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Abstract

Situatedcognitionis notamerephilosophicalconcern:it has
pragmaticimplicationsfor currentpracticein knowledgeac-
quisition.Toolsmustmove from beingdesign-focusedto be-
ing maintenance-focused.Reuse-basedapproaches(e.g. us-
ing problemsolvingmethods)will fail unlessthereusedde-
scriptionscan be extensively modified to suit the new situ-
ation. Knowledgeengineersmust model not only descrip-
tionsof expertknowledge,but alsotheenvironmentin which
a knowledgebasewill perform. Descriptionsof knowledge
mustbe constantlyre-evaluated. This re-evaluationprocess
hasimplicationsfor assessingrepresentations1.

Intr oduction
Considera knowledgebasewhich is conceived, built, and
used. How canwe improve our skills for developingsuch
knowledgebases?
� If mostof the changesto that knowledgebaseoccurbe-

fore its usage,thenwe would look to optimisingthe de-
sign process:i.e. conceptionto construction. Standard
knowledgeacquisitionpractice(e.g. KADS (Wielinga,
Schreiber, & Breuker 1992; Breuker & de Velde (eds)
1994))is very focusedon optimisingdesign.

� If most of the changesto that knowledge baseoccur
once it is being used,and we should look to optimis-
ing the maintenanceprocess:usageto reconceptionto
reconstruction. Very few knowledge acquisition tools
are maintenance-focused(exception: ripple-down-rules
(Compton& Jansen1990)).

Theclaim of this article is that is if we acceptsituatedcog-
nition, then knowledgeacquisitionmust move away from
current approacheswhich seekto optimise design. That
is, situatedcognitionchallengesestablishedcurrentdesign-
focusedknowledgeacquisitionpractice.

It couldbearguedthat it is a falsedichotomyto separate
an emphasison designfrom an emphasison maintenance.
Isn’t good designthe best meansof simplifying mainte-
nance? Perhapsnot. As we shall seebelow, certainsuc-
cessfulmaintenance-focusedtoolscantake a very minimal
approachto initial design.

1This work wasperformedwhile theauthorwaslocatedat the
Artificial IntelligenceDepartment,School of ComputerScience
andEngineering,Universityof NSW, Australia,2052

It couldalsobearguedthataphilosophicalperspectiveon
humanreasoninghaslittle relevancefor tool builderssuchas
pragmaticknowledgeengineers.Situatedcognitionseemsa
notionof science,‘what is thebasisof naturalhumanbehav-
ior’, while knowledgeacquisitionis a notion of engineer-
ing, ‘how canwe build cost-effective systems’.However, a
knowledgebaseis anembodimentof somescientificmodel
of the world. We build modelsto explicateandshareour
understandingof a domain.Idiosyncrasiesin our conceptu-
alisationprocessshouldbemanagedin our modelingtools.
This article focuseson the idiosyncrasyof changing our
minds. People,evenexperts,changetheir mind frequently.
Due to situatedcognition,a descriptionof sometreasured
belief from todaymaybedifferentthanyesterday’sdescrip-
tion of thatbelief. Will this differencesignificantlydisturb
the modelingprocess?Later in this article, we will apply
thesetwo teststo checkif situatedcognitionis a pragmatic
concernfor tool builders:
� Test1: Design-focusedknowledgeacquisitiontechniques

assumethat abstractedportionsof old knowledgebases
(ontologies(Gruber1993) or problemsolving methods
(Breuker & de Velde(eds)1994;Chandrasekaran,John-
son,& Smith1992))canbereusedfor new applications.
Situatedcognitionis a majorconcernfor currentpractice
if knowledgebasechangesprecludethesuccessfulappli-
cationof theseabstractedportionsof old knowledgebases
to new situations.

� Test2: Situatedcognitionclaims that we shouldexpect
descriptionsof knowledge(e.g.anasciiknowledgebase)
to undergomajorchangeduringits lifetime. Situatedcog-
nition is apragmaticconcernif knowledgebasechangeis
amajorissuefor real-world knowledgebases.

Vera and Simon offer other argumentsagainstchang-
ing currentpracticedue to situatedcognition (Vera & Si-
mon 1993b; 1993a;1993c). Firstly, they argue that the
physicalsymbolsystemhypothesis(Newell & Simon1972)
has beena fruitful paradigmwhich can reproducemany
known behaviours of experts. This is a compellingargu-
ment.Why shouldwe changecurrentpracticewhencurrent
practicehasproducedso many successfulexpert systems
(e.g., PROSPECTOR (Campbellet al. 1982; Duda, Hart,
& Reboh1985),XCON (Bachant& McDermott1984),VT
(Marcus, Stout, & McDermott 1987), PIGE (Menzieset
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al. 1992))? Secondly, Vera and Simon decline to reject
the physicalsymbolsystemhypothesisfor situatedcogni-
tion since,if they adopted,e.g.Clancey’ssituatedparadigm
(Clancey 1987), thenVeraandSimonareunclearon what
predictionscanbe madeandwhat experimentscanbe per-
formed. That is, VeraandSimonarguethatsituatedcogni-
tion is un-falsifiableandunscientific.

This articlewill presentargumentsto rejecttheVeraand
Simonview. Firstly, certaincentralclaimscentralto (e.g.)
Simon’spositionarestill unresolvedresearchissues(seethe
discussionbelow on expertisetransfer).Secondly, Veraand
Simoncommentonthesuccessesof workingdescriptionsof
humanknowledge,not on the effort involved in construct-
ing or preservingthosedescriptions.Many researchershave
recognisedthat our designconceptsfor knowledge-based
systemswereincomplete(Buchanan& Smith1989).For ex-
ample,Steels(Steels1994)citesanexamplewhereanexpert
couldnotsolveaproblemoverthephonebut,assoonasthey
walked into the roomwherethe troublewas,couldsolve it
instantly. Exampleslike this suggestthat we have under-
valuedthe impactof situation-specificreasoning.Thirdly,
Vera and Simon are only arguing againsta particularex-
tremetype of situatedcognition. We canadoptweaksitu-
atedcognition (definedbelow) andstill retainthe physical
symbolsystemhypothesis,but only if we candemonstrate
that we canmanagechangesto our descriptionsof knowl-
edge. Fourthly, it is not true that situatedcognition is un-
falsifiableandunscientific. Two experimentswith situated
cognitionwereofferedabove (the two testsfor changeand
reuse).Theendof this articleoffersa third experimentwith
a falsifiablehypothesison situatedknowledgeengineering.

The rest of this article is structuredas follows. After a
brief review of thesituatedcognitionliterature,thetwo tests
definedabove for changeandreuseareapplied.In theliter-
aturewe will find evidencethat (i) large scalechangemay
be commonand (ii) successfulreuseis rare. Hence,we
have somemotivation for discussingalternativesto current
knowledge engineeringpractice. Four generalprinciples
for situatedknowledgeengineeringwill thenbe presented:
modelingtheenvironmentof aknowledge-basedsystem;an
emphasisonmaintenanceratherthandesign;knowledgeen-
gineeringmetrics;andrepresentationoptionswhich enable
thecontinualtestingof theories.Experimentswith testable
representationswill bedescribed.

A Brief Review of SituatedCognition
This sectionreviews someof the literaturethat leadto the
situatedcognitionstance.For moreon this material,seethe
otherarticlesin this issue.

Proponentsof situated cognition argue many diverse
views. Thesecanberoughlydivided into threecamps:the
situatedpremise,weaksituatedcognition,andstrongsitu-
atedcognition.

The SituatedPremise
The situatedpremisearguesthat humancognition cannot
be accuratelymodeledby context-independentassertions
(the so-calledlogical-AI approachcritiqued by Birnbaum

(Birnbaum 1991), amongstothers). Dreyfus arguesthat
thecontext-dependentnatureof humanknowledgemakesit
fundamentallyimpossibleto reproducein symbolicdescrip-
tions(Dreyfus 1979).Searletakesa similar stand,claiming
that theonly device thatcanreplicatehumanintelligenceis
anotherhuman(Searle1980;1982;1995)sinceonly humans
cansharethesamecontext.

