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Abstract—Botnets dominate today’s attack landscape. In this
work we investigate ways to analyze collections of maliciau
probing traffic in order to understand the significance of large-
scale “botnet probes”. In such events, an entire collectionof
remote hosts together probes the address space monitored lay
sensor in some sort of coordinated fashion. Our goal is to delop
methodologies by which sites receiving such probes can imfe
using purely local observation—information about the probing
activity: What scanning strategies does the probing empldy Is
this an attack that specifically targets the site, or is the $& only
incidentally probed as part of a larger, indiscriminant attack?

Our analysis draws upon extensive honeynet data to explore
the prevalence of different types of scanning, including poperties,
such as trend, uniformity, coordination, and darknet avoidance. In
addition, we design schemes to extrapolate the global propees of
scanning events€.g, total population and target scope) as inferred
from the limited local view of a honeynet. Cross-validatingwith
data from DShield shows that our inferences exhibit promising
accuracy.

EDICS—SEC-NETW Network security < SECURITY & PRI-
VACY ANALYSIS

Index Terms—Computer network security, Site security mon-
itoring, Botnet, Global property extrapolation, Honeynet, Scan
strategy inference, Situational awareness, Statisticahference

I. INTRODUCTION
When a site receives probes from the Internet—whether b
attempts to connect to its services, or apparent attackstdut
at those services, or simply peculiar spikes in seeminghygme

activity—often what the site’'s security staff most wants t

know is not “are we being attacked?” (since the answer

that is almost always “yes, all the time”) but rather “what i%
the significanceof this activity?” Is the site being deliberately
targeted? Or is the site simply receiving one small part ofimu

broader probing activity?

For example, suppose a site with a /16 network receivS
malicious probes from a botnet. If the site can determiné tlpo

the botnet probed only their /16, then they can concludetbieat
attacker may well have a special interest in their entegp@n
the other hand, if the botnet probed a much larger raagg,
a /8, then very likely the attacker is not specifically tanggt
the enterprise.

The answers to these questions greatly influence the
sources the site will choose to employ in responding to
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activity. Obviously, the site will often care more about the
probing if the attacker has specifically targeted the sitges
such interest may reflect a worrisome level of determination
on the attacker. Indeed, such targeted attacks have rgcentl
grown in prominence. For example, targetiNgw York Times

an attacker penetrated into the site through scanning amd th
stole more than 3,000 social security numbers [1]. Yet given
the incessant level of probing all Internet addressesvedg],

how can a site assess the risk a given event reflects?

In this work we seek to contribute to the types of analysis
that sites can apply to gauge such risks. We orient much
of our methodology with an assumption that most probing
events reflect activity fronbotnets(i.e., coordinated bots) that
dominate today’s Internet attack landscape. Our approach a
to analyze fairly large-scale activity that involves mpiii local
addresses. As such, our techniques are suitable for use by
sites that deploglarknets(unused subnetshoneynetgsubnets
for which some addresses are populated by some form of
honeypot responder), or in general any monitored networks
with unexpected access, for which we can detect the botnet
probing events. The main contribution of this paper is the
development of a set of techniques for analyzing botnettsyen
most of which do not require the use of responders. For

a§fﬁ1p|icity, we will refer to the collection of sensors as the

site’s Sensors.

In contrast to previous work on botnets, which has focused
En either host-level observations of single instances aftadi
(?:tivity, studies of particular captured botnet binari8§ or
etwork-level analysis of command-and-control (C&C) wacti
ity [4], our techniques aim to characterize facets of lasgale
botnet probing events regardless of the nature of the hotnet
Our analysis does not require assumptions about the interna
%anization and communication mechanisms employed by the
tnets. We focus on the botnet inference and charactenzat
through its probing behavior. In addition, our approach thas
significant benefit of requiring onlpcal information, although
such inferences may possibly be also achievable by using a
collaborative effort such as DShield [5], subject to withitaa
limitations. We give more detailed comparisons in Sectioh V
"®We frame the contributions of our work as follows. First, we

ﬂ&%velop a set of statistical approaches to assess theutatibf

large-scale probing events seen in Sensors, includingkaitec
for trends, uniformity, coordination, and hit-lists (livess)
(Section 1V). Here we mainly focus on checking a special kind
of hit-lists, liveness-aware scanning, in which the atéaskry
to avoid the darknets. For trend and uniformity checking, th
statistical literature provides apt techniques, but faeasing
coordination and use of hit-lists (liveness) we needed teld@
new techniques. We confirmed the consistency of the statisti
techniques for inferring event properties with manual ejon
or visualization.

Applying such statistical testing on massive honeynefitraf
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reveals some interesting and sophisticated botnet scavioes the Honeynet sensor to drive the rest of the discussiorgudin
such as hit-list scans. We then used our suite of tests toefraather data collecting sensors can be used as well.
the scanning strategies employed during different proleatsy )
from which we can further extrapolate the global properfiies A. Honeynet and Data Collection
particular strategies. Our detection sensor consists of ten contiguous /24 subnets
Second, we devise two algorithms to extrapolate the glob#ithin one of Lawrence Berkeley National Laboratory’s /16
properties of a scanning event based on a sensor’s limitefworks. We deployed Honeyd responders [6] on five of the
local view. These algorithms are based on different unétegly subnets and operated the other five completely “dark”. (Vée us
assumptions and exhibit different accuracies. But bottblenathis latter for hit-list (liveness) detection.) The Honeyahfig-
us to infer the global scanning scope of a probing event, bEation is similar to that used by Paeg al. in [2]: we simu-
well as the total number of bots including those unseen by tlae the HTTP, NetBIOS, SMB, WINRPC, MSSQL, MYSQL,
Sensors, and the average scanning speed per bot (SectiondTP, Telnet, DameWare protocols, with echo servers for all
The global scanning scope enables the site’s operatorsésssother port numbers. We evaluate our analysis techniqueg usi
whether their network is a specific target of botnet actjwity 293 GB of trace data collected over two years (2006 and 2007).
whether the botnet's scanning targets a large network scope .
that simply happens to include the site. The total size ofieiot B+ Botnet Detection Subsystem _
estimates can help us track trends in how botnets are ustd, wi Y& define abotnet eventas a group of coordinated bots
implications for their C&C capabilities. probing the target network with the same goal, where “same
Also, we find most of these probes include attacks. As shoWgal” means that the probes use the same protocol(s) and, if
in Figure 2, our honeynet measurements find that about 84%Vétible, protocol/session semantics. We defirsessioras a set
scan events carry malicious payloads targeting vulnetiaisil of connections between a pair of hosts with a specific purpose
of different protocols, such as SMB/RPC, MSSQL, VNc! perhaps involving multiple application protocols. Seqsmnc-. .
These attacks might be the prelude of more serious perztratCy’ v_vhen the bptmaster commands t_he bots to probe in a similar
therefore they are dangerous. Moreover, botnet scans are fashion, reflecting the same underlying bot software. (iBrev
key technique employed for botnet recruitment [4]. ThrougHorks [4], [7] suggest this is indeed the case.) Since thetsve
event correlation study, we also find some interesting biehgv of interest reflectoordinatedbot activity, we presume t.hat the
of how botmasters control their bots. botmaster commands the bots to probe in the same time frame.
To validate our estimates of the global properties, we com- This behavior manifests as a large number of unique sources
pare our results with those from DShield [5], the Internet@iVing at the detection sensor in a short.tlme window for_a
largest global alert repository. We find that in 75% of cases, 9iVen protocol or protocol/session semantics. Worms or- mis
extrapolated scope is within a factor of 1.35 of the scan scofPnfigurations can also manifest such traffic spikes. Toeeef
observed in DShield data. In all the cases it is within a facfo We need to further differentiate types of probing. For exmp
1.5. The results demonstrate that our approaches are gecurigure 3 shows source arrival counts for VNC (TCP port 5900)
enough to enable sites to make reliable inferences. Funthrex, for the year 2006, where each point represents the number of

we emulate targeted attacks and show our approach indeed $@i €S within a six-hour interval. Large spikes correspton
detect them. scanning from worms, botnets, or misconfigurations.

