
23

Towards Squiggly Refinement
Algebra

D. A. Naumann

Stevens Institute of Technology

Hoboken, NJ 07030 USA. E-mail: naumann@cs.stevens-tech.edu

Abstract

The algebra of functions and relations has been used so successfully in program con­

struction that textbooks have appeared. Despite the importance of predicate trans­

formers in imperative programming, the algebra of transformers has been less ex­

plored. To show its promise, we prove results on exponents and recursion on induc­

tive data types, sufficient for carrying out a polytypic derivation that has been given

as a substantial example for functions and relations. We also give a data refinement

from exponents of specifications to the concrete exponents needed for program se­

mantics.

Keywords

Specification and verification, abstraction and refinement, polytypism, categorical

foundations, predicate transformers, data refinement

1 INTRODUCTION

The program-level algebra of functions and relations has proved quite useful in the

derivation of functional programs, and has been explored to the extent that there

are now textbooks on the subject (Bird & de Moor 1996). In a particularly interest­

ing exercise, de Moor (1996) uses the algebra of functions and relations to derive

a solution to the repmin problem. The repmin problem is to replace each node of a

tree of numbers with the minimum value in the tree, and to do so in a single pass

over the tree. The derivation is polytypic, meaning that it is parameterized not just

by the data type (numbers could be replaced by any suitably ordered type) but by

the type-constructor 'tree-of': any inductive type-constructor will do. More striking

is de Moor's observation that the derivation is also paradigm-parameterized in that

the resulting program can be interpreted in two different categories, giving quite di(

ferent programs: a higher-order functional program and a first-order logic program.

Just as striking is the absence of an imperative interpretation. Our contribution is to

justify such an interpretation, and more broadly to argue that the algebra of predi­

cate transformers may be of practical use. In so arguing, we use a higher-order data

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)

© 1998 IFIP. Published by Chapman & Hall

Towards squiggly refinement algebra 347

refinement, i.e. refinement of a constructor rather than a primitive type, which is of

independent interest.

The reader is supposed to be familiar with constructive functional programming

in the categorical style - known as Squiggol - pioneered by Meertens, Backhouse

et al. (Bird & de Moor 1996) and with the refinement calculus of Back, Morgan et

al. (Morgan 1994). Refinement calculus and Squiggol are both algebraic in the sense

that programs are developed from specifications by (in)equational calculations, in a

setting where specifications are viewed as abstract programs. Derivations in refine­

ment calculus involve heavy use of state predicates and program expressions involv­

ing state variables. By contrast, derivations in Squiggol are entirely at the level of

programs, which facilitates concision and generality. But refinement calculus deals

with imperative programming, for which predicate-transformer semantics is an ac­

curate model.

There is an important connection between predicate transformers and the algebra

of functions and relations. Every relation can be factored as a composite (r ; g) of

a function g with the reciprocal (relative converse) r of a function f. This allows

the category Rei of relations to be constructed from the category Fun of functions

in such a way that type-structure can be lifted from functions to relations (Bird &

de Moor 1996). Refinement calculus is based on the category of what we shall call

powerset transformers, i.e. monotonic functions f : pA -+ pB between powersets.

Every powerset transformer can be factored as a composite ([R]; (S)) of the direct­

image (S) and inverse-image [R] of relations R, S. This allows the type-structure of

Rei to be lifted to powerset transformers (Gardiner, Martin & de Moor 1994).

Lifting from Fun to Rei can yield weaker laws; e.g. Cartesian products are not

categorical products in Rei. Lifting from Rei to powerset transformers leads to even

weaker laws, as it should in an accurate model of imperative programs. Consider, e.g.

the program A ~ B x C ~ B which forms a pair by executing programs f
and g and then projects out just the first component of the pair. It is not necessarily

equal to f, because g could diverge. The refinement (! 1::!. g) ; 1r ~ f does hold,

but only if g obeys the law of the 'excluded miracle'. Deterministic programs sat­

isfy the other fundamental law of categorical products, h ; 1r0 1::!. h ; 1r1 = h, which

says that for pair-producing h the components of an output pair can be constructed

separately and combined to yield the same pair. But this weakens to an inequality if

h is nondeterministic, because two independent executions of h may have different

outcomes. Fortunately, a small number of conditional inequalities, generalizing the

familiar universal properties, sufficies to axiomatize the weak product for powerset

transformers (see Proposition 5).

Coproducts do lift to categorical coproducts of powerset transformers, and de Moor

(1992) shows that initial algebras (inductive data types) also lift without weakening.

Martin (1995) shows that some of the 'fusion' laws of Squiggollift in weakened

form to powerset transformers. Morgan (1994) uses (monomorphic) inductive data

types and Martin (1995) spells out the interpretation of map-like operations and fu­

sion laws in the notation of refinement-calculus, but derivations at the program level

348 Programming Concepts and Methods

are not given. This author was surprised to succeed at a nontrivial derivation in a

category that is only slightly different from powerset transformers.