WeakSituatedCognition
Weaksituatedcognitionarguesthat the reasonfor thesitu-
atedpremiseis thatwhena humanagentusesa description
of knowledge,they continuallyreinterpretthatdescriptionin
thecontext of thecurrentproblem.Clancey (Clancey 1987;
1991),WinogradandFlores(Winograd& Flores1987)ar-
gue that it is a mistake to confusethe descriptionswhich
humansuseto co-ordinatetheir activities andreflectabout
their actions(i.e. language)with how humansmight gener-
ate their minute-to-minutebehaviour. In this view, human
inferenceis not just matchingand retrieving old descrip-
tions.Rather, thesestructuresarecreatedon-the-fly:

Every action is an interpretationof the currentsitua-
tion, basedon the entire history of our interactions.
In somesenseevery actionis automaticallyan induc-
tive, adjustedprocess. (Clancey 1987),p238.... The
neuralstructuresandprocessesthatcoordinatepercep-
tion andactionarecreatedduringactivity, not retrieved
and rotely applied, merely reconstructed,or calcu-
latedvia storedrulesandpatterndescriptions(Clancey
1993),p94.

Accordingto Clancey (personalcommunication)memory
is taken to be a reconstructive act: bringing knowledgeto
bearis reallyaconstructiveactthat(re)createsknowledgein
light of the currentsituation. Using descriptive models(in
theworld or imagination)involvesthis reconceptualization,
soknowledge(in thebrain)changes.Henceourdescriptions
of knowledgeshouldnot be treatedascontext-independent
assertions.Modelsareonly descriptionsof the world, hu-
manbehavior, etc. andasdescriptionsthey aresusceptible
to breakdown whenthe environmentchangesor humanin-
tentionsor valueschange.

Notethatweaksituatedcognitiondoesnot imply a rejec-
tion of thesymbolicmodelingparadigm.Modelsarearenot
useless.However, they areperhapsbestviewedastoolsfor
facilitatingadiscussionaboutadomain.Suchmodelsallow
us to plan aboutthe future and reflectingon action rather
thanimmediatelyreactingto anew situation:

Humanreasoningis immenselymoresuccessfulby our
ability to simulatewhatmighthappen,to visualizepos-
sible outcomesandpreparefor them. We do this by
reflecting,sayingwhat we expect, and respondingto
whatwesay(Clancey 1987).

However, Clancey’sdescriptionsof knowledgearenot as
fixedasthosein standardknowledgeengineering:

It remainsto explainhow (theknowledgedescriptions)
develop... Most learningprogramsgrammaticallyde-
scribehow representationsaccumulatewithin a fixed
language.They don’t explain how representationsare
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created,or moregenerally, the evolution of new rou-
tines not describedby the given grammar(Clancey
1991),p279.

Notethatweaksituatedcognitiondoesnotnecessarilyim-
ply that knowledgeengineerswill be continually revising
the contentknowledgebases.For example,the knowledge
basemay remainstatic while the interpretationplacedon
theoutputof thesystemmaychangeover time (e.g. certain
portionsof theoutputreportsareroutinely ignored). How-
ever, if operationalcharacteristicsof the working program
areever usedto revisetheconceptualmodel,weaksituated
cognitionwill influencethe natureof thoserevisions. For
example:
� Many real-world complex domainscan only be under-

stoodvia anexploratorymethodology. For example,soft-
ware solutionsto many standardbusinessproblemsre-
quire extensive iterative development(e.g. (Jacobsonet
al. 1992)). In suchexploratoryapproaches,interpreta-
tions of the behaviour of a runningsysteminforms revi-
sionsto thatsystem.

� Experiencecan result in new insights. Often, only af-
ter a working model breaksdown, do we realisesome
key missing knowledge to be addedto the knowledge
base(Fischeret al. 1996; Compton& Jansen1990).
Shalin et.al. (Shalin et al. 1997) argue that experts
routinely modify recordsof acceptedpractice after a
situation-specificassessmentof theutility of old accepted
practice(this study is discussedbelow). Note that the
addedknowledgewill beaninterpretationof watchingold
knowledgeexercisein somenew situation.

� Researchersinto decisionsupporttools(Bradshaw, Ford,
& Adams-Webber1991;Phillips 1984)arguethatmodel
constructionis a communalprocessthat generatesde-
scriptionswhich explicatea community’s understanding
of a problem. If the communitychanges,then the ex-
plicit record of the communitiessharedunderstanding
alsochanges.Suchan explicit expressionof currentbe-
liefsmaypromptfurtherinvestigationandmodelrevision.
The very act of usingmodelsleadspeopleto reinterpret
what they meanandto adaptthemto new situations;i.e.
writing down and exercisingdescriptionsof knowledge
canleadto modificationsof thosedescriptionsof knowl-
edge.

Strong SituatedCognition
Strongsituatedcognition goesonestepfurther thanweak
situatedcognition.Theinfluenceof context is sogreat,says
strongsituatedcognition, that we shouldusepurereactive
systemsthat interactdirectly with the context without first
reflectingoversomedescription(e.g.(Brooks1991)).Birn-
baum(Birnbaum1991)andMcDermott(McDermott1987)
arguethattheobviousalternative to logical AI is sometype
of procedural/functionalsemantics.

Opponentsof thesituatedview (e.g.VeraandSimon)of-
tenareopposingstrongsituatedcognitionsinceit impliesa
total rejectionof the symbolicmodelingparadigm.This is
a very drasticmovesincemuchof our understandingof hu-

manexpertiseis basedaroundsymbolicmodels.An often-
repeatedobservationis that,whenaskedto explain their ex-
pertise,expertsproducea richerandmoreabstractdescrip-
tion thannovices.For example:
� Explanationsof diseaseprocessesfrom final yearmedi-

calstudentscontainmoreintermediaryconceptsthanfirst
year students. Further, the explanationsfrom first year
studentsshowed that thesenovices focuson the surface
features(initial observations)of a problem(Patel & Ra-
moni1997).

� Andersonreportssimilar resultsin the fields of physics,
mathematics,computerprogramming,andmedicaldiag-
nosis(Anderson1990),chp.9. Novicesfocuson thesur-
facefeaturesof a problem.Expertsabstractfrom thepar-
ticularsof a problem.In theabstractedform, expertsuse
adescriptionlanguagewhichcanoffer uniformprinciples
acrossmany problems.

Onepossibleconclusionfrom thesestudiesis thatexperts
areexpertsbecausethey usea richer internalstoreof sym-
bolic beliefs. The wholenotionof a knowledge-basedsys-
temis basedaroundtherepresentationand(re)interpretation
of suchsymbols.If werejectthissymbolicmodeling,asde-
mandedby strongsituatedcognition,wemustrejectthevast
majorityof ourcurrentrepresentationaltoolkit.

Notehowever thata knowledgeengineercantakea weak
situatedstancewithout rejecting symbolic modeling. In
weak situatedcognition, we can still model expert com-
petency via a reflectionover descriptionsof expert belief.
However, we mustacceptthat thesedescriptionsareprone
to large scalechange.To demonstratethat situatedknowl-
edgeengineeringis practical,it mustbeshown thatchange
is eitherignorableor manageable.The next sectionargues
that thecurrentliteraturecannotdemonstratethatchangeis
ignorable.

How Seriousis the Problemof Change?
The previous sectionarguedthat large scalechangesto a
knowledgebasearepossible.This sectionarguesthat large
scalechangemaybecommon.