We identify the botnet events from the traces using three
steps. First, through traffic classification we separateréféic
by different protocols or protocol/session semantics.o8d¢
for each stream of traffic, we identify large spikes of unique
source arrivals, which correspond to worm, botnet or mifigen
uration events. Lastly, we separate worm and misconfigurati
events from botnet events.
Traffic Classification: Attack traffic can have complex ses-
of Figure 1). All of the ‘ sion structures involving multiple applicati_on protocokor
steps in our system are ° O irowmenar M ex"’.‘mp'.e’ the attacker can S.end an. epr0|t to TCF.) pqrt 139
automated, most of them Fig. 3. Temporal diiribution of source which, if successful, results in opening a sheII_anq issung
fully so V\’/e mainly use count for VNC. HTTP downloaq command..ln general, thg application prdtoco
' contacted first is emblematic of the probing goal, so we label
1“Not Vul.” consists of instances where the honeynet recgilitle or no the session W'th the first protocol usgd. Doing so provides
payload, or purely service testing probes. consistent labelling for those connection attempts whbee t

Il. SYSTEM FRAMEWORK
The architecture of our
design is shown in Fig-
ure 1. The system has two
subsystems: botnet detec
tion and botnet inference.
In this paper we focus on s
the latter (righthand half
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honeynet did not respond, for which we only observe theahitisweeps or worms. Secondly, the average number of sources
SYN packets. We aggregate the connections into sessiamg ugier destination address should be much larger for misconfig-
an approach similar to the first step algorithm by Kanm&n urations. If the first metric is below a given threshold while
al. [8]. We consider all those connections withify,,.., 0Of the second crosses a given threshold, we consider the event t
each other as part of the same session for a given pair of.hobts a misconfiguration; otherwise it is classified as a worm or
We used the same threshold,, ..., = 100 seconds, and found botnet event. We found that almost all misconfiguration &ven
that this appeared to correctly group the majority of cotines are due to P2P traffic, as analyzed in [10].
between any given pair of hosts. In general, probing from worms (self-propagating procgfsse

For application protocols not commonly used, the averagan look very similar to that from botnets (processes under
background radiation noise is low and thus we can emplaycommon C&C), and indeed the line between the two can
port numbers to extract event traffic. However, noise is lguablur depending on the nature of the commands that botmasters
quite high for more popular protocols, requiring furthef-di issue to their bots. For our purposes, we identify and rerasve
ferentiation. Assuming that we observe at least one suftdessvorms those events that exhibit an exponential growingdtren
session from each sender, we can use the payload analysiépef the technique developed in [11]) and deem the remainder
that session to separate it from other traffic. We use a simiis botnet probing events.
approach for theRadiation-analysummaries proposed in [9]. C. Botnet Inference Subsystem
Event Extraction: By detecting large spikes of unique source For botnet probing, there are numerous scanning strategies
counts asevents we can gain insight of botnets, worms andhat attackers can potentially use. ldentifying the paftc
misconfigurations. Formally, the problem is to recover th@proach can provide a basis to infer further properties of
signal in a noisy time series. Potentially, many signal ctede the events and perhaps of the botnets themselves. We refer
and reconstruction techniques can be used. Here, we usw® these strategies asan patternsand undertake to develop a
simple semi-automated approach to discover the events. set of scan-pattern checking techniques to understanetelift

We define the noise strengfii as the typical unique sourcedimensions of such strategies) fnonotonic trend checking,
count in the absence of events. We calculdites the median (i¢) hit list checking, {i¢) uniformity checking, and:¢) depen-
of unique source counts @fy time intervalsbeforethe event. dency checking. For details, see Section IV. Once we identif
We define signal strength as the peak unique source coun@ probing event’s scan pattern, we then use the scan pattern t
arrival X minus the noise strength, i.e, S = X — N, and extrapolate global properties of the event. We focus on tvo o
define the signal-to-noise ratio 8\NR= 2 = XX = & — 1. the most common scan patterns: uniform random scanning, and
In this paper we use a six-hour time intervals. Since after viform hit-list (liveness) scanning. We confirm their comm
extract an event we refine it into smaller time intervals,tiitme  use both from botnet source code analysis (Section IlI-A) an
interval select here does not influence the final results muexperimental observations (Section VI). We then extrapdtze
We useTy = 120 (30 days) andSNR > 50 to identify the global properties, such as the global scan scope and thalglob
events. number of bots, using techniques developed in Section V.

We calculate the unique source count of every time inter- 1ll. D ESIGN SPACE OF BOTNETS SCAN PATTERNS
val, and perform event extraction using time series anglysi In th|s section we analyze different facets of how bots—and
While many general statistical signal detection approsch®US, in aggregate, botnets—scan a target range of aderesse
might be applied here, we currently extract the events ser§Ve refer to different scan strategies as differscan patterns
automatically. We first automatically identify and extrabe Where each reflects a unique set of characteristics.
rough boundaries of events, and then manually refine thet evAn Bot Source Code Study
starting and ending times. By analyzing the source code of five popular families of

We automatically extract potential events as follows: for Bots [7], [12], we studied different dimensions of scantsgges
given time interval, we calculate the median of the previog@mnployed by botnets. Our findings confirm those in [12], but
Ty intervals and th&NR For those spikes exceeding dBNR W€ studied scan patterns for each family in greater detail.
threshold, we extend the range un$il < wN wherew is a Overall, we find they emplqy simple scanning strategies.
tunable parameter controlling the amount of the signalttail Each supports botlobal scanning (a specified address block)
include in the event. For multiple events within one timdesgr @nd Local scanning (relative to each bot's address). None
we extract the events iteratively, starting with the eveithw Of the five directly automates hit-list (liveness) scannibgt
largestSNR an att_acker can potent_lally atheve this via two steps:, first

After extracting an event, we further refine it by re-scaling Scanning to gather a list of live addresses/blocks; and then
into smaller time intervals and recalculating the uniquerse specifying these at the command line. By hit-list (liveness
counts. We use manual analysis and visualization techaigue SC@nning, we refer to an event for which the attacker appears
this point to refine the event starting and ending times. to have previously acquired a specific list of targets. Such

Misconfiguration and Worm Seperation: We separate mis- S¢&ns may heavily favor the use of “live” addresses (those
configurations from worms and botnets based on the presu At respond)_t_o dark (non-rgsponswe) addresses. I"t'ad.d
tion that botnet scans and worms will contact a significangea MOSt bot families support (uniformlyandomand Sequential

of the IP addresses in the sensor, whereas events with #&@"ning of the designated addresses or blocks.

hotspots repeatedly targeted are more likely due to misconOUr dataset analysis accords with the above capabilities:

figurations. We use two metrics to separate misconfiguatio?ﬁgs'[ scanners we observe either use simple sequentialisgann
from other events. The address hit ratié; /Np, where N IP address increments by one between scans) or independent

is the number of destination addresses involved in the evé&fiform random scanning. We do observe more sophisticated
notonic trends (address incrementing By but very in-

andNp is the number of destination addresses in the honeynet; | | b b i e .
should be much smaller for misconfigurations than for botnggduently. We also observe botnets using hit-list (lives)e
scanning quite frequently.
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Hit List Not Hit List

B. Features of Botnet Global Scan Patterns - -
. . . Monotonic Trend Monotonic Trend
There is a large design space for botmasters when developir W/ mono
scan strategies, but we expect the following features tallysu Partial Monotonic Trend Partial Monotonic Trend | "
manifest: Uniform & Uniform &
e Cover the target scope fully.Botmasters may want to Independent Non- Independent Non- | No mono
scan every address within the target scope. Uniform & Uniform Uniform & Uniform | trend
e Distribute the load based on bots’ capabilities. Non-indepedent Non-indepedent
e Low communication overhead for coordination. Fig. 4. Property Checking Design Space.

e Scan detection evasionBotmasters may want bots to L
avoid aggressive scanning of a small address range, t®dvanced coordination approaches.
avoid easy detection and blocking by IDS/IPS systems. |V. PROPERTYCHECKING OF BOTNET SCAN PATTERNS

e Redundancy.Since the bots in a botnet can readily be In this section we develop a set of analysis algorithms. Each
lost due to detection or due to the host computer goings designed to check a single dimension of characteristitsd
offline, the botmaster will prefer instructing multiple  scan pattern. Then we combine the characteristics of ant even
bots to scan the same addresses. to construct the scan pattern in use, as shown in Figure 4.