The repmin derivation uses initial algebras and exponents. The categorical notion

of exponent internalizes the homset Fun(B, C) as an object B -+ C axiomatized

in terms of Currying, i.e. the bijection between Fun(A x B, C) and Fun(A, B -+

C). Exponents are usually internalized homsets, but not always. De Moor's logic­

programming interpretation of repmin is based on the bijection between Rei(A x

B, C) and Rei(A, B x C) which has the formal properties of an exponent but corre­

sponds to shuffling inputs and outputs in first-order logic programs. Function-spaces

lift from Fun to Rei (and to powerset transformers), yielding a different (weak) ex­

ponent that is not the homset of Rei (nor of transformers). But we want an imperative

interpretation of repmin as a higher-order program. If programs denote transformers,

then a data type of programs should be a set of transformers, i.e. a homset of the

category of transformers. Homsets of powerset transformers do carry an exponent

structure but in quite weak form; by contrast with lifted products there is no sim­

ple axiomatization (Naumann 1995b). The evaluation rule for exponents, used in the

repmin derivation, fails to hold in general. That derivation also uses a recursion theo­

rem which is proved using exponents, and for powerset transformers we do not get a

unique solution to the recursion equation (Naumann 1994b). Worse yet, data refine­

ment is not preserved by the weak exponent. So much for powerset transformers.

A better-behaved category of predicate transformers (just transformers hence­

forth) can be obtained by changing the base category from Fun to the ordered cat­

egory MFun of monotonic functions between preordered sets. As is explained in

§2, order-absorbing relations factor into pairs of monotonic functions, and trans­

formers on ordered data types factor into pairs of such relations. Such transformers

act on predicates cp that are monotonic in the sense that x' satisfies cp whenever

x' C: x for x satisfying cp. This is certainly true of predicates used in specifica­

tion, if x' C: x means that x approximates x'. Because predicates on the exponent

are restricted to be compatible with the refinement order- i.e. internalization of the

homset takes its ordering into account- the properties of the weak exponent are im­

proved. There is a complete axiomatization (Naumann 1996) (usually we shall omit

the qualifier 'weak'), and data refinement is sound (Naumann 1995a). Transformers

give an accurate semantics for a conventional higher order imperative language with

specifications as abstract programs and higher types modeled by the weak exponent

(Naumann 1994a).

This paper's first contribution is to show that inductive data types lift to transform­

ers, and to prove the recursion theorem needed for the repmin derivation. Aside from

problem-specific facts, the only other ingredient needed for repmin is a 'banana split'

law that expresses a pair of recursions in terms of a single one (loop fusion). The gen­

eral result weakens somewhat for transformers, but one gets a conditional law that is

adequate for repmin. A companion paper (Naumann 1998) uses the present results to

prove some general lemmas that are then used along with problem-specific results to

derive the repmin program: de Moor's polytypic derivation can indeed be interpreted

in an imperative setting.

Towards squiggly refinement algebra 349

This paper's other contribution deals with the connection between the model and

concrete programs. Because the category of transformers is rich enough to inter­

pret infeasible constructs including pre-post specifications as abstract programs, the

homset is not appropriate as a concrete type. So we give a data refinement from

that abstract exponent to an exponent of healthy transformers, those having a well­

understood connection with operational semantics of conventional languages. This

step can always be taken, which means the issue can be ignored in practice: Programs

can be derived by calculation using the exponent in the category of specifications,

and the final program can be interpreted concretely.

The paper is organized as follows: §2 reviews basic definitions for transformers

and order-absorbing relations called ideals; §3 shows that initial algebras for ideals

are final coalgebras; §4 reviews the weak product and weak exponent for transform­

ers; §5 lifts initial algebras and proves the recursion theorem; §6 briefly sketches the

repmin program; §7 discusses data refinement and defines the concrete exponent; §8

gives the data refinement between exponents; §9 discusses the results.

2 BACKGROUND ON PROSETS, PROCATS, AND IDEAL

RELATIONS

This section defines the three categories MFun, IRel, and Spec along with quite a

number related notions. Complete definitions and proofs appear in Naumann (1996);

many of the ideas are based on Gardiner et al. (1994).

First, some basics. Application of function f to argument x is written f x, and

associates to the left. Composition of relation R : A -+ B with S : B -+ C is

denoted by (R ; S) even in the special case that Rand S are functions. Composition

binds less tightly than application but more tightly than other binary operators like

t,., 18>, -v-+ introduced later. The pairing comma binds very weakly, e.g. (x, y 18> z)
means (x, (y® z)).

Data types (state spaces) are taken to be prosets, i.e. sets A equipped with a pre­

order relation ~A. The intended interpretation of x ~ y is that x approximates y

or y refines x. No further properties of~ are required; the induced order for trans­

formers suffices for semantics of recursion, and data types in specifications need

not be restricted to CPOs. In particular, sets ordered discretely (i.e. by equality)

are allowed; it is only for exponents that nontrivial order is needed. Predicates on

data type A are taken to be updeals, i.e. subsets <p of A that are upward closed:

x E <p 1\ x ~ y => y E <p. (This is called monotonicity in § 1.) The proset of

updeals in A, ordered by ~. is denoted by U A. It is a complete lattice. Note that U A

is the powerset ~A if and only if A is ordered discretely.

The repmin problem involves nonempty trees, for example defined by

Ltree B =Leaf B I Bin(Ltree B, Ltree B)

With B instantiated to be the naturals, the appropriate approximation ordering on

350 Programming Concepts and Methods

trees is equality. The repmin program involves minimum values with respect to nu­

merical magnitude, not approximation - and the same is true if, for example, B is a

type of extensible records, for which the record-extension order induces a nontrivial

approximation order on trees. The repmin problem is parameteric not just in B but

in the constructor Ltree; polytypism is addressed in §3.

A procat is a category C with each homset C(A, B) preordered and composition

monotonic. The procat MFun has prosets as objects and monotonic functions as

arrows, ordered pointwise. The procat Rei has binary relations as arrows, ordered

by ~. An arrow m : A -t B in a procat is a map just if there is an arrow c : B -t A,

called its comap, such that idA ::S (m; c) and (c; m) ::S idB. The maps of Rei

are the total functions, and comaps are reciprocals of functions. We write R 0 for the

reciprocal or relative converse of any relation R.