Studiesin maintenanceof fielded knowledgebasesys-
temsarevery rare. Two suchstudiesdocumentthe XCON
and Garvan ES-1 systems. In the XCON system,half of
its thousandsof rules are changedevery year (Soloway,
Bachant,& Jensen1987). The XCON changescan be
attributed to a changingenvironment (XCON configured
computersfor DEC computersand DEC keepsrealising
new computers).However, evenin staticdomains,massive
changecan occur. The Garvan ES-1 system(Comptonet
al. 1989)wasdevelopedin a totally staticdomain;i.e. the
systemwasapost-processorto abiochemicalassayunit that
did notchangefor thelifetime of theproject.In thatsystem,
maintenancenever reacheda logical terminationpoint, de-
spiteyearsof maintenance.Therewasalwaysonemorema-
jor insightinto thedomain,onemoremajorconceptualerror,
andonemore significantaddition (Comptonet al. 1989).
Thesizeof thechangeswerequitedramatic.Rulesthatbe-
ganas simple modularchunksof knowledgeevolved into
verycomplicatedandconfusingknowledge(seeFigure1).
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A. Originally

RULE(22310.01)
IF (bhthy or

utsh_bhft4 or
vhthy) and not on_t4

and not surgery
and (antithyroid or

hyperthyroid)
THEN DIAGNOSIS("...thyrotoxicosis")

B. Samerule, 3 years later

RULE(22310.01)
IF ((((T3 is missing)

or (T3 is low and
T3_BORD is low))

and TSH is missing
and vhthy
and not (query_t4 or on_t4 or

or surgery or tumour
or antithyroid
or hypothyroid
or hyperthyroid))

or ((((utsh_bhft4 or
(Hythe and T4 is missing

and TSH is missing))
and (antithyroid or

hyperthyroid))
or utsh_bhft4
or ((Hythe or borthy)

and T3 is missing
and (TSH is undetect

or TSH is low)))
and not on_t4 and not

(tumour or surgery)))
and (TT4 isnt low or T4U isnt low)

THEN DIAGNOSIS("...thyrotoxicosis")

Figure1: A rulemaintainedfor 3 years.From(Comptonetal. 1989).

Are the large scale changesseenin XCON and Gar-
van ES-1 the usual situation for a knowledge basesys-
tem? Given the poor state-of-the-artin metricscollection
for knowledgebasedsystems,we cannotsay. All that can
besaidnow is:
� We needto develop bettermetrics for knowledgebase

systems.We shouldroutinely measurewhat percentage
of a knowledgebaseis changedover its life cycle. We
will returnto this point below in thesectionKnowledge-
basedMetrics.

� Theavailable(meager)evidenceis thatwhenexpertsys-
temsarestudiedover their lifetime, large scalechanges
areobserved.

� The impactof thesechangeson currentpracticemustbe
assessed.Oneway to make this assessmentis to explore
thereuseliterature.If softwarereuseis routinelysuccess-
ful, thenclearly someknowledgerecordedsymbolically
in onesituationcanbe reusedin other situations. That
is, the problemof changediscussedabove is only a mi-
nor problem. Thereuseliteratureis exploredin the next
section.

Looking for SuccessfulReuse
Reuseimplies somenotion of expertisetransfer; i.e. ex-
pertiserecordedin onesituationcanbe reusedin another.
This sectiondiscussesthe expertisetransferresearchand
concludesthatdirecttransferoccursin only certainunusual
situations.

Recall the above discussionon symbolicmodelsof hu-
manexpertise:expertsareexpertsbecausethey usea richer

internalstoreof symbolic beliefs. In this theory, learning
is theprocessof building suchsophisticatedsymbolicstruc-
tures.Thesestructuresareabstractedaway from thepartic-
ularsof a domainto form structureswhich arereusablein
differentsituations.This theoryinspiredtheexpertisetrans-
fer paradigmof the 1970sand1980s(poeticallydescribed
by Feigenbaumas mining the jewels in the expertshead
(Feigenbaum& McCorduck1983)). The goal of expertise
transferwasto find the specialexpertsymbolsandtransfer
themto a knowledgebase.However, despitenumerousat-
temptsto documentthe transfereffect, it becameclearthat
transferwasnot a standardmethodfor learningexpert be-
haviour in a new domain.Anderson(Anderson1990)chp.9
reportsthat:
� A repeatedobservation is that experts cannot transfer

their own expertiseto relatedareas.For example,Brazil-
ian school children working as street vendorsare ex-
pert at quickly computingchangein a financial transac-
tion. However, whenexactly thesamecalculationswere
presentedto the children as written numeric problems
in a classroomexam, this mathematicalability degraded
sharply(98percentcorrectin thestreet,37percentcorrect
in theclassroom).

� Knowledge transfer would predict that novices should
learnfasterwhenexpertstransfertheir knowledgeto the
novices. Yet, the dominant influence on expertise is
lengthypracticewith thedomainandnot initial training.
Experimentsshow that transferis not the usualmethod

used by experts when examining new problems. A re-
peatedobservation is that transfer only occurswhen fa-
cilitated by an instructor (Reed, Ernst, & Banerji 1974;
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Gick & Holyoak 1980). Hayesand Simon note that the
empiricalevidencefor thetransferabilityof knowledgeand
skills to new tasksituationsis very mixed(Hayes& Simon
1977) (however, their study did speculatethat the type of
instructionwascrucial to successfultransfer, a speculation
consistentwith (Reed,Ernst, & Banerji 1974)). This re-
quirementfor instructorsto facilitatetransferlimits thecom-
mercial practicality of transfer-basedknowledgeengineer-
ing. Suchinstructorsneedto have a goodunderstandingof
both thecurrentproblemandabstracteddescriptionsof old
problems.Thereareonly two situationswheresuchinstruc-
torsareavailable:

1. Someclassroomsituationswherestudentsareworkingon
smallexampleproblemsthathave beenextensively stud-
ied by the instructor. Suchsituationsarenot relevant to
commercialpractice.

2. Somedesignsituationswhere a senior analyst,having
built someprevious system,is guiding junior analysts
throughtheconstructionof a systemthatis anexactcopy
of that previous system. This is a very rarecommercial
situation. If the new systemis anexactcopy of anolder
system,why is thenew systembeingconstructed?

Despitethe poor evidence,an uncritical belief in direct
expertisetransferpersists.Laveis scathingin hercritiqueof
this belief:

In sum, there is no impatience,no hint is this work
(Hayes& Simon1977;Reed,Ernst,& Banerji 1974;
Gick & Holyoak 1980) that the meagerevidencefor
transfer garneredfrom a very substantive body of
work might indicatethat the conceptis seriouslymis-
conceived(Lave1988),p39.

StudiessinceLave’s review offer no conclusive evidence
for directexpertisetransfer. Thesestudiesareexaminedbe-
low.

The Shalin et.al. Study
Shalinet.al.(Shalinetal. 1997)notethatexpertsoftencon-
straintheir behaviour usingdescriptionsof acceptedmeth-
ods (Shalin et al. 1997). Communitiesof agentstransfer
descriptionsof acceptedpracticeto co-ordinatetheir activi-
ties.For example:
� Army patrolsusea limited numberof prescribedmethods

for navigation. Knowledgeof suchmethodsallows pa-
trols thatarenot in directcommunicationwith eachother
to guesshow eachother will reactin changingcircum-
stances.

� The socialconsequencesof error (e.g. going to jail) en-
couragesdoctorsto follow descriptionsof acceptedprac-
tice.

� Acceptedpracticeis alsousedto anticipatethefuture:

Pilots do not lower the flapsof their aircraft during
take off, aftersensinga lack of lift. Pilots lower the
flapsof theiraircraftbeforetakeoff, in anticipationof
well describedconsequencesof the failure to do so
(Shalinetal. 1997),p200.