Given these desired features, a simple and effective approa We first classify the scan traffic pattern into monotonicpar
is to ask each bot to independently scan the specified rarigdly monotonic and non-monotonic trends. For non-mon@to
in a random uniform fashion. Doing so can achieve the scHgnd, we assess the possible use of a hit-list or random-
detection evasion, low communication overhead, and load déniform scanning (even distribution of scans across théqgor
tribution, while also providing good coverage and reduryan Of the sensor space). Finally, for random-uniform patteen w
This approach is also simple to correctly implement. In tH&st whether the senders can be modeled as independent.
source code analysis we find the most popular such ORe
implemented to date (four out of five bot families implemehte
this strategy). Most of the events we found in our dataseds Y,
close to uniform scanning. For the hit list cases we observeg
we also found that it is likely to observe uniform scans oéliv
IP blocks.

Monotonic Trend Checking

Question: Do senders follow a monotonic trend in their
anning?

Monotonically scanning the destination IP addresseg,(
sequentially one after another) is a scan strategy widedyl us
. . by network scanning tools. In our evaluation, we did find a few
Advanced Scanning Strategies: events that use the monotonic trend scanning. Furtherrfare,

Independent uniform scanning, where each source indepgll;jom events, the monotonic trend checking can help filter
dently scans the given range, is not optimal in either CORIA, \t the noises caused by the non-bot scanners

or redundancy. For example, df scans are sent out uniformly For each sender, we test for monotonicity in targeting by

X 'y
to d address, the coverage is only —1/d)” ~ 0.68. We applying the Mann-Kendall trend test [14], a non-pararaetri

can address this shortcoming by the addition of Coordinatiﬂéypothesis testing approach. In our study, we set the signif

between the scanning sources. That is, make the senders h Gce level to 0.5%, since a higher significance level will

) - ) Ny
certain negative dependencies so that the senders can Mittbduce more false positives and we need to check thossand

fewer scan collisions. ) f sources. In our evaluation, we manually check the sizaist
An advanced scanning strategy, called “worm scan permujas

o din th p ion 113 wer and find it high enough to detect weak trends. The
tion”, was proposed in the context of worm propagation [13}iion pehind this test is that if the data have a monatoni

In that strategy, each worm uses the same predefined k%&‘hd the aggregated sign valuet 1; —— 0; <— —1.) of

permute the IP scope, and then randomly chooses a StariGhe consecutive value pairs would be out of the range the

point in the permutation sequence. The worm scans unt'_lrgndomness can achieve.

discovers a vulnerable host that has already been commdmis o |ape| an entire event as havingnenotonic trendf more
at which point it randomly chooses a new start point withia ththan 80% of senders exhibit a trend. We instead label theteven

permutation sequence. . as non-monotonidf more than 80% of senders do not exhibit
But th_e above strategy is optimized for worms ano! do Ctrend. We label the remainder partial monotonic
not consider the usage of C&C channel of botnets. Using the

botnet C&C for coordination, we frame new scan strategi. Hit-List (Liveness) Checking
advanced botnet permutation sc&BPS). Each bot permutes Question: Do the bots use a target hit-list (list of live IP
the whole IP address scope in the same way based on a kicks) for scanning?
from the botmaster. Then drawing upon the bots’ capatslitie By hit-list (liveness) scanning, we refer to an event for ethi
the botmaster divides the replicates of the permuted IP scopéhe attacker appears to have previously acquired a spestfaf |
across all of the bots. This can achieve much better coverdgmets. Hit-list is often employed by sophisticated battees
and redundancy. We simulate and evaluate this strategyrin ¢ achieve high scan efficiency. It is important for the netwo
evaluation. administrators to know whether they are in the hit-list, ethi

In general, there can be many different ways to desigmdicate whether they will be scanned again and again. We
collaborative scanning for botnets, even with relativelyali detect the use of a hit-list based on the observation thdt suc
communication overhead as ABPS achieves. Such strategieans should heavily favor the use of “live” addresses &hos
tend to have very good coverage, resilience to scan detectithat respond) to “dark” (non-responsive) addresses.
and redundancy in the presence of failure. Although culyent To this end, we operate half of our sensor region in a live
not yet prevalent, we still consider this issue and developfashion and half dark. If we observe an event only in the
dependency-checking scheme to detect them (Section IV-Bloneynet portion, this provides strong evidence that tlan sc
This can help us monitor whether botnets have adopted maoised a hit list. However, one consideration is event “palhit
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Hit-list Uniform random . .. . .
of contributes more efficiently. In Section III-B, we describe

more efficient coordinated scheme ABPS (Advanced Botnet
Permutation Scanning) based on permutation scanning will
induce negative correlations in the targeting among thecgsu
(they try to “get out of each other’'s way”).

Since traditional approaches only work in linear dependenc
o of, ‘ ‘ ‘ ‘ ‘ or two-variable cases, we develop a new hypothesis testing
© Destnatontpsinthesensor . besinaionpsnmesenser . @pproach. To test for such coordination, we use the follgwin
Fig. 5. Hit-list and uniform scanning on the sensor. hypothesis test. The null hypothesis is that the senders act
in a uniform, independent fashion (where we first test for
uniformity as discussed above); while the alternative hiypsis

10 15 20
6 8 1

#scan per IP
4

#scan per IP

5
2

(sources that actually are background noise rather tharopar

the botnet). We do not require @mpleteabsence of darknet is that the senders do not act in an independent fashion. If an

scanning, mstea_d test for the preva_lence of honeynet snams event comprises scans targeting destinations in a uniform
darknet scans significantly e_xc_eedlng what we would expec andom manner, we can in principle calculate the distriputi
Figure 5 compares an hit-ist (liveness) event (WINRP )f the number of destinations that receive exadtlyscans,
. We then reject the null hypothesis if the observed value
00 unlikely given this distribution (we again use a 0.5%
significance level).
Theorem 1:If n scans targetd addresses in a uniform

dependent manner, the number of addreggdg = 0) which

070625) versus a random-uniform event (VNC-060729).

distinguish between two such cases, we define the ratio of

number of senders which target the darknet) over those of

the honeynetr;,) asf = :Z—;i Then we test whethel crosses

a given threshold. Our evaluation suggests the results @re n

sensitive to the threshold we choose. L . do not receive any scan follows the probability distribatio
Note that for the events that require application-levelysis function:

to separate the activity from the background traffic (e.g., ' g

different types of HTTP probing), sources in the event will _ i -~ - n

necessarily be restricted to the honeynet because appticat Plz0) = (zo) x Stirling2(n, d = z0) x (d = 20)!/d

level dialog requires responses that the darknet canneideo Proof: There ared” total ways to distribute the, scans

In this case we can still perform an approximate test, byrtgst into d addresses Among them, suppakg ways exhibitz

the volume of traffic seen concurrently in the darknet uskrey t : ' v

same port number. Doing so, may miss some hit-list (livene asddresses receiving zero scans.(z empty slots). We then

events, however, because we tend to overestimate the am%ya{\ﬁe)tie)?v/e;g Il probability of observing empty slots to be
0) — A0 .

