronger motivation for the algorithms we propose in this pa-
per, since they achieve 100% throughput (like ALGO2) but with
delays very lows and comparable with the MWM algorithm.

C. SERENA

Our final algorithm, SERENA is based on the following ideas:
1. Use of memory.
2. Exploiting the randomness in arrivals.
3. A merging procedure, involving new arrivals.

The need to use memory is, by now, well-justified. One
source of randomness available in switches is that which is in
the arrivals process. Using arrivals to find matchings also has
the big benefit of providing information about recently loaded,
and hence likely heavy, V OQs. (At least these V OQs will cer-
tainly be nonempty!)

Since the edges which receive an arrival at a given time will
not necessarily form a matching, the MERGE procedure we have
used in LAURA will not be directly usable for SERENA. A sim-
ple modification of the MERGE procedure leads to the ARR-
MERGE procedure described below.

C.1 THE SERENA ALGORITHM

Let S(t) be the matching used by SERENA at time t. Let
A(t+1) = [Aij(t+1)] denote the arrival graph, where Aij(t+
1) = 1 indicates arrival at V OQij . At time t + 1,

97
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23
Arrival Graph A
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3
89

Arrival
Merge

W = 243

7

W = 169 W = 106

Old Matching M

Fig. 7. An illustration of the ARR-MERGE procedure, given the matching M
and the arrival graph A.

(a) Compute S(t + 1) = ARR-MERGE(S(t), A(t + 1)).
(b) Use S(t + 1) as the schedule.

The ARR-MERGE Procedure

Let M denote the schedule used at time t, and let A denote
the subgraph induced by packets arriving at time t + 1. Let
G = M ∪ A be the subgraph induced by the edges of M and A
on the bipartite graph consisting of input and output nodes. As
in the MERGE procedure of LAURA, the goal of ARR-MERGE

is to find a maximum weight matching, M̃ , on G. Whereas M
is a matching, A is not necessarily a matching. This is because
multiple edges can be incident on the same output node due to
multiple arrivals to that output. Therefore, we cannot simply
combine M and A using the MERGE procedure. We need to
consider the following two cases.
Case 1: A is a matching. This is a simple case, ARR-MERGE

reduces to MERGE on (M,A), yielding the matching M̃ .
Case 2: A is not a matching. Let U! denote collection of out-
puts which have one or more arrival edges incident on them. For
every u ∈ U! do the following: among the arrival edges incident
on output u, pick the edge with the highest weight and discard
the remaining edges. At the end of this process, each output in
U! is matched with exactly one input.

To complete the matching A, connect the remaining input-
output pairs by adding edges in a round-robin fashion, without
considering their weights. The round-robin mechanism avoids
queue starvation and provides fairness among queues which
are not receiving arrival. Call the resulting complete matching
Ã. Now ARR-MERGE reduces to MERGE on (M, Ã), yielding
matching M̃ .

Theorem 7. SERENA is stable under all admissible Bernoulli
i.i.d. inputs.

Proof. Again, this follows from Theorem 2, since the proba-
bility that the arrival graph at any time t will be equal to the
maximum weight matching is lower bounded by some constant
c > 0. This is sufficient to establish the stability of SER-
ENA.

C.2 PERFORMANCE

The simulation setting is identical to that of the APSARA
algorithm. SERENA is compared with the MWM, iSLIP and
iLQF algorithms under diagonal traffic. The results are shown
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in Figure 8. The algorithms SERENA and MaxSERENA (the
maximized version of SERENA) perform quite competitively
with respect to MWM.

Finally, Figure 9 compares the three algorithms we have pro-
posed – APSARA, LAURA and SERENA – under diagonal traf-
fic. All these algorithms perform competitively with each other,
showing very good delays. SERENA, which uses randomness
from arrivals, performs better than LAURA for all loads, show-
ing the usefulness of using information from arrivals. For lower
loads, APSARA performs the worst but for higher loads, it out-
performs both SERENA and LAURA.

Figure 10 shows that all the algorithms considered are well-
behaved under uniform traffic.

C.3 SERENA: COMPLEXITY

All of the work done by SERENA is in the ARR-MERGE pro-
cedure. It is not hard to see that the complexity of ARR-MERGE

is O(N). Indeed, ARR-MERGE only needs to perform the fol-
lowing simple operations: (a) Break ties at outputs for which
there is more than one arrival, (b) maximize the resulting arrival
graph (indiscriminately, if need be), and (c) MERGE. Since all of
these operations are simple to implement, and the performance
of SERENA we prefer SERENA to LAURA.
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IV. CONCLUSIONS

The paper presented some new approaches for designing sim-
ple, high-performance schedulers for high-aggregate bandwidth
switches. The following general features of the switch schedul-
ing problem were exploited: (i) The use of memory, (ii) the ran-
domized weight augmentation, and (iii) the randomness and the
information provided by recent arrivals.

We have presented a derandomized algorithm and established
its stability using methods which may apply more widely. Three
algorithms – APSARA, LAURA and SERENA – were devel-
oped to exploit the above-mentioned features. These algorithms
are stable under admissible, Bernoulli i.i.d. inputs. Simula-
tions show that they outperform some other known algorithms
in terms of delay, and perform competitively with respect to the
maximum weight matching algorithm.
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