However, Shalin et.al. note that only novices slavishly
reuseacceptedpractice. Expertsapply modified forms of
acceptedpracticewhich have beenextensively adaptedto
thecurrentsituation.Further, expertsthenadoptsomeeval-
uationstrategy to checkif the modifieddescriptionsof ac-
ceptedpracticeweresuccessful.If they werenot, thenex-
pertsthenoffer revisionsto thedefinitionsof acceptedprac-
tice. That is, in the Shalin et.al. view, direct transferof
expertiseis muchlessimportantthana continuallyprocess
of rapidon-the-spotadaptation.Notethat:
� ThisShalinet.al.view is entirelyconsistentwith theweak

situatedcognitionview describedabove.
� It will bearguedat theendof this articlethat theneedto

continualassessa working theoryplacescertainrestric-
tionson how a theoryis represented.

The Corbridge et.al. Study
ThissectiondescribestheCorbridgeet.al.study(Corbridge,
Major, & Shadbolt1995)which exploredtransfereffectsin
problemsolvingmethods.Beforediscussingtheresults,we
briefly review thenotionof aproblemsolvingmethod.

About Problem Solving Methods Much of current
knowledgeengineeringresearchis focusedon reusingab-
stractionsof old designsin new situations. Theseabstrac-
tions are often expressedas either problemsolving meth-
ods(e.g. (Breuker& deVelde(eds)1994;Chandrasekaran,
Johnson,& Smith 1992)) or ontologies (e.g. (Gruber
1993)). In the view of mainstreamknowledgeengineer-
ing (e.g. KADS (Wielinga, Schreiber, & Breuker 1992;
Breuker & de Velde(eds)1994)),systemdevelopmentbe-
comesa structuredsearchfor an appropriateproblemsolv-
ing method. Oncea problemsolving methodis found or
developed,thenknowledgeacquisitionbecomesa process
of filling in the detailsrequiredto implementthat problem
solving method.For example,Clancey (Clancey 1992)of-
fersthefollowing problemsolvingmethod:

METHODfindOut (
Uses: subsumes/2
Method: If an hypothesis is

subsumed by other
findings which are not
present in this case
then that hypothesis
is wrong.

)

To usethis methodin a knowledgebase,the knowledge
engineermustsupplythesubsumes/2details,e.g.

subsumes(surgery, neurosurgery).
subsumes(neurosurgery, recentNeurosurgery).
subsumes(recentNeurosurgery,

ventricularUrethralShunt).

Mainstreamknowledgeengineeringresearcharguesthat
librariesof problemsolvingmethods(e.g.(Benjamins1995;
Breuker & de Velde(eds)1994;Chandrasekaran,Johnson,
& Smith 1992;Motta & Zdrahal1996;Tansley & Hayball
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1993))area productivity tool for building a wide-varietyof
expert systems.All known problemsolving methods(e.g.
findOut, prediction,monitoring, diagnosis,cover and dif-
ferentiate,proposeand revise, planning, design,verifica-
tion, assessment)are really combinationsof a small num-
ber (say, less than 20) of reusableinferencesubroutines.
(e.g. instantiate,generalise,abstract,specify, select,assign-
value, compute, compare,match, assemble,decompose,
transform). New problemsolving methodscanbe quickly
built out of theselower-level inferenceprimitives.Domain-
specificknowledgecanbeusedin differentcontexts in dif-
ferentways by definingdifferent terminologicalmappings
betweendomain-dependentterms(e.g.surgery) andthesup-
posedlydomain-independentproblemsolvingmethods.

The standardarchitecturefor problem solving method
is at leasta two-layeredsystem. In the bottom layer are
domain-dependentfacts in the languageof the users. In
the secondlayer are the supposedlydomain-independent
problemsolving methodsthat are written in a more gen-
erallanguage.Somemappingfunctionis definedto connect
the domain-dependentlanguage(e.g. surgery) to a more
general,domain-independentlanguage(e.g. into the sub-
sumes/2hierarchy).Thedomain-specifictheoryis assumed
tobechangeableandthesamefactcantakeondifferentroles
in differentproblemsolvingcontexts via differentmapping
functions.It hashencebeenargued(Hoffman,Feltovich, &
Ford 1997;Shadbolt& O’Hara1997)thatproblemsolving
methodsareatechnologyfor addressingthesituatedknowl-
edgeissue. This may only be partially correctsincewhile
domainfactsare taken to be context dependent,the prob-
lem solving methodsareassumedto be reusable.That is,
the problemsolving methodcommunitytakes a weak sit-
uatedstancefor domain factsbut, with a few exceptions,
an expertisetransferapproachfor problemsolving meth-
ods. The exceptionsare problemsolving approachesthat
allow for the dynamic configurationof a problem solver
via a depth-firsttraversalof a hierarchydescribingprob-
lem solving options(e.g. (Benjamins& Jansweijer1994;
O’Hara & Shadbolt1997)). This is only a partial situated
stancesincewhile the generatedproblemsolving methods
canvary accordingto theproblemcontext, the background
hierarchyis fixed. No guidelinesaregivenfor how experi-
encewith the runningprogramcanfeedbackinto modify-
ing theproblemsolvingmethodsoptionshierarchy. Vande
Veldehintsat a moregeneralmechanismin which machine
learnerslearnmodelreview strategiesvia watchinghuman
revise their models(de Velde1993),but suchwork is only
in its infancy.

Testing the Effectivenessof Problem Solving Methods
The Corbridgeet.al. (Corbridge,Major, & Shadbolt1995)
studytestedtheeffectivenessof a problemsolvingmethod.
Subjectshadto extract domainfactsfrom a transcriptof a
patienttalking to a doctor. Fromthe transcript,it waspos-
sible to extract 20 respiratorydisordersanda total of 304
knowledge fragments: e.g. identificationof routine tests;
non-routinetests;relevantparameters;or complaints.Sub-
jects were offered different backgroundknowledge. One
group had no model at all and a secondgroup was given

a vague, quickly written, model of diagnosis. A third
groupwasofferedthe KADS problemsolving methodfor
diagnosis. This problemsolving methoddatesback to at
least1985 (Clancey 1985) and hasbeenextensively anal-
ysed since (e.g. (Wielinga, Schreiber, & Breuker 1992;
Tansley & Hayball1993)). A pre-experimentalintuition by
proponentsof transferwouldbethatuserswith accessto this
problemsolvingmethodwouldrecognisemorediagnosisin-
formation than the other subjects. However, usersof the
KADS diagnosismodelextractedstatisticallythesameper-
centageof assertionsasusersof thevaguemodel. Further,
contraryto the transferpre-experimentalintuition, subjects
given no backgroundknowledgeout-performedthe groups
with backgroundknowledge(seeTable1).

TheCorbridgestudyusedastructuraldecompositionpro-
cessfor their KADS diagnosismodel. However, according
to Breuker (personalcommunication)medicaldiagnosisis
usually an assessmenttask. Breuker arguesthat the poor
performanceof theKADS diagnosismodelin theCorbridge
studywasdueto their useof the wrong model. This view
hasyet to be testedempirically. In the meantime,we can
saythat Breuker’s commentsareconsistentwith the trans-
fer resultsdescribedabove. Transferis not a naturaloccur-
ring phenomena:instructorswith high-levelsof skills in the
useof theKADS libraries(e.g. theauthorof thoselibraries
(Breuker & de Velde (eds)1994)) is requiredto facilitate
transfer. The scarcityof suchskilled instructorslimits the
practicalityof knowledgeacquisitionbasedon transfer.

ReuseReports in Software Engineering
Significantlevelsof reuseareroutinelyreportedin thesoft-
wareengineeringliterature. Starkreportscodereuselevels
of 70-80percentusingFORTRAN andsomeobject-oriented
designprinciples(Stark1993).FrakesandFox foundmax-
imum medianvaluesfor reusein requirements,design,and
codereuseat 15, 70, and40 percentrespectively (Frakes&
Fox 1995).If webelievethesereports,thenclearlysomeex-
pertiserecordedin old situationsis beingtransferredto new
situations.However, while theseresultsareoriginalandsig-
nificant piecesof research,therearesomedrawbackswith
thesereports.Fenton(Fenton1991)saysthatsoftwareengi-
neeringmetricsshouldaccuratelyreportthefollowing triad
of measurements:
� Productmeasures:e.g. whatwasbuilt andhow effective

wastheconstructedartifact.
� Resourcemeasures:e.g. theskill level of thepractioners

who build theproductandthetime takenin theconstruc-
tion.