of activity the botnet exhibits in the darknet. We now show that for a giver.. the followina holds:
Other factors hardly cause an significant imbalance between W W gIvero, wing '
the darknet and the Honeynet (a sm@)] except the one in d .
which an attacker chooses a small scan range that happens to X0 = <Z0> x Stirling2(n, d — zo) x (d = z0)! (1)
include only the Honeynet addresses. However, even if this
occurs we would also (if it does not reflect previous scanningor d addresses, there a(gf)) configurations from which to
i.e., is not a hit-list) expect it to occur equally often the othechoose which:, addresses receive zero scans. Each such con-
way aroundj.e., including only darknet addresses, which haveguration has;, addresses with zero scans ahdz, addresses
not been observed over two years. receiving a non-zero number of scans. Stirliig2n) denotes
In the 203 events we analyzed, we find 33 (16.3%) hit-lishe number of ways of partitioning a set of element into
(liveness) events. To our knowledge, this is the first erogiri m nonempty sets [16]. Consider after partitioning thescans
confirmation of the extensive use of hit-list (liveness)stag. into d — z, sets, we havgd — zy)! ways to map the sets
_ ) ) to the addresses. Therefore, for each configuration we have
C. Uniformity Checking Stirling2(n, d — zo) x (d — z)! ways to distribute the, scans
Question: Does an event uniformly scan the target rangento d — =, addresses. This then establishes Eqn 1 u
A natural technical for bots is to employ uniform randonNote, we also validated this formula using Monte Carlo simu-

scanning across the target range. Testing whether the scafigns with and without introduced correlations.
are evenly distributed in the honeynet sensor can be deskcrib

as a distribution checking problem. We employ a simpte V. EXTRAPOLATING GLOBAL PROPERTIES

test, which is well-suited for the discrete nature of adsires We now turn to the problem of estimating a botnet event's
blocks. Fory? test, when choosing the number of bins, a ke§lobal scope (target size, participating scanners) basidon
requirement is to ensure that the expected vadiuéor any bin ocal information. This task is chaIIenging because the siz
should exceed 5 [15]. Accordingly, given that our eventsehathe local sensor may be very small compared to the whole
at least several hundred scans in them, we divide the 2,9@@ge scanned by a botnet, giving only a very limited view
addresses in our Honeynet into 40 bins with 64 addresses pkthe scanning event. For our estimation, we considerelt eig
bin. We then use thg? test with a significance level of 0.5%,9lobal properties, as shown in Table I.

which work well in our evaluation in Section VI-B. For both uniform-random and uniform-hit-list (uniform-
liveness) scanning, the uniformity property enables usoto ¢
D. Dependency Checking sider the local view as a random sample of the global view.
Question: Do the sources scan independently or are th&hus, the operating system (OS), autonomous system (A8), an
coordinated? IP prefix distributions observed in local measurements igeov

Sophisticated scanning strategies can introduce caoefat an estimate of the corresponding global distributionst@mt
between the sources in order to control the work that eattiree rows). However, we need to consider that if bots ekhibi



Property name uniform uniform | estimation Approach Properties Affected Require TPID
scanning | hit list method by botnet | or port #

Global target scope Yes Yes indirect dynamics | continuity

Total # of bots Yes Yes indirect Both # of bots No No

Total # of scans Yes Yes indirect Global target scope No Yes

Average scan speed per bot Yes Yes indirect Approach | | Total # of scans No Yes

Coverage hit ratio Yes No direct Average scan speed per bptYes Yes

Sender OS distribution Yes Yes direct Global target scope Yes No

Sender AS distribution Yes Yes direct Approach II | Total # of scans Yes No

Sender [P prefix distribution| Yes Yes direct Average scan speed per botYes No

TABLE | TABLE Il
GLOBAL PROPERTIES INFERRED FROM LOCAL OBSERVATIONS ADDITIONAL ASSUMPTIONS AND REQUIREMENTS

heterogeneity in their scanning rates, then the probwbilihany of the botnet scan events pass (80.3%). Of course there i
of observing a bot decreases for slower-scanning ones. Tthe usual “arms race” here between attackers and deferflers.
scanning rate heterogeneity mentioned above introducéssa lour techniques become widely used, then attackers will fpodi
towards the faster bots for these distributional propsrti®y their probing traffic to skew the defenders’ analysis. Wepado
extrapolating the total number of bots, however, we canlfug the view common in network security research that there is
estimate the prevalence of this effect. It turns out thaglif significant utility in “raising the bar” for attackers evehad
our analyzed events, by extrapolating the global bot pdjmia technique is ultimately evadable.
we find that more than 70% of the bots that are globally There are some additional requirements specific to certain
involved in the scanning during the event duration appear ettrapolation approaches, as listed in Table Il. Botnetdyics,
the local sensor.Thus, the bias is relatively small. such as churn or growth, can influence certain extrapolaioen

The “coverage hit ratio” gives the percentage of target IRsoaches. Accordingly these approaches work better fart-sho
scanned by the botnet. As this metric is difficult to estimaleed events. Approach I, as discussed in section V-C, regui
for hit-list (liveness) probing, we mainly consider unifior continuity of the IP fragment identifier (IPID) or ephemeral
scanning, for which certain destinations are not reachesd doort, which holds for botnets dominated by Windows or MacOS
to statistical variations. For uniform scanning, we carecliy machines (in our datasets we found all the events are dogdinat
estimate this metric based on the coverage in our local sendry Windows machines). We use passive OS fingerprinting to

In the remainder of this section we focus on the four remaigheck whether we can assume that this property holds.
ing properties, each of which requires indirect extrapotat B Estimating Global Population
Table Ill shows the notation we use in our problem formula-
To proceed with indirect extrapolation, we must make twtdOn and analysis, ma_rklng estimates with *hat’s. _F_or ex‘m‘p

p represents the estimated local over global ratie, ratio

key assumptions: . .
First, the attacker is oblivious to our sensors and thus senfﬁ local sensor size comparing to the global target scope of

probes to them without discriminatiofhis assumption is fun- 1€ Potnet event, and represents the estimated global target
damental to general honeynet-based traffic study, (cf. tbleep SCcope. '_“_add't!on’ we deﬂ_nM, th_e total .”“mbef of bots
response attack developed in [17] and counter-defensés [1g1at participate in _the scanning during the time W'ndBW.M

A general discussion of the problem is beyond the scoﬁl&clydes all scanning bots regardless of whether they dfeeac
of this paper. However, since we assume our technique grlng_the entire time window’. .

mainly used by a single enterprise or a set of collaboratin It p |s.small, many senders may not arrive at the sensor at
enterprises, we need not release sensing information to In this case, we cannot measuké d_wequ. Instead, we
public, which counters the basic attack in [17]. MoreovefX rapolate the total number of bots using:

we can employ counter-defense techniques such as random mo_ iz 2)

A. Assumptions and Requirements

shuffling [18] without influencing the extrapolation. Withis M ma
assumption, we can treat the local view as providing unbiaseased on the following reasoning. We can split the address
samples of the global view. range of the sensor into two parts. Since the senders olas@rve
Secondeach sender has the same global scan sc@pés each part are independent samples from the total populafion
should be true if all the senders are controlled by the sarRguation 2 follows from independence. For example, suppose
botmaster and each sender scans uniformly using the sametisete are totalM/ = 400 bots. In the first half sensor, we see
of instructions. my = 100 bots, which is1/4 of the total bot population.
We argue that these two fundamental assumption likefyonsider the second half as another independent sensor, so
apply to any local-to-global extrapolation scheme. In addihe bots it observes form another random sample from the
tion, we check for one general requirement before applyingtal population. Then we have B4 chance to see if there
extrapolation, namely consistency with the presumptioat this a bot already seen in the first half. If the second half
each sender evenly distributes its scans across the glob#lservesms, = 100 bots too, the shared bots will be close
scan scope This requirement is valid for the dark regionso m, = 100/4 = 25. Since in Equation 2 we can directly
shown in Figure 4 (Section IV above).e., both uniform measurem, ms, and mi2, we can solve forM, the total
random scanning and random permutation scanning, regardieumber of bots in the population. This is a variation of a gahe
of whether employing a hit-list. Therefore, prior to applgi approach used to estimate animal populations knowilak
the extrapolation approaches, we test for consistency widhd RecaptureSince them;,m; and m;, are measured at
uniformity (via methodology discussed in Section V), whic exactly the same time winddwthe estimated total population

2The high percentage of bots appearing at the local sensmsadiue to the  3Mark and Recapture requires the “close” system assumpiime she two
fact that probing events continue long enough to expose nityajof the bots. visits do not happen in the same time, which is different here



T Event duration observed in the Tocal sensor . . .

d Size of the local sensor more complex, since different OSes confine the range used for

G Size of global target scope ephemeral ports to different ranges. If we know the rangefro

P Local over global ratiod/G . the fingerprinted OS, we use it directly; otherwise, we eatén

M Total # of senders in the global view if . . . .

m Total # of senders in the local view [ it using the range observed locallye., the maximum port

m1 | # of senders in the first half of the local view i number observed minus the minimum port number observed.)

ma | # of senders in the second half of the local viewlin IPID and ephemeral port number continuity validation.

mi2 | # of overlapped senders oy andms in T' . . . .