A transformer is a monotonic function U A-tUB for prosets A, B. To facili­

tate comparison between the algebra of relations and the algebra of transformers, we

define a procat Spec with arrows the other way around. For prosets A, B, define

Spec(A, B) to be the set of transformers U B -t U A, ordered pointwise (written

~).In short, Spec(A, B)= MFun(U B,UA). We write the symbol~ for compo­

sition in Spec, so (f ~ g) in Spec is the composite (g ; f) of functions. A powerset

transformer is just a transformer on discretely ordered data types.

As mentioned in § 1, every powerset transformer can be written in the form (R) ~ [S]
where (R) is the direct-image function for some relation Rand [S) is the inverse­

image function for some S. This factorization extends to transformers on non-discrete

prosets, but the relations involved must be compatible with order in the following

sense. If A, B are prosets, a relation R : A. -t B is an ideal if(~ ; R ; ~) = R.

At the level of points this means a' ::S a 1\ aRb 1\ b ::S b' ::::} a' Rb'. Ideals are

just a mathematical tool for intermediate purposes: If one tries to interpret the ideal

property for relations as a model of nondeterministic state transformers then there is

clear justification for (R; ~) = Rand no justification for (~ ; R) = R. Later we

explain how the ideal property makes sense for pre-post specifications.

Define the category IRei of ideal relations to have prosets for objects and ideals

for arrows, with homsets ordered by~· Composition is the same as in Rei, but the

identity arrow on A is the relation :SA (and we refrain from writing id for that).

Whereas Fun is a subcategory of Rei, MFun is not a subcategory of IRei be­

cause a monotonic function f : A -t B is not an ideal in general. But (f ; ~) is an

ideal, and the maps of IRel are exactly the ideals of this form. For any f in MFun,

the comap Of (f; ~) is the ideal (~ ; r). Every ideal factors as (~ ; r ; g; ~) for

some f, g in MFun. Monotonic functors on IRel preserve maps.

For ideals S : A -t C and R : B -t C we write SIR for the so-called quotient

such that Q ~ SIR =: Q ; R ~ S for all Q. At the level of points, quotients

in IRei are the same as in Rei. We use only one property of quotients, namely

Q ; Rl S = (Q ; R) IS for all maps Q (we let I bind more tightly than ;).

The direct-image function of R in IRei(A, B) is a transformer (R) : U A---+ U B,
i.e. an element of Spec(B, A). The inverse-image [R] is in Spec(A, B). Direct­

images (resp. inverse-images) are universally disjunctive (resp. conjunctive). The

Towards squiggly refinement algebra 351

maps of Spec are the transformers of the form (R], and comaps have the form (R).

Readers familiar with junctivity properties of maps (left ad joints) may find this con­

fusing. It may help to keep in mind that Spec is the arrow-dual of a category of

functions and that, roughly speaking, maps [R] correspond to weakest-precondition

transformers for programs just like maps of Rel correspond to functional programs.

Several other potentially-confusing co~lications are the consequence of objects

being ordered. For proset A, we write A for the order-dual proset: x ~A y ::::::

y ~A x. For R in IRel(A, B), the reciprocal R0 does not have the ideal prop­

erty in general; rather, it is an ideal with respect to the order-dual e_ro~ets. We define

the op-reciprocal R 6 to be R 0 construed as an element of IRel(B, A). (Let e bind

more tightly than function application). Op-reciprocation is involutive and order­

contravariant. It is also arrow-contravariant: (R; 5) 6 = S6 ; Re and (:S 8) 6 =~s.

For R in Rel(A, B) there is function AR : A 4 rB sending a to the image

of a through R. The direct image function (R) : rA 4 rB can be defined by

(R) = A(3;R) where3isthereciprocalofthemembershiprelation(E): A 4 rA.

The structure r, A, and 3 in Rel is characterized by the power adjunction law

f = AR :::::: f ; 3 = R for all relations R and functions f (1)

(of appropriate type) (Bird & de Moor 1996). This implies naturality properties

AR; (S) = A(R; S) and A(!; R) = f; AR . (2)

Updeal lattices can be described by the power adjunction on IRel, which facilitates

calculational proofs about transformers, but there are complications due to order.

We want to axiomatize the membership relation 3 : U A 4 A restricted to up­

deals, but 3 does not have the ideal property with respect to the order <; on U A. It is

an ideal of type U A 4 A (recall that U A is the set of updeals ordered by ;2). If R is

in IRel(A, B) and a E A then ARa is an updeal, and a ~ a' implies ARa :2 ARa'

(these are precisely the properties R; :5 = Rand~; R = R). So we can take AR to

be in MFun(A, U B), and (1) holds for ideals Rand monotonic functions f.
Just as the power adjunction is used to define (R) = A(3; R), it is also used to

define (R) = A(3/ R). Strictly speaking these formulations are type-incorrect; e.g.

A(3/ R) has type UB 4 UA for R of type A 4 B, whereas we shall take [R] to

be UB 4 UA, so that (R) is in Spec(B,A) and [R] is in Spec(A,B). Precise

formulations require that ~ be extended to a functor on MFun, giving for f in

MFun(A, B) the same mapping considered as a function J in MFun(A, B), but

we omit that. We also write[/) for[!;~) and (r) for(~; r). In the case f = id we

are more careful, e.g. writing b) = id and [R; S) = [R] ~ [S] to express functoriality

of[-).

Lemma 1 (a) For any ideal R, (R) is a co map in Spec and [R] is a map. (b) Iff is

in MFun then[!] is a bimap in Spec and[!] = (r).