� Processmeasures:e.g.how anartifactwasbuilt.

Unlessall threepoints of the Fenton-triadare reported,
then it is hard to assessif (e.g.) the time taken to build a
systemwas reducedby sacrificing the quality of the sys-
tem. Reusereportsin the software engineeringliterature
do not containdetailedprocess,product,andresourcemea-
sures(e.g. theStarkstudy).Also, theFrakesandFox study
never lookedat sourcecodeitself: it’s datawasbasedon a
questionnairesentandreturnedby post(averypoorproduct
measure).

6



Model % disordersidentified % knowledgefragmentsidentified
Vaguemodel 50 28
KADS model 55 34

No model 75 41

Table1: Analysisvia differentmodelsin theCorbridgestudy(Corbridge,Major, & Shadbolt1995).

ReuseReports in KnowledgeEngineering

Significantlevels of reuseof problemsolving methodsare
routinely reportedin the knowledgeengineeringliterature.
However, my readingof the problemsolving methodslit-
eratureis that theseproblemsolvingmethodschangemore
thanthey arereused.Betweenthevariouscampsof problem
solvingmethodresearchers,thereis little agreementon the
detailsof the problemsolving methods. The list of prim-
itives within the problemsolving methods(e.g. findOut,
select,classify, etc) from Clancey (Clancey 1992), KADS
(Wielinga, Schreiber, & Breuker 1992), and the SPARK/
BURN/ FIREFIGHTERproject (Marqueset al. 1992)are
significantlydifferent. Also, the numberandnatureof the
problemsolving methodsis not fixed. Often when a do-
main is analysedusing problem solving methods,a new
methodis induced(Linster& Musen1992).Whenwe look
at publishedproblemsolvingmethods,we seemany differ-
ences.For example,(Menzies1997)describeseightdiffer-
entsupposedlyreusablemodelsof diagnosis(four from the
problemsolvingmethodcommunity, four from elsewhere).
Whilesomeof thetheseviewsondiagnosissharesomecom-
monfeatures,they reflectfundamentallydivergentdifferent
viewson how to performdiagnosis.I thereforebelieve that,
at leastin thecaseof diagnosis,a consensusview on diag-
nosishasnot stabilisedwith time andthatsucha view may
not do so in the foreseeablefuture. More generally, since
problemsolvingmethodshavenotstabilisedovertime,their
extensivereuseis unlikely.

Is thereany evidencein the literatureto fault this pes-
simistic no-reuseargument?Two major studieswith prob-
lem solving methodsreusearethe SPARK/ BURN/ FIRE-
FIGHTER (hereafter, SBF) experiment (Marques et al.
1992)andthe MeKA study (Runkel 1995). Thesestudies
aredescribedbelow.

Experiments with Reusing Problem Solving Methods
In theMeKA study, Runkel describeseightapplicationsus-
ing mechanismsfor knowledgeacquisition, or MeKA. Each
MeKA dividedaproblemsolvingmethodinto datastructure
knowledgeand control knowledge. MeKAs contain four
modules:

1. An acquire/modulewhich gathersinformationsuchasa
formula.

2. A verify modulethatchecksit

3. A generalisemodulewhich triesto applythenew knowl-
edgeto moregeneralexpressions,e.g. is theformulaap-
plicableto otherparameters?.

4. A dialoguemodulewhich handlesthe screendesignfor
theothermodules.

All theMeKAs hadto bebuilt for thefirst application(0
percentreuse),but MeKA reusein subsequentapplications
roseashigh as88 percent.TheRunkel resultsareshown in
Table2.

In the SBF toolkit, SPARK builds a domain-specific
knowledgeacquisitiontool thatis tailoredto thebusinessin-
formationsuppliedby theuser. BURN conductsastructured
interview with theexpert. This interview mapsthebusiness
informationofferedby the userinto a library of inference
sub-routines(calledmechanisms).The mappingprocessis
guided by problem solving methodmeta-knowledge. At
choicepoints in the mapping,SBF canask the userques-
tionswhich selectdifferentproblemsolvingmethods.Once
this mappinghasbeenmade,a rule basecanbe generated
which solves the businessproblem. This is given to the
FIREFIGHTERenvironmentwhich assiststhe userin exe-
cutinganddebuggingtheoperationalisedprogram.Marques
et.al.reportsignificantlyreduceddevelopmenttimesfor ex-
pert systemsusing the 13 mechanismsin the SBF toolkit.
In thenineapplicationsstudiedby Marqueset.al.,develop-
menttimeschangedfrom oneto 17 days(usingSBF)to 63
to 250 days(without using SBF). To my knowledge,this
studyrepresentsthehigh-watermarkin reportedproductiv-
ity increasesin softwareor knowledgeengineering.
Problemswith the Experiments Onedrawbackwith the
SBF experimentis that it is virtually unrepeatable.Only a
few organisationslikeDEC cansparethepersonnelto work
for nearly a year on throw-away prototypes. The MeKA
study is a better experimentthan SBF in that the MeKA
work hasmorechanceof beingreproducible.However, in
termsof the Fentonmetricstriad, both studieshave major
drawbacks:

� Poorcontrolson productmeasures:Thereis no success
criteriaofferedfor eachapplication.Henceit is possible
that the SBF-basedapplicationor the MeKA-basedsys-
temsaresomehow inferior.

� Poor controls on resourcemeasures:In human-in-the-
loop knowledgeacquisitionsystems,the developersof a
systemshouldtry the systemout on otherpeople. Oth-
erwise,we couldencounterthe resourceconflationprob-
lem: i.e. the resultscould confusethe skill of the de-
veloperwith the intrinsic value of the tool. Who were
the personnelwho worked on the SBF developmentor
the MeKA tools? If they were the SBF developersand
Runkel respectively, thentheseresultssuffer from there-
sourceconflationproblem. That is, it may be that SBF
andMeKAs areonly reusetool for their developerssince
only they understandtheir intricacies.
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Development
order

Applicationname
���������	��
���
��������������
���
����

1 Roomassignment
� � �"!�#

2 Elevatorconfiguration $% �"&('�#
3 Elevatordesignvalidation

�% �")()�#
4 Configurationvalidation * � �")(&�#
5 Truck design#1 $+ �-,.&�#
6 Truckpricing /

�
/10
�")('�#

7 Truck design#2
%
/ *
�-,.!�#

8 Truck manufacturing / $/
� �")()�#

Table2: Reusein theMeKA system.From(Runkel 1995).

Summary
Theevidencefor reuseis veryweak.After decadesof exper-
imentation,transferhasonly beenobserved in the unusual
casewheresomefacilitatinginstructorunderstandsboththe
new problemandsomeanalogousolder problem. Neither
the knowledgeengineeringor software engineeringlitera-
tureadequatelydemonstratesreuse.

Notethattheabsenceof demonstrablehigh-levelsof reuse
doesnot necessarilyprove that changeis an overwhelm-
ing problem for current knowledge engineeringpractice.
However, given the the poor resultsto date,despitemuch
widespreadeffort, it is at leastclearthat theutility of reuse
methodsbasedonexpertisetransferis still anopenquestion.

Situated KnowledgeEngineering
Our goal is an assessmenton the impactof situatedcogni-
tion on the practiceof knowledgeengineering.The argu-
mentto datehasbeenthatmainstreamknowledgeengineer-
ing hasyet to demonstratethat changecontrol is a solved
problem. This sectionasks:if we acceptmanagingknowl-
edgebasechangesas a primary concern,what difference
doesthat make to knowledgeengineering?That is, what
would bea situatedapproachto knowledgeengineering?In
my view, sucha situatedapproachwould have at leastthe
following components:
� Modelingtheenvironmentaroundtheknowledgebase.
� An emphasison maintenanceratherthaninitial design.
� Metrics to monitor changeand the current value of a

knowledgebase
� Theuseof testablelanguages.