R Average scanning speed per bot In a controlleql experimental environment, we installed five

Rgi | Global scanning speed of bot o ' versions of Windows, one of MacOS X, and two versions

Ti | Time between first and last scan arrival time from bof of Linux, each in a different virtual machine. We then ran

n; Number of local scans observed from han T° . .

At; | Inter-arrival time between th¢ andj + 1 scans Nmap on each to generate scans, confirming that all but Linux

Q Local total # of scans i’ (2.4/2.6) exhibit continuity of IPID (with Win98 and NT4

TABLE IlI incrementing it little-endian, but Win2000, WinXP, WinZ®0

TABLE OF NOTATIONS. and MacOS X using network order) and that all 8 systems

allocated the ephemeral ports sequentially.

For all the botnet events in the two-year Honeynet dataset,
OS fingerprinting (via th@O0f tool) indicates the large majority
C. Exploiting IPID/Port Continuity of bots run Windows 2000/XP/2003/Vista (85%), enablingais t

We now turn to estimating the global scan scope. WPPly both IPID and ephemeral port number based estimation.
investigated two basic strategies: first, inferring the bemof We also know that the proportion of Windows 95/98/NT4
scans sent by sources in between observations of theirpetbds very low (0.8%), and only for those cases we need to
the HoneynetApproach 1); second, estimating the average botwitch the byte order. (These percentages match instaéeba
global scanning speed using the minimal inter-arrival tivee Statistics [19].)
observe for each sourcagproach Il , covered in Section V-D).  NAT effects on IPID and ephemeral port continuity. Since

Approach | is based on measuring changes betweenN#\Ts can potentially alter IPID and ephemeral ports, we test
source’s probes in the IPID or ephemeral port number. We-préiree popular home routers in this regard—Linksys, Netgear
icate use of this test on first applying passive OS fingerpignt and D-Link, which comprise more than 70% of the home router
to identify whether the sender exhibits continuous IPID/and market [20]. We use Nmap to send the scans from hosts behind
ephemeral port selection. This property turns out (seeletn these NATs and examine whether their IPID or ephemeral
hold for modern Windows and Mac systems, as well as Liniorts changed. For all three, IPID remains unchanged, and
systems for ephemeral ports. for a single scanner behind the NAT, the ephemeral port also

IPID continuity. Windows and MacOS systems set the 18€mains unchanged. For multiple scanners behind the NAT, th
bit IPID field in the IP header from a single, global packegphemeral port numbers of the first sender remain unchanged,
counter, which is incremented by 1 per packet. During scatough for the D-Link router the ports of additional scarsner
ning, if the machine is mainly idle, and if the 16-bit countepecome arbitrary.
does not overflow, we can use the difference in IPID betweenEven though IPID remains unchanged, the intermingling of
two observed probes to measure how many additional (unsé@ewltiple IPID sequences for a single apparent source asldres
by us) scans the sender sent in an interval. (The algorittignders extrapolation of scanning speed impractical. Tigcles
becomes a bit more complex because of the need to ideng#yist for detecting the presence of multiple sources behind
and correct IPID overflow/wrap, as discussed below. We al®#\T (also based on IPID), but these require observing a large
need to take into account the endianness of the IPID cojint@ortion of the traffic from the NAT [21], which is impracticid

A potential problem that arises with this approach is reur case. However, given that we usually have a large number
transmission of TCP SYN'’s, which may increment the IPIDf distinct sources, we can restrict our analysis to thosesa
counter even though they do not reflect new scans. Forthat exhibit strong linearity for either IPID or ephemeralrip
given sender whose global target scopeds let = be the numbers, which avoids conflating patterns in these arisiog f
percentage of live addresses that return SYN/ACK packemyltiple sources aliased to the same public IP address.in ou
and thus will usually not involve retransmission. Lktbe evaluation, we find that on an average 463 senders maintain
the retransmission count determined by the sender’'si@$ (linearity in IPID and/or ephemeral port numbers for an eyent
total number of attempts made before giving up). Ideally, wibus, they can be used for extrapolation purpose.
need to reduce the estimated global scan rate by a factor oGlobal scan speed estimationAs the IPID and ephemeral
kx(l—xz)+2=k—(k—1)x 2. We can observé directly port number approaches work similarly, here we discuss only
from the senderr, however, is hard to estimate. Assuming thahe former. We proceed by identifying the top sources origi-
the probability of hitting a live IP address)(is very low, we nating in at least four sets of scanning. We test whetheer(aft
can approximater = 0 for a first order estimation; therefore,overflow recovery) the IPIDs increases linearly with resgec
we divide the global scan rate iy time, as follows. First, for two consecutive scans, if théDIP

Ephemeral port number continuity. We have inspected of the second is smaller than the first, we adjust it by 64K.
the source code for five popular families of botnets. All ofVe then try to fit the corrected IPiDand its corresponding
them let the operating system allocate the ephemeral souacdval time ¢;, along with previous points, to a line. If they
port associated with scanning probes. Again, these ardlysufit with correlation coefficient > 0.99, it reflects consistency
allocated by sequentially incrementing a single, globalyrter. with a near-constant scan speed, and the sender is a sirgle ho
As with IPID, we then use observed gaps in this header field tather than multiple hosts behind a NAT. When this happens,
estimate the number of additional scans we did not see. ién tlve estimate the global speed from the slope.
case, the logic for dealing with overflow/wrapping is slight It is possible that multiple overflows might occur, in which

M is the number of bots of the botnet in the time window.



case the simple overflow recovery approach will fail. Howeve Proof:

in this case the chance that we can still fit the IPIDs to a kne i m’ m’

very small, so in general we will discard such cases. This Wil v 4p(5) — 1 AR( Zz niy > /VAR(M)
create a bias when estimating very large global scopesubeca S Rai - Ty (X7 Rai - T;)?

they will more often exhibit multiple overflows. imilar as before since; follows a binomial distribution, we
Sources that happen to engage in activity in addition F?)aveVAR(ni) — -(1— p)- Rey - Ty. Therefore,

scanning can lead to overestimation of their global scaedpe

since they will consume IPID or possibly ephemeral port m 1 — ) Rew - T (1 —
numbers more quickly than those that might be simply due VAR(p) = 2i b (% P) RC;Z L pm,(l P

to the scanning. To offset this bias, when we have both IPID (>0 Rai - Th) > Rai T
and ephemeral port estimates, we use the lesser of the tW, ine other hand,

Furthermore, in our evaluation, for the cases where we can

get both estimates, we check the consistency between themy; AR(s5,) — VAR(—"—) — VAR(ni) _p-(1-p)
and found that IPID estimates usually produce larger result Reai - T; (Rei ~Ti)2 Reai - T;
but more than 95% of the time within a factor of two of thel'herefore,VAR(ﬁ) < VAR(j) -

ephemeral port estimate. (Clearly, IPID can sometimesrazb/a :
more quickly if the scanner receives a SYN-ACK in responsge Average Scan Speed Per Bokfter extrapolating) and A\,

to a probe, and thus returns an ACK to complete the 3-Waye estimate the average %can speed per bot using:
RT-M 7 )

handshake.)