352 Programming Concepts and Methods

Every transformer in Spec(A, B) factors as (R) ~ [S] for some proset C and

ideals R in IRei(C, A) and Sin IRei(C, B). In terms of specifications, R is a

precondition and Sa postcondition; Cis an index set or specification variable linking

initial and final states. The ideal properties R ; :5 = R and S ; :5 = S say that

the predicates are updeals (monotonic) in their right argument. The ideal properties

:5 ; R = R and :5 ; S = S are hard to justify, except that for specifications one may

always choose C to be ordered by equality, making the properties vacuous.

3 INDUCTIVE DATA TYPES FOR IDEAL RELATIONS

The Cartesian product, disjoint sum, and function-space constructs lift from MFun

to I Rei in much the same way as they do from Fun to Rei (Bird & de Moor 1996,

Naumann 1996). This section shows that inductive data types also lift.

A functor F : C2 -+ C has fixpoints if for each object B there is an object fixE

and arrow inB : F(B, fixE) -+fixE that is initial forB in the following sense. For

each A and R: F(B, A)-+ A there is ~RD :fixE-+ A such that for all S

(.) inB .
F B,f1xB - f1xB

inB; S = F(:5, S) ; R F(:5, S)! is (3)

F(B,A) -R-A

We call crRD a catamorphism. Dependence on F is suppressed in the notation. Note

that fixE is not the fixpoint of B but rather of the functor F (B, -).

As an example, for each B the type Ltree B is the least fixpoint of the functor

F(B,-) with F defined by F(B, A) = B + (A x A). From a function min :

F (N, N) -+ N giving the numerical minimum of one or two naturals we get function

a minD : Ltree N -+ N which gives the numerical minimum of a tree.

If F is a monotonic functor and its restriction to Fun (i.e. the maps of Rei) has

an initial algebra then that algebra is initial in Rei. This can be proved using power

adjunction without reciprocation (Bird & de Moor 1996). The same proof shows that

fix points lift from MFun to IRel, which we state as follows ..

Proposition 2 IfF is a monotonicfunctor1Rel2 -+ IRei, and it hasfixpoints in the

subcategory of maps, then it hasfixpoints in IRel.

It is well known that initial algebras for relations are final coalgebras. The corre­

sponding result for ideals is slightly more complicated. We say a functor F on IRei

commutes with op-reciprocation ifF B = (F B)~ and F Re = (F R)e. Th_: resu_!!

below is that ifF commutes with op-reciprocation then an initial algebra inB forB

Towards squiggly refinement algebra 353

gives ajinal coalgebra (inE) 6 for B. That is, for each A and R : A -t F(B, A)

there is a so-called anamorphism [R] :A -t (fixE)"' with

S = [R] := S; (inE) 6 = R; F(~, S) for all S. (4)

Not~ tha~the final5oalg~bra forB is the o_p-reciproc~l of the init1_al al[ebra inE :
F(B, fixE) -t fixE for B. The type of (inB) 6 is (fixE)~ -t (F(B, fixE))~, but if

F commutes with op-reciprocation then we get the type shown in this diagram:

A
R

F(B,A)

[R]! V(~, [R])

(fixE)~
(inE) 6

F(B, (fixE)~)

The types can be further simplified by using initiality to show (fixE)~ =fixE.

Proposition 3 The following functors on IRel commute with op-reciprocation: +,
x, id, the projections IRee -t IRel, and those constant-valued functors whose

value is an equivalence relation.

Proof For the functor constantly E, we have x ::;FAy= x :=:; 8 y and x :5(FA)e

y = y :5.B x, hence :5.8 needs to be symmetric. The other cases are easy. 0

Theorem 4 Suppose F : IRee -t IRel has fixpoints and commutes with op­

reciprocation. Then for each E the functor F (E, -) has a final coalgebra.

Proof Given any A, E and R : A -t F(E, A), define [R] = crReDe. IfF com­

mutes with op-reciprocation we have R 6 : F(E, A) -t A, whence crR6 D :fixE -t

A and [R] :A-t fixE as explained above. For any S,

S = [R]

s = aneDe definition of[- l
se = crReD e involution

inE; se = F(~, se); ne catamorphism (3) E, s, R := B, se' ne
S; (inE)e = R; (F(~, S 8)) 8 e arrow-contravariant involution

S; (inE) 8 = R; F(~, S) F commutes with 8 , 6 involution

which proves (4). 0

354 Programming Concepts and Methods

4 WEAK PRODUCTS AND WEAK EXPONENTS IN Spec

Results in this section are proved in Gardiner et al. (1994) or Naumann (1996).

An upfunctor F on Spec is a monotonic graph morphism that preserves identities

and satisfies the inequation F(g ~ h) ~ Fg ~ Fh. Let F : IRel -+ IRel be a

monotonic functor. There is a minimum upfunctor F on Spec that agrees with F

on ideals, given by FA = FA and F g = [F R] ; (F S) where R, S factor g as

g = [R]; (S). (Similarly for bifunctors.) Agreeing with ideals means F[R] = [F R].
Moreover, F satisfies

F(m ~ g ~c)= Fm ~ Fg ~Fe if m is a map and c a comap. (5)

The lifted coproduct + is monotonic and is a categorical coproduct, but the lifted

product, which we write as ®, weakens as discussed in § 1.