Thesecomponentsarediscussedbelow.

Model the Environment
In situatedknowledgeengineering,two knowledgebasesare
required: the systemknowledgebaseandthe environment
knowledgebase.Thesystemknowledgebaseis theknowl-
edgebasedevelopedin standardpractice.Theenvironment
knowledgebasemodelstheimpactof thesystemknowledge
baseonits environment(andvisaversa).Thesystemanden-
vironmentknowledgebasecaninteract.Suchman(Suchman
1987;1993;Agre1990),for example,arguesthatreal-world
planningsystemshaveto modeltheirenvironmentaswell as

their own goals.For example,a photocopieradvisorsystem
must...

... focuson thewaysin which thephotocopierandits
userwork togetherto maintaina sharedunderstanding
of what is going on betweenthe two of themandthe
copier... Far from executingafully operationalplanfor
effecting a fixed goal, the photocopieruserscontinu-
ally reinterpretedtheirsituationandbasedtheirvarious
actionson their evolving interpretations(Agre 1990).

Therearemany ways to model the environmentaround
a knowledgebase.For example,Clancey et.al.’s BRAHMS
system(seethis issue)modelstheexchangeof information
amongsta groupof agentsaboutfunctionalknowledge(or-
ders, organisations,roles, product flows). BRAHMS in-
cludesvery detaileddescriptionsof the actualday-to-day
work of thoseagents.RaneshandDhar’s REMAP system
(Ramesh& Dhar 1992) logs designdiscussionsand their
inter-connections.If a developerchangestheir positionon
someargument,thendeveloperscantracktheimpactof that
changeto theconstraintson thedevelopment.Previousdis-
cussionscan be replayedto generatean historical under-
standingof how somedecisionwasachieved. User-focused
metricscanrecordhow auserwill assessthesuccess(or fail-
ure) of a knowledgebasedsystem. Noteson user-focused
metricsaregivenbelow.

User-FocusedMeasures A knowledgebasesuccesscri-
teria shouldreflectend-userconcernsandnot internalcri-
teria (Buchanan& Shortliffe 1984;Gaschniget al. 1983;
Menzies1998b). Basili (Basili 1992) characterisessoft-
wareevaluationasa goal-question-metrictriad. Beginners
to experimentationreportwhatevernumbersthey cancollect
without consideringthe goal of the researchproject, what
questionsrelateto thatgoal,andwhatmeasurementscould
bemadeto addressthosequestions.Thegenerationof user-
focusedgoalsis a non-trivial exerciseandis rarelyreported
in the knowledgeengineeringliterature(exception: (Men-
zies1998b)).

As anexampleof user-focusedsuccesscriteria,thePIGE
farm-managementexpertsystem(Menziesetal. 1992),was
notevaluatedusinginternalcriteriasuchas(e.g.)numberof
productionsfiredpersecond.Rather, thesuccesscriteriare-
flectedtheconcernsof thepopulationof farmerswhomight
wish to buy the package:increasedprofitability per square
meterperday.
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Often,thesuccesscriteria imposesextra requirementson
theimplementation.Wemayneedto build averysimpleini-
tial systemthatcollectsbaselinemeasurementswhichreflect
currentpractice. For example,onceI identified increased
salesper day asthe successcriteria for a dealingroom ex-
pertsystem.However, this numberwasnot currentlybeing
collectedin thecurrentsoftware.Salesperdaycouldbees-
timatedfrom thequarterlystatements,but nofinergraindata
collectionwasperformedat thatsite. Hence,prior to build-
ing the expert system,a databasesystemhadto be built to
collectthebaselinedata.

Ripple-Down-Rules,a Maintenance-Focused
Approach
Ripple-down-rules(Compton& Jansen1990; Comptonet
al. 1993)is amaintenance-focusedtechniquethattotally de-
emphasiesinitial design. Nevertheless,it hasbeenshown
to facilitateeasymaintenancein certaindomains. Ripples
is an excellentexamplethatmaintenanceis not necessarily
facilitatedby agreateremphasison initial design.

A ripple-down knowledgebaseis organisedinto a patch
tree. If arule is foundto befaulty, somepatchlogic is added
on a unlesslink beneaththe rule. The patchis itself a rule
andsomay be patchedrecursively. Whenever a new patch
(rule) is addedto a ripple down rule system,thecasewhich
promptedthe patchis includedin the rule. Thesecorner-
stonecasesareusedwhenfixing a ripple down rule system.
At runtime,thefinal conclusionis theconclusionof thelast
satisfiedrule. If thatconclusionis faulty, thenthefault is lo-
calisedto thelastsatisfiedrule. Oncea fault is localised,an
expertcanthenaskthesystemfor a list of possiblepatches.
Thesystemreplieswith a differencelist which is calculated
as follows. As the current casenavigatesdown the ripple
down rule tree,if it findssomesatisfiedrule, it thenchecks
their unlesspatches.Thedifferencelist canbefoundin the
differencebetweenthecurrentcaseandthecornerstonecase
of thelastsatisfiedrule.

Ripple-basedknowledgebasesare developedwith min-
imal initial analysis(Comptonet al. 1993). Once a set
of relevant featuresarerecognisedin somedomain,ripple
patchtreesarebuilt by thecontinualpatchingof ruleswhose
conditionstestfor thesefeatures.Theripple down rule for-
malism makes no commitmentto tree structuresthat are
optimal: a patchtreecancontainrepeatedtests,redundant
knowledge,andits sub-treescanoverlapeachotherseman-
tically. Despitetheseapparentdrawbacks,ripplesappearsto
work verywell:
� In practicethe ripple down rule treesare only twice as

big as an optimum tree (Gaines& Compton1992) and
runtimeshaveneverbeenanissue.

� Only when thousandsof examplesareavailable (in one
study, 5000) doesmachinelearningtechniquesperform
aswell asmanually-built rippledown rulesystems.When
only hundredsof exampleswereavailable,ripplesclearly
out-performsmachinelearners(Mansuri, Compton, &
Sammut1991).

� ThePEIRSripples-basedsystemat St. Vincent’s Hospi-
tal, Sydney, modeled20 percentof humanbiochemistry

sufficiently well to make diagnosesthat are 95 percent
accurate(Preston,Edwards,& Compton1993). PEIRS
succeededin domainswherepreviousattempts,basedon
muchhigher-levelconstructs,nevermadeit outof thepro-
totypestage(Patil, Szolovitis, & Schwartz1981).Further,
while largeexpertsystemsarenotoriouslyhardto main-
tain (de Brug, Bachant,& McDermott 1986), the low-
analysisapproachof rippleshasneverencounteredmain-
tenanceproblems. Systemdevelopmentblendsseam-
lesslywith systemmaintenancesincetheonly activity that
theripplesinterfacepermitsis patchingfaulty rulesin the
context of the last error. For a 2000-ruleRDR system,
maintenancewas very simple (a total of a few minutes
eachday).

KnowledgeEngineeringMetrics

Two kinds of metricsare requiredfor situatedknowledge
engineering. Firstly, we needto track what portionsof a
systemarechangedduring its life cycle. The casefor sit-
uatedknowledgeengineeringdisappearsif, in systemsthat
allow change,changedoesnot occur.