Global scan scope extrapolationWith the ability to es- _ . .
timate the global scan speed, we finally estimate the gloB&f € IS the number of scans received by the sensor in fime
scan scope. Since we know the local scope, the problem’y ich should reflect a portiop of th(_a total scans. We estimate
equivalent to estimate the local over global ratioSuppose the total scans bﬁ'T'.M’ whereR is the average scan .s_peed
in a botnet event there are senders seen by the sensor, fop€" bOt: This for_mula‘uon assumes that ?aCh bot particspate
which we can estimate the global scan speBgs of a subset the entire duration of the event, which is more likely to hold
of size m'. For senderi (i € |[m’]), we knowT; (duration for short-lived events.

during which we observe the sender in the Honeynet) and Limitations. Note that the above techniques can fail if

(number of observed scans). We use the linear regressiorPHackers either craftraw IP packets or explicitly bindsberce

we discussed before to estimate tRe; which is also quite POt used for TCP probes. Thus, the schemes may lose power

accurate. The main estimation error comes from variatichef N the future. However, crafting raw IP packets and simolati
observedn; from its expectation. Defing; — —— for each a TCP stack is a somewhat time consuming process, especially

sender. Sendei's global scan speed i8;. Globally during 9IVEN most bots (85+%) we observed run Windows, and in
modern Windows systems the raw socket interface has been

T;, it sends outRg; - T; scans.n; is the number of scans wed_ bled. Empirically. q did find
see if we sample fronR; - T; total scans with probability. Isabled. Empirically, In our datasets we did not find anyecas
for which the techniques did not apply.

Therefore,p; is an estimator op. If we aggregate over all the

m’ senders, we get ) D. Extrapolating from Interarrival Times
A Sy For Approach II, we estimate _global scannin_g speed (and
P= R T, hence global scope, via estimatipgfrom an estimate of?
2 Bei T using Equation 4) in a quite different fashion, as follows.

In the following Theorem 2 and Theorem 3, we prove th&tlearly, a sender’s global scan speedprovides an upper

/ provides an unbiased estimator pfand exhibits greater bound on the local speed we might observe for the sender.
accuracy tharg;, which is based on only one sender. In oufFurthermore, if we happen to observe two consecutive scans
approach, we usg to estimate the global scan scope that Bom that sender, then they should arrive abdut = 1/s

botnet targeted. apart. Accordingly, the minimum observéxt gives us a lower
Theorem 2:/ is an unbiased estimator for bound ons, but with two important considerationgi) the
Proof: lower bound might be too conservative, if the global scope
is large, and we never observe two consecutive scans, and

Z;”/ n; E(Z;”/ ni) Z;”/ E(n;) (i) noise perturbing network timing will introduce potentjall

E(p) = E(= )= = = considerable inaccuracies in the assumption that the wéxber
i ReirTi 35" Roi Ty 35" RaiTi \y \hatches the interarrival spacing present at the source.

]

As we mentionedy; is the number of scans we see if we We proceed by consid-
sample fromRg; - T; total scans with probabilityp, which ering allm senders, other
follows a binomial distribution. Hence we havé(n;) = p- than those that sent onlys

obes/sec)
40

(p
30
i

Rgqi - T;. Therefore, a single scan. We rankg
, , these by the estimatedzsy
B(p) = >0 p-Rai-Ti _ ) > Rei-Ti ) global scan rate they im- §_|
Z;ﬂ’ Roi - T, Z;ﬂ’ Rai - T; ply via § = 1/At, where ¢

. At is the minimum ob- S¢——+—5—% % 2 %
H H H Rank
served interarrival time for £y 6 Top 30 esfimate speeds of Event

: N p(1=p) Ay
Theorem 3:VAR(p) = 725 e < VAR(p), i.e, the e sender. Naturally, fast VNC-060729.
accuracy ofp estimator when aggregating over all senders senders should tend to re-

is higher than that of each and every single sender. flect larger estimated speeds, which we verified by comparing




oF oF
Targeted # of kinds of | Events a: a:
Service vul./probes Zof o[
NetBIOS/SMB/RPC| 7 81 S q| So|
VNC 1 39 a° a°
Symantec 1 34 £ 3t £ 3t
MS SQL 1 14 EN| EN
HTTP 2 13 3o 3o
Telnet 1 12 ot ol
MySQL 1 6 le-01 1e+00 le+0l le+02 1e+03 5 10 20 50 100 500
Others 4 4 . event duratior) (hours) # of ASes per event
total 18 203 Fig. 7. Event Duration. Fig. 8. # Source ASes.
TABLE IV - -
THE SUMMARY OF THE EVENTS Hit List 16.3% (33) Not Hit List 83.7% (170)
¢ . Monotonic Trend 0% Monotonic Trend 0% wy
At of each sender with how many scans we observed fr onorone rene ™ onotone ren ™ romd
it. We find that generally the correlation is clear thoughhwit] Partial Monotonic Trend 0% Partial Monotonic Trend 3.0% (6) | 3.0%
considerable deviations. Uniform & Uniform &
Using the fast senders’ speeds to form an estimate of { ";geg;"g%nt Non- lgg;r;ensggt Non- | No mono
averagescanning speed may of course overestimate the avers o 6 (25) Uniform 5% (135) Uniform { trend
. . X . niform & 2.5% (5) Uniform & 14.2% (29) | 97.0%
speed. On the other hand, our tephnlque aims at e_stlmatm Non-independent Non-independent
lower bound. Thus, it is crucial to find a balanced point amon 0% 0%

the possible estimates. We do so by presenting the differgqt o. scan Pattern checking results.
sorted estimates from which the analyst chooses the “knee”
of the resulting curvel.e., the point with smallest rank for g property-Checking Results

which an increase_: ik yields little Cha'?ge ins. Fi_gure 6 shows Eigure 9 shows the breakdown of the events along different
an example, plotting the top 30 maximum estimated speedsqatning dimensions. Six of the 203 events exhibit partial

Event VNC-060729. From the figure we would likely selechnotonic trends; 16.3% reflect hit-lists (liveness): 86.3

k = 6 as the knee, giving an estimated speed 8.26. follow the random-uniform pattern, passing both unifosnaind

We evaluate our t\(/alcfhr%\éﬁlégAals(i)rll\lg the honeynet traffic d’ggependence tests.
scribed in Section II-A. The total data spans 24 months andThrOngh manual inspection of the partial monotonic events,

we find that nearly half of the bots scan randomly and another

293 GB of packet traces. Since our extrapolation algorithrﬂ%” of bots scan sequentially. All of these bots start tisata

are "“_eaf algorithms, we find that our system takes less th thost the same time. Perhaps they reflect two groups of bots
one minute to analyze the scan properties and to perform tfie

extrapolation analysis for a given event. We extract 2031diot htrolled by the same botmaster, and the botmaster asking
P y ora gr N hese two groups to use different scan strategies; but iargén
scan events and 504 misconfiguration events. There were a

Y/ o .
moderate worm outbreaks observed during the period, such E\'i behavior is puzzling. - . .
fter that, we test the use of hit-list (liveness) scanning.
the Allaple worm [22].

We first present characteristics of the botnet scanningte,verﬁsa‘ ;ngneergt;gr:ﬁg cli)aerflfr:gi g\\//eerli?i[r(]g]see g‘tlt?]eo;:cfzg ggg?gé/lgfss
followed by the botnet event correlation study. Next we d$sc y

results for the four botnet scan pattern checking techsiq the events. Out of the 106 events classified by port number,

and their validation. We finish with the presentation of glbb reflect hit-list (liveness) scanning when usig= 0.5. In

- : ey ) ; fact, all have empirical values far < 0.01, and all of events
sv)g:%?ﬂizgogcgﬁsféfosiyythelr validation using DShiedd, with 6 > 0.5 have# > 0.85. The 97 other events use popular

) o ports also seen in background radiation, and thus we have to
A. Basic Characteristics of Botnet Events , classify them based on application-level behavior. Foséhe

In Table IV, we break down 203 events according to the{fe conservatively assume that all the senders in the darknet
targeted services. We find that most of the events targetlpoplbsing the same port number is possible members of the event,

services that have large install-base. We also fin_d that #flich tends to overestimate For these 97 events, we did not
(14.8%) events are purely port reconnaissance without %Wd any with smallé and most of them havé larger than
payloads. Another three events check whether the HTTPc&Ivi o e found in all the cases, the results are insensititieeto

is open by requesting the homepage. The remaining (83.7f)eshold of¢. In addition, none of the events only target the
events target certain vulnerabilities. Therefore, thestndt 4 i net.
scans likely reflect attempted exploitations.

date desc ex. DShield | scope | ex.