Define A® B to be the product A x B of prosets. The left projection is [7ro] E

Spec(A ® B, A) where 1r0 is the projection function. For I E Spec(D, A) and

g E Spec(D, B), the 'pairing' (!b. g) E Spec(D, A® B) generalizes the pairing

of functions, but we do not need the explicit definition. As usual, we define I® g =
[7ro] ~ I b. [1rl] ~ g ·

We say I E Spec(A, B) is strict if 10 = 0 and costrict if I B = A. Comaps are

strict.

Proposition 5 For all transformers d, e, I, g, h of suitable types we have

(!b. g)~ [7ro] c I if g is strict (6)

(!1:!.g)~[7ro] :::J I if g is costrict

h ~ [7ro] b. h ~ [1rl] :::J h if h is a co map (and ~ if h is a map)

h~lb.h~g :::J h ~ (!/).g) if h is a comap (7)

h~lb.h~g c h ~ (!/).g) ifh is a map

d~lb.e~g c (db.e)~(f®g) (8)

d~lb.e~g (db.e)~(f®g) if I, g are maps or all are comaps

Moreover; b.,® preserve maps and comaps. Such a structure is is unique up to

natural isomorphism.

Define the proset B ~ C to be Spec(B, C) ordered by ~.This is not (in any

direct sense) a lifting from IRel. 'Application' is an arrow apB c in Spec((B ~

C) ® B , C); operationally, it executes a stored program from a' given initial state.

We do not need the definition of ap, just its properties, and the same for 'Currying'.

For I in Spec(A®B, C), cur I is in Spec(A, B ~c). For h in Spec(C, A), define

B ~ h = cur(ap ~h), so that B ~his in Spec((B ~C), (B ~A)).

Proposition 6 For any I, cur I is a bimap. Also, (B~) : Spec -+ Spec is a

Towards squiggly refinement algebra 355

monotonic functor and for all /, g of suitable types we have

(cur/® id) ~ ap f (9)

cur((!® id) ~ ap) c f iff is a map (10)

cur((!® id) ~ ap) f iff is a bimap (11)

cur(g ~f) g ~ (B ~f)

cur((!® id) ~g) c f ~cur g iff is a map

cur((!® id) ~g) f ~cur g iff is a bimap (12)

Such a structure is unique up to natural isomorphism.

Note that not even (10) holds for all transformers, but the evaluation rule (9) does:

Currying a program and then executing it is the same as just executing it, even for

nondeterministic and possibly-divergent programs.

5 INDUCTIVE DATA TYPES IN Spec

After the lifting of products and coproducts was well understood, the problem of lift­

ing inductive data types to transformers remained open for some time. The solution

found for powerset transformers by de Moor (1992) works here as well: Initial al­

gebras in Spec are obtained from initial algebras in MFun by applying the inverse

image operator [-] and using the final coalgebra property in I Rei. There are minor

differences in the proof due to the absence of reciprocation and the presence of order.

In this section we assume that F : IRee -t IRel is a monotonic functor that has

fixpoints and commutes with op-reciprocation.

Theorem 7 The upfunctor F : Spec2 -t Spec has jixpoints.

Proof. The initial algebra forB is the inverse image [inB] of the initial algebra forB

in IRel. Being an initial algebra, inB is an isomorphism, hence a map in IRel. Thus

by Lemma l(b) we have [inB] = ((inB) 0), which exhibits the initial algebra forB

in Spec as the direct image of the final coalgebra forB in IRel (by Theorem 4).

Let g be in Spec(F{B, A), A). We will derive the definition of catamorphism ([gD
in terms of an anamorphism in IRel. We need to show for any h in Spec(fixE, A)

[inB] ~ h = F(id, h)~ g

F(B,fixB) ~fixE
F(id, h)! lh

F(B,A) ---+A
g

(13)

356 Programming Concepts and Methods

We calculate in IRel, so (13) takes the form

U(F(B, fixE)) (inB] U(fixB)

h = Qg] h; (inBJ = g; F(id, h) F(id, h)r rh
U(F(B, A)) UA

g

Any h factors ash= [3]; (h; 3), and id factors as [::S]; (::5). Thus we have

g; F(id, h)

g; [F(::S, 3)]; (F(::S, (h; 3)))

g; A(31 F(::S, 3)); (F(::S, (h; 3)))

A(g; 31 F(::S, 3); F(::S, (h; 3)))

A ((g ; 3) IF (::S' 3) ; F (::S' (h ; 3)))

We also have

h; (inB]

factorization, definition ofF

definition of [-]

g function, power calculus (2)

g function, quotient property

h; ((inB) 0) inB map in IRel, Lemma l(b)

h; A(3 ; (inB) 9) definitions of (-) and e

A(h; 3; (inB) 9) h function, power calculus (2)

Now (14) is shown by

h; (inBJ = g; F(id, h)

A(h; 3; (inB) 9) = A((g; 3)IF(::S, 3); F(:j, (h; 3))) above

(14)

h; 3; (inB) 9 = (g; 3)1 F(::S, 3); F(:j, (h; 3)) power calc. (I)

h ; 3 = [(g ; 3) IF (::S, 3)] anamorphism (4)

h = A[(g ;3)IF(::S,3)] powercalc. (I)

and we have found the definition [g] = A[(g; 3)1 F(::S, 3)]. 0

Lemma 8 If g is a bimap then so is Qg].

The proof, by tedious manipulations using Lemma l(b), is omitted.

On the face of it, catamorphisms embody only a very simple form of structural

recursion. In combination with exponents, however, catamorphisms give recursion

with an extra parameter. A rather general formulation is needed for repmin.