Secondly, in the situatedview, knowledgebasechange
is a constant. An issuewith changinga working knowl-
edgebaseis thatthechangesmaynot improvea knowledge
base.A situatedapproachto knowledgeengineeringwould
constantlygeneratemetricsthat monitor the successof the
currentversionof a knowledgebase. The restof this sec-
tion offers somebrief noteson methodsof collectingsuch
successmeasures:comparative assessment,blinding stud-
ies, repeatedevaluations. Another method, user-focused
metrics,was discussedabove. For more noteson evalua-
tion methodssee(Fenton1991;Cohen1995).For introduc-
tory remarksto experimentalmethods,software measure-
ment,andtheevaluationof expertsystems,see(Reich1995;
Fenton,Pfleeger, & Glass1994;Gaschniget al. 1983).For
examplesof goodempiricalevaluations,see(Yu etal. 1979;
Corbridge,Major, & Shadbolt1995;Menzies1996;Vicente,
Christoffersen,& Pereklita1995;Sanderson,Verhapge,&
Fuld 1989). For examplesof very goodempiricalevalua-
tions, see(Hayes1997; Yost 1992). For further method-
ological notes,see(Menzies1998b;Menzieset al. 1997;
Menzies1998a).

Comparative Assessment Statementssuch as software
technologyX letsmedo taskY is hardlyanevaluationstate-
ment.Theremaybemany softwaretechnologiesthatallow
usto implementY. A betterstatementis comparative: soft-
ware technology X lets me do task Y better than software
technology Z. In order to comparean approach,we need
to identify an alternative approach.Generalprinciplesfor
comparativeempiricalevaluationof knowledgeengineering
methodsarediscussedin (Menzies1998a).Suchcompara-
tiveevaluationscantake theform of:
� Analysingprogramvs expert performance;e.g. (Hayes

1997;Menzieset al. 1992;Yu et al. 1979).
� Analysing expert vs expert performanceusing different

tools (e.g. (Corbridge, Major, & Shadbolt1995)) or
recordsof theirknowledge(e.g.(Shaw 1988));

9



� Analysingthe performanceof variantswithin somepro-
grameithervia an empiricalaveragecaseanalysis(e.g.
(Waugh, Menzies, & Goss 1997; Menzies, Cohen, &
Waugh1998))or a theoreticalanalysissuchasgraphthe-
ory (e.g. (Menzies& Cohen1997))or a worst-casetime
complexity analysis(e.g. (Tambe& Rosenbloom1994;
Levesque& Brachman1985)).

Blinding Studies We shouldnot askexpertsto evaluatea
programmerelyby watchingit run. Often,expertsdisagree
aboutwhatis thecorrectknowledge((Gaines& Shaw 1989;
Shaw 1988;Gaschniget al. 1983;Yu et al. 1979)). The
halo effectpreventsa developerfrom looking at a program
and assessingits value. Cohenlikensthe halo effect to a
parentgushingover the achievementsof their childrenand
commentsthat...

What we need is not opinions or impressions,but
relatively objective measuresof performance(Cohen
1995),p74.

Theoppositeof thehaloeffect is whentherecommenda-
tionsof theexpertsystemarerejectedmerelybecausesome
judgeknows that the recommendationscomefrom a com-
puterprogram. (Gaschniget al. 1983)hencerecommends
blinding studies. In suchblinding studies,the evaluating
agentisnottold recommendationscomefromtheexpertsys-
temsandwhich comefrom othersources.

RepeatedEvaluations After performingoneevaluation,
yourwork doesnot stopthere:
� A good experimentercritically reviews their results(if

they don’t, someoneelsewill) andlook for waysto im-
prove them. For example,the MYCIN evaluationstudy
(Yu et al. 1979)took five yearsandtwo earlierversions
to defineadequately. Faultswith theprior versionswere
usedto designthe next version(Buchanan& Shortliffe
1984).

� Evaluationshouldbe repeatedwhenever the knowledge
changes.In situatedknowledgeengineering,changeis a
constantprocess.Hence,evaluatingalternateversionsof
a theoryis is alsoa constantprocess.
In practice,seeminglytrivial variantsin a representation

can block our ability to tell if theory 1 is any better than
theory2. For situatedknowledgeengineering,this is unde-
sirablesincesuchevaluationsarea constantfeatureof the
life cycle. An experimentis describedbelow which eval-
uatesthe power of a representationlanguageto evaluatea
theory.

Summary At least the following techniquesare rec-
ommendedfor knowledge engineeringmetrics: repeated
evaluations; user blinding; user-focusedsuccessmetrics;
andcomparative evaluationsbetweenalternateapproaches.
Thesetechniquesare not standardpracticein mainstream
knowledgeengineering.However, they shouldbe standard
practicefor situatedknowledgeengineering.

TestableLanguages
This sectiondescribesexperimentswhich assessthe testa-
bility of a theory. This sectionis presentedfor two reasons:

1. The ability to critique a theory multiple times is an es-
sentialpartof asituatedapproachto knowledgeengineer-
ing (recall the argumentsabove of Shalinet.al.). Limits
to testabilityarehencelimits to situatedknowledgeengi-
neering.

2. It wasmentionedin theintroductionthatVeraandSimon
lamentedthatacceptingsituatedcognitionimpliesreject-
ing falsifiablescientifichypotheses.Thefollowing exper-
imentis acounter-exampleto thatview.
Knowledgerepresentationlanguagesareusuallyassessed

via their expressibility(whatcanbesaidin somelanguage)
andtheir tractability (what are the upperboundson infer-
enceruntimein that language).Often, therearetrade-offs
betweenthesecriteria. Sometimes,seeminglyminor vari-
antsin expressibilitycanhavedisastrouseffectsontractabil-
ity (Levesque& Brachman1985).

A situatedapproachto knowledgeengineeringshouldadd
athirdassessmentcriteriatoaknowledgerepresentationlan-
guage.Situatedknowledgeengineeringrequiresthecontin-
ual testingof theories.A goodlanguagefor situatedknowl-
edgeengineeringsupportstestability: theability to compare
two versionsof atheoryanddeclareoneto bebetterthanthe
other. Thissectionreviewstrade-offsbetweentestabilityand
expressibility. Justaswith tractabilityandexpressibility, it
will beshown thatseeminglyminor variantsin expressibil-
ity can have disastrouseffects on testability (Levesque&
Brachman1985).

Defining Testability Testability is a comparative assess-
ment. Considera theoryTi written in two languages.As
wereviseour theory, we generateT1, T2, T3.... Givensome
testprocedure,wecanassessif sometheoryTi is betterthan
anothertheoryTj. Accordingto thetestabilityrequirement,
languageonewill beconsideredbetterthanlanguagetwo if:
� In languageonewecancheckthatTi is betterthanTj;
� But in languagetwo, we cannot.

Variants to a Language Elsewhere, Menzies et.al.
(Waugh, Menzies, & Goss1997; Menzies et al. 1997;
Menzies,Waugh,& Goss1998)have exploredthe testabil-
ity of four qualitativesimulationlanguages.Thesefour lan-
guages(XNODE, INODE, XEDGE,IEDGE)areverysmall
variantsof eachother. However, only someof theselan-
guageslet usdistinguishbetweengoodandbadmodels(see
below).

Considera modelof profitability of fishing in Figure2.
Verticesin this model reflect continuous-valuedvariables.
Edgesin this modelreflectqualitative influencestatements.
In the fishing model, there are two such influencestate-
ments: direct and inverse. The direct influencebetween
boatMaintenanceand netIncome(denotedby plus signs)
meansthatnetIncomebeingup or downcouldbeexplained
by boatMaintenancebeingdownor up respectively. Thein-
verseinfluencebetween(e.g.)catchProceedsandnetIncome
(denotedby minussigns)meansthatnetIncomebeingup or
downcould be explainedby catchProceedsbeingdownor
up respectively.

Variantson a qualitative simulationlanguagecanbe de-
finedvia differenttemporal linking policies. Whenexecut-
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Figure2: Thefisheriesmodel.Adaptedfrom (Bossel1994)
(pp135-141).

ing (e.g.) the fishing model, we needto handleassigning
differentvaluesto thesamevariable.For example,consider
the feedbackloop direct(change in boatNumbers, boatDe-
commissions)and inverse(boatDecommissions,(change in
boatNumbers). As a simulationruns, the variablesin this
feedbackloopcouldtakeon severalvalues.Thiscanbeim-
plementedusinga renamingtrick. If we run the modelfor
4 time steps,we can createone copy of eachvariablefor
eachtime step; e.g. boatDecommissions1...boatDecom-
missions4, change in boatNumbers1... change in boatNum-
bers4.