Figure 7 shows the CDF of event duration. A botnet event 2006 scope | scope | ratio | scope
can last from a few minutes to a few days. There are 36 events 0U8) | (18) 0] (In@8)
that last very close to half an hour, leading to the spike @& th ‘ﬁ'gg "S/'SSQ'- é-gg (1)75 é-‘;g g-‘i
Figure 7. Those events target a single SMB vulnerability and |57 simiﬂi‘é S L
repeat daily. We find all those events share more than 35% 1128 [ Symantec| 0.92 | 1 092 | 4.0
of the same sources. We conjecture they stem from a single [ 07-23 | VNC 063 [09 0.7 0.9
botnet, with the botmaster asking the botnet to repeatexiy.s %:gi’ mg 8'28 8-2(7) 2-72 8-2
In Figure 8, we show the CDF of uniqgue number of ASes per 0824 T NeBIOS 1 086 T 086 T35
event. Most of the bots (62.7%) come from more than 100 08-25 | NetBIOS | 1.13 | 1 113 | 25
ASes. Only 3% of events reflect fewer than 20 ASes. This 88-32 g‘:\éﬂtglos 8-2? (1)50 (1)'22 8-2
implies that cleanmg the_botnets from 'some part of the vv_orId 6 SVE s e
(some of ASes) will not improve the situation. Also blocking

TABLE V

them based on AS number is very hard due to large number of

. GLOBAL SCOPE EXTRAPOLATION RESULTS AND VALIDATION
ASes involved.



Approach | Approach Il

34 of the 197 random events fail the test for uniformity. We
visually confirm that all of the remaining 163 events passirg Z&;
test indeed appear uniform. Three of those that failed appéas|
uniform visually, but have very large numbers of scans, far,
which the statistical testing becomes stringent in thegres £°|
of a minor amount of noise. In the remaining failed cases, V!
can see “hot-spot” addresses that clearly attract morgitycti e L
than Others; we dO not knOW Why . . sc;)pefacto.r . scope factor

Finally, we test the 163 uniform cases for coordination, nétd- 10- Scope factors of the 12 events validated.
finding any instances at a 0.5% significance level. In aduitio Step 1.Let X denote the /8 IP prefix of our sensor. We
we simulate the advanced botnet permutation scan (ABPS) %t calculate the number of shared sendar&X) between
proposed in Section IlI-B, and the dependency test acdyratgyr event data and scan logs f&rfrom DShield. We consider

cumulative probability
0.6 0.8

02 04

detects it. additional /8 prefixesy; if their numbers of senders shared
, , o with the honeyneiV(Y;) are larger tharV(X)/3, reflecting an
C. Extrapolation Evaluation & Validation assumption that if a botnet uniformly scans multiple /8 pes

We validate two forms of global extrapolation—global scagach should see quite a few sources in common. ¥and
scope and total number of bots—using DShield [5], a verydargachY;, we select the full width at half maximum (FWHM)
repository of scanning and attack reports. of the unique source arrival process as a (conservative) way

Finding: 75% of our estimates of global scanning scop® delineate the global interval of the event. We then cakeul
using only local data lie within a factor of 1.35 of estimateghe time range overlap wittk for eachY;; if the overlap of
from DShield’s global data, and all within a factor of 1.5. Y; exceeds 50% ofX’s interval, we consider that the botnet

Finding: 64% of bot population estimates are within 8% ofcannedX andY; at the same time.
relative errors from DShield’s global data, and all withirv%2o Step 2.After finding the scanned /8 networks, we estimate
of relative errors the scan scope within each. Alternatively, we compute the

For 163 uniform events, 135 reflect independent uniformatio of sensors in each network reporting the scans. There a
scanning and 28 reflect hit-list (liveness) scanning. Fatheaseveral limitations of DShield data. First, it does not eamt
type we estimate either the total scanning ranges or thé tatemplete scan information (only a subset of scans within
size of the hit lists, respectively. It is difficult to verifyit-list a prefix are reported). Second, different sensors might use
(liveness) extrapolations because of the difficulty of assg different reporting thresholds and might not see all aftivi
how the hit-list will align with sources that report to DShie (e.g, due to firewall filtering). Thus all these limitations makes
However, we can validate extrapolations from the first cl#ss calibration of data a challenging job.
events since we find they usually target a large address rangélo assess the limitations, we check a one-week interval
Due to limited data access to DShield, we have only been abi®und our events to find which DShield sensever report
to verify 12 cases as of today, as shown in Table V. a given type of activity. We treat all the reporting sensors

1) Global Scope Extrapolation and ValidatioW/e present in one /24 network as a single unique sensor. We count the
results from extrapolation, discuss our validation methogy, number of sensors from different /24 networks, denoted by
and apply the methodology to analyze our extrapolation-acall,;,;. Similarly, we count the number of unique sensors from
racy. different /24 networks that reported scans from sharedeysnd
Global scope extrapolation results:In Table V, we show the of the given event, denoted..;. We reduce the noise from
extrapolated scan scope we estimate from the local honeytiet DShield data by removing sensors that only report asing|
comparing with the estimation we make with the DShieldddress within a /24 sensor. We then G%6:/C;,:.; to estimate
data. Columnex. scope (I)shows the honeynet extrapolatedhe fraction of a /8 networks scanned by the botnet, which
scan scope by Approach |. ColunibShield scopeshows the gives us a conservative estimate of the event's total rage.
DShield based estimation. Colunsgope ratiogives the ratio add up such fractions if there are multiple related /8 nelaor
of the extrapolated scan scope by Approach | over the DShielidcovered in the first step, indicating the results in Calum
scope. Colummex. scope (Ilshows the extrapolated scan scopBShield scopef Table V.
by Approach Il. From the results, we see that our findings afecuracy Analysis: We define the scope factor as
consistent with those derived from DShield. Next, we introel max(D/H, H/D), where theD is the Dshield scope anfl
how the DShield validation works, and then we will analyzis the Honeynet scope. The scope factor indicates the absolu
the accuracy of our results. relative error in the log scale. The DShield data shows that
Validation Methodology: We find that most DShield sensorsour local estimates of global scope exhibit a promising lleve
have synchronized clocks.€., we often find significant tem- of accuracy. As shown in Figure 10, for Approach I, the scope
poral overlap between our honeynet events and corresppndiactors of 75% events are less than 1.35, and all of them are
DShield reports). For a given extraplation, we take two stefess than 1.5. Approach Il (columex. scope I works less
for validation. well (58% of events are within a factor of three and 92%

Because our extrapolation results (Coluem scope (I)in  within a factor of six), but it may still exhibit enough powter
Table V) suggest that most global scanning scopes of botee@ble sites to differentiate scans that specifically tattgem
events are close to a /8 in extent, in the DShield validatiorersus broader sweeps. In our two-year dataset, we did ribt fin
we first analyze which /8’s are involved, and then furtheeinf any scan events specifically targeting LBL, where the sensor
actual scanning scopes within each related /8. We then suesides. Moreover, it is less likely for a research institusuch
up the scanning scopes in all of the /8’s to produce the finas LBL to be a target. We would presume that targeted attacks
validation result. are more likely to occur at a site with high business interest
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date desc ex. #bots #bots

such as financial corporations and well-known companies. 2006 #bots | DShield | ratio

. . . 08-25 | MSSQL | 3100 | 3139 0.99

2) Targeted Attack Emulation and DetectioSince we did 11-26 | Symantec| 228 | 215 1.06

not discover any actual targeted attacks in the LBL dataset, 11-27 | Symantec| 276 | 373 0.73

we created synthetic attacks to evaluate the power of our é%:gg \S/KIEameC 2322 2%2 2-8?