Towards squiggly refinement algebra 357

Theorem 9 Suppose F : 1Rel2 --+ IRel is a monotonic functor withfixpoints and

G : Spec2 --+ Spec is an upfunctor such that

G(id, id, (!~h)) = G(id, id, f)~ G(id, id, h) for all hand all bimaps f. (15)

Suppose further that there is a family 'ljJ of arrows 'l/JA,B,c : (F(A, B) ®C) --+

G(A, C, B ®C) with the following naturality property:

'ljJ ~ G(id, id, f ® id) = (F(id, f)® id) ~ 'ljJ for all bimaps f.

Then for any A, B, C, and h in Spec(G(B, A), C) there is a unique x solving the

equation ([inB] ® id) ~ x = 'ljJ ~ G(id, id, x) ~h.

The types in the following picture indicate how the result gives a parameterized form

of the catamorphism recursion, and why 'ljJ is needed to rearrange arguments.

~ . [inB] ® id .
F(B, fixE)® A fixE® A

'lj;!
G(B, fixE® A)

G(id, id, x)!

X

G(B,A,C) --h--- C

The hypotheses for F, G and 'ljJ are satisfied for functors lifted from MFun and

IRel (recall (5)} For the repmin derivation the theorep. is used twice, once with

G(B, A, C)= F(A, C) and once with G(B, A, C)= F(B ®A, C). In both cases

'ljJ is defined in terms of a so-called distributor dist F : F B x A --+ F(B x A), which

determines a distributor dist fix : fixE x A --+ fix(B x A) that pairs an element a E A

with each node of a tree of Bs.

Proof We calculate in Spec:

([inB] ® id) ~ x = 'ljJ ~ G(id, id, x) ~ h

cur(([inB] ® id) ~ x) = cur('!f; ~ G(id, id, x) ~h) cur injective, by (9)

[inB] ~cur x = cur('!f; ~ G(id, id, x) ~h) [inB] bimap, (12)

[inB] ~cur x = F(id, cur x) ~ k

curx=1k]

=> x=(1k]®id)~ap

assumption for k below

catamorphism (13)

exponent (9)

358 Programming Concepts and Methods

In the third step, we assume there is some k : F(E, A.,... C) -+ A.,... C such that

cur(tjJ ~ G(id, id, x) ~h) = F(id, cur x) ~ k. So it remains to discharge the assumption

about k and show the reverse implication. We derive k as follows, using that F and

® preserve bimaps (from the theory of lifting).

cur(t/J ~ G(id, id, x) ~h)

cur(t/J ~ G(id, id, (cur x ® id) ~ ap) ~h)

cur(t/J ~ G(id, id, cur x ® id) ~ G(id, id, ap)) ~h)

cur((F(id, cur x) ® id) ~ tjJ ~ G(id, id, ap) ~h)

F(id, cur x) ~ cur(t/J ~ G(id, id, ap) ~h)

exponent(9)

hypoth. (15), cur x bimap

cur x bimap, tjJ natural

exp. (12), cur x bimap

We have derived k = cur(t/J ~ G(id, id, ap) ~h). Because k is cur(...), it is a bimap,

hence so is a k D (Lemma s), which we use to show the reverse of the implication step

in the first calculation.

=>

=>

D

x = ([cur(t/J ~ G(id, id, ap) ~ h)D ® id) ~ ap

cur x = cur(([kD ® id) ~ ap)

curx = [kD

Leibniz, definition of k

exponent (11), [kD bimap

For powerset transformers, the closed form derived above is only a least solution

for x (Naumann 1994b). The difference is that kneed not be a bimap in the powerset

setting, so the proof does not go through as above.

6 APPLICATION TO THE REPMIN PROBLEM

The companion paper (Naumann 1998) develops problem-specific results and gives

the repmin derivation in detail. Here we just sketch and assess the result.

Let us begin with an informal description in terms of functions. From the distrib­

utor dist fix : fixE x A -+ fix(E x A) one obtains rep defined as the composite

(dist fix ; fix 1r1) : fixE x A -+ fix A which replaces every node of a tree with a

given value a E A. The composite (id /::, a minD) ; rep replaces every node of a tree

with the minimum (according to min) of the tree. This definition for repmin involves

two traversals because dist fix is defined from dist F by catamorphism. But there­

cursion theorem can be used to derive a single-traversal program, which applies a

Curried program. In terms of functional combinators, with F instantiated to the base

for type Ltree, the result can be expressed in ML as follows.

Towards squiggly refinement algebra

datatype 'b tree= Leaf of 'b I Bin of ('b tree) * ('b tree);

fun repm (Leaf x) = (x, Leaf)

I repm (Bin(u,v)) = let val (x,f) = repm u

val (y,g) = repm v

359

in (min(x,y), fn w =>Bin (f w, g w))

end;

fun repmin t = let val (m,r) = repm t in r(m) end;

Function repmin works by constructing a pair consisting of the minimum m of the

tree and a closure r which is then applied to m. Although the input is traversed just

once, the closure is built from tree constructors in the same shape as the input.

The ML code is not polytypic, but polytypism has been implemented in func­

tional languages (Jansson & Jeuring 1997). Polytypism aside, what is the imperative

interpretation? Alas, the derived program is not directly expressible in conventional

languages. It is the composite of transformers

Uh b. [minJD ap
Ltree N (N """' Ltree N) ® N -+ Ltree N

(where h b. [min] corresponds to the body ofrepm above); but transformers model

commands, and commands in conventional languages have the same final as initial

state space.* Moreover, it is usually procedures rather than commands that can be

stored or passed as parameters. Roughly speaking, however, the imperative interpre­

tation is the same as the ML code above. The point is not that we derive an imperative

program different from the functional one, but that it can be done in a setting where

imperative constructs can be used in conjunction with"""' and U-D.
As an aside, conventional imperative languages like C, C++, and Modula-3 do not

allow closures to reference local variables like f and g above that are not in outermost

scope, to simplify the runtime stack. In Naumann (1994a) this restriction helps avoid

the much-studied problems of Algol, and constants (single-assignment variables) are

used to express programs like that above. Variables in ML are single-assignment, but

there are reference types for mutable cells.