Once the copiedvariablesare createdat different time
steps,how are we to connectthem? Firstly, it will be
assumedthat all connectionsX to Y imply a possibly in-
stantaneousconnectionfrom X to Y at the sametime; i.e.
X(time=i) to Y(time=i). Secondly, we will definefour vari-
antson how we connectvariablesat time=i to time=i+1.
Eachway will definea differentqualitative simulationlan-
guage:
� In theimplicit edgelinking language(or IEDGE),we as-

sumethatall edgesmaytake onetime tick to traverse.In
IEDGE,for all connectionsX to Y, wecreateaconnection
X(time=i) to Y(time=i).

� Explicit edgelinking (or XEDGE) is a restrictedform
of IEDGE in which we only createtime edgesfor those
edgesdownstreamof changevariables.Thefishingmodel
hastwo suchchangevariables:change in boatNumbers
andchange in fishPopulation. Thesechangesexplicitly
model the time rate of changeof variables. That is, in
anexplicit time linking policy, time is only traversednear
a changevariable. So, in XEDGE, for all connections
change in X to Y, we createa connectionX(time=i) to
Y(time=i+1).

� In the implicit nodelinking language(or INODE), it is
assumedthat somebelief now canexplain that samebe-
lief in the future. That is, for all variablesZ (either

100%

0%

% Explicable

Language1

Language2

100%

Edges corrupted

Figure4: Assessingtherelativetestabilityof two languages.

X or change in X), we createconnectionsZ(time=i) to
Z(time=i+1).

� Explicit nodelinking, or XNODE, is a restrictedform of
INODE in whichonly thechangein X variableshavetime
edges.

An exampleof theapplicationof theselanguagesis shown
in Figure3.

TestingQualitati veTheories Whenrunninga qualitative
model, sometimeswe needto make guessesaboutfactors
we are unsureoff. For example, we may have to guess
that netIncomein the fishing modelgoesup, down, or re-
mainssteady. Eachsuchguessis mutually exclusive and
mustbe maintainedin separatelogical worlds. For exam-
ple,netIncome=upwouldbekeptin aseparateworld to net-
Income=down. If morethanoneworlds canbe generated,
thenweneedsomeselectioncriteriato decidewhichworlds
we prefer; e.g. favour the worlds that contain the largest
percentageof thedatawe wish to explain.

This is ausefultestenginefor qualitativemodels.Wecan
now assessatheoryvia thelargestpercentageof outputsthat
canbeexplained(thepercentexplicablefigure). Thebetter
the theory, the larger its percentexplicable. Feldmanand
Compton(Feldman,Compton,& Smythe1989) followed
by myself andCompton(Menzies& Compton1997),have
shown that this qualitative testprocedurecandetectprevi-
ously unseenerrorsin theoriesin neuroendocrinology(the
studyof nervesandglands)publishedin internationalrefer-
eedjournals.Surprisingly, thesefaultswerefoundusingthe
datapublishedto supportthosetheories

AssessingTestability The above test procedurecan be
usedto assesstestability. Let us corrupt somepercentage
of theedgesin thefishingmodel(e.g. switcha direct to an
inverseor visa versa). Whenno edgeswerecorrupted,we
hadtheoriginalfishingmodel.As moreandmoreedgesare
corrupted,we cangenerateworseandworsemodels.Given
the testprocedure,we cannow performa comparative as-
sessmentof two languagesas in Figure4. The testproce-
durewill supplyvaluesfor they-axisof thisgraph;i.e. what
percentageof the outputscanbe explained. Valuesfor the
x-axiscanbesuppliedby testingmodelswith nocorruptions
(theoriginal model)to every edgecorrupted(a badmodel).
If a languagehasaveryflat plot onthisgraph,thenit is hard
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Figure 5: Assessingthe relative testability of XNODE,
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to tell goodmodelsfrom badmodels. For example,Lan-
guage2will bedeclaredbetterthanLanguage1if thediffer-
encebetweengoodmodelsandbadmodelsis very clearin
Language2andveryunclearin Language1.

Results This testabilityassessmentprocedurewasapplied
to XNODE, INODE, XEDGE,IEDGE asfollows. Thefish-
ing model shown above has17 influences. Between0 to
17 of theseinfluenceswerecorrupted(direct to inverseand
visa versa). Theseinfluencesto be corruptedwerechosen
at random.Hence,theprocedurewasrepeated20 timesfor
statisticallyvalidity. A modelfor 5 time ticks wasthengen-
eratedfor eachof INODE, XNODE, IEDGE andXEDGE.
This was thenexecutedusing105 datasetgeneratedfrom
thequantitative versionof thefishingmodel(Bossel1994),
pp135-141. In all, 18*20*4=1440modelswere executed
105timeseach;i.e. 151,200runs.

Theresultsareshown in Figure5. INODE hasa veryflat
plot; i.e. it is veryhardto tell goodmodelsfrom badmodels
in this language.Thereis a seriousflaw in theXEDGElan-
guage:evenwith no edgescorrupted,XEDGE canonly ex-

plain half thedata.XNODE is a muchbetterlanguage.Not
only canit explainall thebehaviour with thecorrectmodels,
but thedifferencebetweengoodXNODE andbadXNODE
modelsis quiteclear. Notethatwith lessthana third of the
fishinginfluencescorrupted(edgescorrupted=5),theexpli-
cableratefor XNODE fell from 100to 50 percent.That is,
the XNODE languageoffers a very clear early warning if
themodelmovesaway from thecorrectmodel.IEDGE was
almostasgoodasXEDGE, however it canonly explain 80
percentof thecorrectdata.

Summary This assessmentof testability lets us rank the
four variantson our simulationlanguageas follows: XN-
ODE(best),thenIEDGE(fair), thenXEDGE(poor)INODE
(poor).Moregenerally, thisstudyhasshown thatseemingly
trivial variantsin a languagecanhave disastrouseffectson
testability. Situatedknowledgeengineersneedto be very
awareof thetradeoffs betweenexpressibilityandtestability.

Conclusion
Situatedcognition is not a merephilosophicalconcern: it
haspragmaticimplicationsfor currentpracticein knowledge
acquisition.
� A situatedknowledge engineercares less for reusing

pastknowledgebasesthancontinuallyadaptingexisting
knowledgebases.Suchreuseimplies reusingabstracted
formsof knowledgeextractedfrom old knowledgebases.
This is a synonym for expertisetransferandtransferonly
hasbeenobservedto occursin therarecasewhereanin-
structorcanfacilitatethetransfer.

� A weakly situatedknowledgeengineerneednot aban-
don the symbolic modelingparadigm. Descriptionsof
knowledgeareveryusefulfor (e.g.)reflectingoverwhat-
if scenarios. However, such descriptionsare prone to
largescalechange.A situatedknowledgeengineermust
demonstratethat knowledge basechangecan be man-

12



agedby their methodologieswhile maintainingknowl-
edgebasequality. Thishastwo implications:

1. An on-goinguser-focusedmetricsprogrammeto con-
tinually assessthe valueof the currentversionof the
knowledgebase.

2. Carefullytradingoff knowledgerepresentationoptions
soasto maximisethetestabilityof a languages.

Finally, VeraandSimonarewrongwhenthey arguethat
situatedcognition is unscientificandun-falsifiable. In the
previoussection,a repeatableexperimentin situatedknowl-
edgerepresentationwaspresented.Also, it is a falsifiable
claim that situatedcognition impactson knowledgeacqui-
sition. The argumentsin this paperwould collapseif the
following wereobserved:
� Thecontentsof knowledgebasesin working systemsdo

not changesignificantlyover their life time.
� Direct expertisetransferwasobserved. For example,de-

scriptionsof knowledgefrom old situationscanbeeffec-
tively appliedverbatimin new situations.
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