approach. For each event shown in Table V, we emulated a 0729 T VNG 3678 3696 098

synthetic targeted attack using the same characterigtittsad 10-31 | VNC 526 | 622 084
real event ). This includes the same number of bots as TABLE VI

observed inX, including the same scan duration a observed  EXTRAPOLATED BOT POPULATION RESULTS AND VALIDATION.
in X. We randomly chose the scan speed for each bot and

fixed the average scan speed of all bots to be similar to the .
extrapolated average scan speedXofDuring this emulation, 4) ?ther EXtratE)OIat'o'? ResugtsBa?ed on Appcrjoach L vvle q
each bot scans uniformly randomly to the same targeted scop@? &/so infer the total number of scans and exirapolate
We emulate those bots scanning one of LBL's /16 networ verage scan speed in each event. In Figure 11, we show _the
along with the honeynet sensor collecting the data. Thdtses@\)/(trap()lated total number of scans, using a log-scaled X axi

show that our approach indeed correctly extrapolates thigagl /& can see the number of scans sent by the events could differ
PP y b |lgn|f|cantly given the duration and the number of bots diffe

scan scope to be one /16 network with less than 2% of err 12 sh h lated d of th
This demonstrates that our approach can accurately defgf@Uré 12 shows the extrapolated average scan speed of the

targeted attacks. We also generate synthetic events itagge ots, which we find to be quite low. We confirmed that sc_anning
a /8 network, finding the global extrapolated accuracy saimiltc())OIS sudchla§ Nmap generate ?olTwparagle TCS scanlnlng rates.
in accuracy to the occurrence in real events, demonstréiing hne underlying T.ea.sog'gg |shas ohows. InWm owsl;p atigrm
feasibility of such emulation. The smaller targeted scdpe, the scan rate is limited by)the ephemeral port number range,

more scans that our sensor will observe, and as a consequ gi) the V(‘j’a't'n? t'm% befoC;eS a closed connectrllon tugleh
the higher the resulting detection accuracy. This is theaea C2N Pe reused. Unless these OS parameters are changed, they

that the accuracy for /16 networks is much higher than for ficessarily bound the scanning rate. We analyzed botnetesou
networks. codes (Section Ill) and did not find any botnet changes taethes

_ _ o parameters. We might conjecture that—given the ease byhwhic
3) Total Population Estimates and ValidatioWe assume pormasters recruit new bots—improving the efficiency ogln

that our honeynet event data and the corresponding DShiglgs js of secondary concern. In addition, slow scanninesrat
data give us two independent samples of the bot populatigie |ess likely to be detected.

which is another chance to use the Mark and Recapture
principle. We count the sources observed by DShield sensors.. K th heavily infl is the visi

of IP prefix X on the same port number in the same time ' "¢ WOrK that most heavily influences us is the vision

window as the sources of DShield sensors. We term the numB8PE" of Y?gneswarz_;m and colle_agues on “Internet situaltion

of sources in common between our honeynet and DShield H¥areness [9]. Their Wgrk outlines the 9‘?”6.ff”" problem of
the shared sourcesBased on the similar idea of Equation 281@¥Zing honeynet traffic to assess its significance for the
we know the fraction of the shared sources to the sourcess?tﬁ observing It Th_e author; present the potent_lal premis

DShield should be equal to the ratio between bots observe such analysis using techniques that rely considerably on
the honeynet and total population. Since DShield sensdts
see other scanners (constituting noise) as well, we widlyik
underestimate the first fraction, and consequently ovienass

the bot population. Per the results shown below, we find t
estimates very close to those we estimate locally by spiitti
the sensor into two halves.

VIl. RELATED WORK

iSualization. Along with [23], we aim to go substantially

V?/lljrther, developing a “toolkit” for analyzing particulagdtures
of large-scale honeynet events, and devising techniquds an
ﬁegeneral framework to automatically or semi-automatycall
dérive conclusions based on honeynet data.

In [24], Katti et al. propose novel approaches for evaluating
) ) .. .. the importance of collaboration among IDSes and show that
Table VI. shows the extrapolation and DShle_Id validatiop,qeed collaboration can improve detection speed and acgur
results. Columnex. #botsshows our bot population extrap-tpeir paper studied collaboration regarding targets dcfit

olation constructed by splitting the sensor into two halvegyses) while our study mainly focuses on the coordinatibn o
Column#bot DShieldshows the results using DShield’s globajhe sources (bots).

data. Columr#bots ratiogives the ratio between the two o Shield is the Internet's largest global alert repositdsy, [
these. Note, we only validate the seven port number baseqo|japorative effort for detecting attackers. Our apppto
events (MSSQL, Symantec and VNC). The NetBIOS/SMBges not rely on collaboration—an individual enterprise by
events require payload analysis, which cannot valida@utit 56|t adopt our method to understand the significance afdtot
DShield since it does not provide any payloads. We find oft,hes. |n the absence of collaboration, enterprises cap ke
approach is quite accurate given 64% of cases are within §Xair detection sensor information private, lesseningceoms
of relative error [(our — DShield)|/DShicld). of pollution and detection avoidance [17]. Moreover, in our
experience, DShield data is quite noisy due to non-uniform
sensor density, which can hamper its use for inference.
While the state of the art in terms of building honeynet
systems has advanced considerably, the analysis of lagje-s
events captured by such systems remains in its early stages.
The Honeynet project has developed a set of tools for host-le
25 10 20 50 200 500 t 8 10 12 1w 1 honeypot analysis [25]. At the network level, Honeysnap] [26

# of extraplated scans (M) extrapolated average speed (probes/sec) H wsi : H
Fig. 11. Extrapolated # of scans. Fig. 12. Extrapolated the average scan analyzes the contents of individual connections, palalttyﬂ

speed.

cumulative probability

02 04 06 08
cumulative probability

02 04 06 08
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for investigating IRC traffic used for botnet command-andie]
control. These approaches all either focus on single iostaf
activity, or on study of particular botnets over timed, [4]). (7]
In contrast, in this paper, we aim instead to understand the]
significance of single, large-scale events as seen by hetgyn
Such activity by definition entails analysis integratedoasra [
large number of instances of the activity, but also (unli#p [ [10]
localized in time.

Furthermore, the literature includes a number of forensjg
case studies analyzing specific large-scale events, plarti
worms [27], [28]. Such case studies have often benefited fratal
a priori knowledge of the underlying mechanisms generathg3]
the traffic of interest. For our purposes, however, our ga#bi
infer the mechanisms themselves from a starting point ofemtﬁg]
limited knowledge.

VIIl. DIsScUsSION

To fully use our approach, an enterprise needs to allocate
IP address block divided into a darknet and a honeynet.
terprises that can only deploy darknets still gain most fiene [18]
though without a honeynet they cannot detect hit-list (ip®s)
scanning, nor employ payload analysis to further classify t[1q
traffic using protocol/session semantics rather than sirpptt
numbers. 20]

Enterprises that lack unused address blocks can stillgfigirti [21;
take the advantage of our approach if they have blocks with
known limited access. For example, if a block does not pr@viézz]
any web service, then the enterprise can use it to deteceébotpgz)
events that scan port 80. (Indeed, the enterprise could sten
up a partial honeynet operating on just that port.) (24]

From our experiences, ten /24 networks worked well, angh)
we would expect that fewer will too. This requirement shouIE26]
be well within the capability of a large enterprise.

IX. CONCLUSIONS [28]

In this paper, we develop techniques for recognizing botnet
scanning strategies and inferring the global propertidsotriet
events. An evaluation of our tools using extensive honeynejs
and DShield data demonstrates the promise our approach hol:
for contributing to a site’s “situational awareness”—iunting
the crucial question of whether a large probing event detect
by the site simply reflects broader, indiscriminate activir

[16]

instead reflects an attacker who has explicitly targetedsitiee kﬂi%
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