It would be more striking to derive an essentially imperative repmin. For example,

the following ML program constructs, in a single pass, a tree of references all to the

same cell m. Program repminr initializes that cell, which is then updated to maintain

the invariant that it is the minimum of the leaves that have been visited.

*In his talk at POPL 1998, John Reynolds remarked that it may be time to consider allowing commands
that change the shape of their state space; at the 1996 MFPS workshop the author presented such alan­
guage, with stored commands modeled by the exponent of transformers.

360 Programming Concepts and Methods

datatype 'b tr = Leafr of 'b ref I Binr of ('b tr) * ('b tr);

val m = ref 0; (* arbitrary value *)

fun repmr (Leaf x) = (m := min(x, !m); Leafr m

repmr (Bin(u,v)) = let val t = repmr u

val s = repmr v

in Binr (t,s)

end;

fun repminr t = (m := maxint; repmr t);

It is also possible to deal with trees of references without aliasing. The traversal can

build a list of references to the nodes; that list is then traversed to set each leaf's

cell to the minimum. The list could be stored as a singly linked list and accessed as

a stack, resulting in better performance than the original program with two traver­

sals. But such programs do not come from an interpretation of the exponent as a

procedure type. Perhaps it is possible to treat heap storage and references as some

form of exponent. Alternatively, one could use a data refinement transform the tree­

structured closures into a concrete tree - but the functional program might be an

adequate starting point for that.

Rather than explore either alternative, we turn to the more general question of

whether the homset of transformers is a sensible model for stored procedures in

program derivation.

7 DATA REFINEMENT AND THE CONCRETE EXPONENT

Let us assume there is some sub-procat Prog of Spec such that arrows in Prog

correspond to concrete programs. For example, Prog could be the strict, positively

conjunctive, continuous transformers. We assume Prog is closed under 0. So if

f', g' are in Prog and f r; f', g r; g', then f' 6. g' is a concrete refinement off 6 g.

But for f E Spec(A0B, C) and f' in Prog, the refinement f r; f' does not imply

that cur f' is a concrete refinement of cur f, because cur introduces the rather abstract

type B """'C. In this section we consider the exponent B """'' C = Prog(B, C). We

define the associated constructs ap' and cur' and we show how data refinement can

be used to justify the following rule:

Suppose f is in Prog(A, B) for exponent-free A, B, and f' is f with

all occurrences of ap, cur,"""' replaced by their concrete counterparts (16)

ap', cur',"""''· Then f !; f'.

Section 8 gives the specific data refinement justifying the rule. The rule licenses us

to ignore the distinction between """' and """'' in practice.

First, we need the definitions of ap and cur. For all 1./J E UC, b E B, and g E

B """'C, define (b,g) E ap'I./J =bE g'ljJ. For all a E A and <p E U(B """'C), define

a E cur f<p = cufa E <p, where cufa E Spec(B, C) is defined by b E cufa'ljJ =:
(a, b) E f'ljJ. The definition of ap' in Prog((B """''C) 0 B, C) is the same as for ap

Towards squiggly refinement algebra 361

but with.,.. replaced by -v-+ 1• For any fin Prog, the definition of cur' f is the same

as for cur f but with <p ranging over U (B ...,.., C). For ap' and cur' to have reasonable

properties, cufa should be in Prog for every a, iff E Prog. This is true if Prog

is defined by healthiness. Note that cur'! is not defined for f not in Prog; cur' can

be extended to Spec but with poor properties.

For f in Spec{ A, B) to be data-refined by f' in Spec(A', B') via simulations

means that SA E Spec{ A', A) and sn E Spec(B', B) are comaps such that

!' A'----..B'

SA~ L !sn (17)

A B
f

Any comap A' ~A is (R} for some R E IRel{A, A'), and the ideal property

makes sense if aRa' means that a is simulated by a' and ~ means refinement or

approximation. The conjunction of (17) and the comap requirement has been called

total simulation; note that it does not require the underlying relations to be total or

functional.

Data refinement is normally used as follows: for primitive types A, B and op­

erations f, one explicitly defines SA and sn and proves (17). For constructed f,
there should be a general result to the effect that constructed arrows are data refined

via suitably constructed simulations; such constructs are said to preserve data re­

finement. For example, suppose (17) holds and also g : A ~ C is data-refined to

g' : A' ~ C' by sA, sc. Then f 6. g should be data-refined by f' 6. g' via sA and

SB®C Where SB®C = SB 0 Sc.

The product and exponent in Spec preserve data refinement (Naumann 1995a);

in particular, sn-c is defined as s'B .,.. sc where s'B is the map determined by

co map s B . The usual imperative constructs preserve data refinement (Gardiner &

Morgan 1991). The catamorphism construct preserves data refinement, because it

can be expressed using general recursion which preserves data refinement. The lo­

cal variable construct has been shown to preserve data refinement, but the proofs in

the literature are at the level of predicates. We give a proof here because it demon­

strates program-level calculation in Spec and because it provides a simple proof of

soundness as explained below.

In the context of some 'global' state space(s), the local variable construct aug­

ments the state space with a new variable initialized in terms of the global state

space, and then it executes the command and drops the new variable. Thus it takes

an arrow f : A 0 B ~ A 0 C in Spec and an initialization i : B ~ A and yields

the arrow var(i,J) : B ~ C defined as (i 6. idn) ~ f ~ [7r].

Theorem 10 Local variables preserve data refinement. That is, if we have both

sA®B ~ f !; !' ~ sA®C and sn ~ i !; i' ~sA then var(i, f) is data-refined by

var(i', !')via sn and sc.

362 Programming Concepts and Methods

Proof. The result follows by pasting together the inequalities for the three compo­

nents ofvar(i, !), depicted as follows.*

B'
i' /:::,. id~

A'®B'
!'

A'®C'
1f

C'

SB! c !sA®B c !sA®C c !sc
B A®B A®C c

i!:::. idB f 1f

The middle inequality is by hypothesis, the right one follows from law (6), and

SB~(it::.id)

L SB ~ i!:::. SB

L i' ~SA!:::. SB

C (i'!:::. id) ~ SA,B

which proves the left inequality. D

s comap, law (7)

hypothesis (simulation fori)

law (8), SA®B = SA 0 SB

Data refinement is used to prove ordinary refinement of programs in which the

refined data is encapsulated as local variables, which is usually described as follows.

Corollary 11 (Soundness) lfi' : B-+ A' is data-refined by i : B-+ A via sA and

f' :A'® B-+ A'® C by f: A® B-+ A® C via SA then var(i, f) !; var(i', f').

Proof. Take RA = idA and Rc = ide in the theorem. D

A very similar notion of soundness justifies rule (16). If SA = id and SB = id

then (17) is just f !; f'. So one can prove f !; f' by data-refining constituents of

f to corresponding constituents of f', and then conclude f !; !' provided that the

'observable' types A, Bare simulated by identities and the constructs preserve data

refinement. We refrain from formalizing the result or its proof.

8 FROM Spec-EXPONENT TO Prog-EXPONENT

Typically, a simulation is the identity on observable types because it is built induc­

tively from simulations on primitive types, with identity simulations for observable

types and constructors that preserve identities. But here we need to refine a construc­

tor itself (namely .,...). We shall give non-identity simulations for .,..-types, but take

all simulations on primitives to be identity. Thus if f : A -+ B is simulated by

*Here we assume that sA B = sA 181 sc and sAc = sA 181 sc for some sA, sB, sc. The assumption

is reasonable: if s A,C inv~lves A, C in combination then A will not be localized separately.

Towards squiggly refinement algebra 363

f' : A' -+ B' and A', B' are exponent-free then A = A', B = B', and f [; f'.

That is why rule (16) needs the proviso that type are ""'-free.

Define inc : (B """'C) -+ (B """C) to be the inclusion function. The simulation

will be its inverse image [inc] in Spec((B """'C), (B """C)), which is a bimap by

Lemma 8(b). For any g E B """' C and <p E U(B """C) we have g E [inc]rp = g E <p.

Put differently, [inc]rp = 'P n (B """'C). Informally, if <pis a predicate on programs

then [inc]rp is the predicate 'satisfies <p and is in Prog'.
Formal proof of rule (16) is by induction on the structure off, and simulations

are defined by induction on the structure of types (needed because ""'-types can

be nested). The interesting case is the simulation sA-B which needs to have type

(A' """' B') -+(A """B) using sA : A' -+A and SB : B' -+ B. One defines sA-B

as

A' """' B' ~ A' """B' sA. """SB A""" B

But the second half, i.e. sA_ """SB, is treated in Naumann (1995a) to show that"""

preserves data refinement. To focus on what is new, we treat only the special case

sA = idA and sB = idB so that sA-B is just [inc] (because """preserves identities).

Theorem 12 ap' data-refines ap via [inc]. Andforany fin Prog(A 0 B, C), cur/

is data-refined by cur' f via [inc].

The proof is a straightforward calculation at the level of predicates. The pictures are

as follows (the righthand diagram is actually an equality).

ap'
A0(A 'B)- B

id 0 [incH C !id

A0(A B)- B
ap

9 DISCUSSION

A cur'f B """' C

id! C ![inc]

A--... B"""C
curf

Although some algebraic laws of imperative programming are weaker than those of

functional and relational programming - e.g. for product and exponent -Theorem 9

for recursion on inductive data types is no weaker than for functions, despite applying

to all transformers. Because the exponent includes specifications as well as concrete

programs, it is not a concrete data type, and the exponent of concrete programs does

not have adequate algebraic properties. Thanks to Theorem 12, it is always sound to

derive a program using laws of the abstract exponent and to interpret the result in

terms of the concrete one.

An application to the repmin problem was briefly sketched. It is encouraging that

the laws are adequate for a nontrivial example. But the gap between implemented

364 Programming Concepts and Methods

imperative languages and the notations used in methodological studies remains larger

than for functional languages, perhaps because command typing has been neglected

(not to mention polytypism).

The repmin example does not make a strong case for the algebra of transformers,

because with our interpretation of the exponent the derived program is essentially

the same as its functional counterpart. Much more striking would be derivation of a

first-order program using pointers. Perhaps a relational theory of pointers like that

of Moller (1997) can be lifted. Is there a connection between pointers and exponents

beyond the writing of arrows?

REFERENCES

Bird, R. & de Moor, 0. (1996)Algebra of Programming. Prentice-Hall.

de Moor, 0. (1992) Inductive data types for predicate transformers. Information Pro­

cessing Letters 43(3), 113-118.

de Moor, 0. (1996) An exercise in polytypic programming: repmin. '!ypescript,

www.comlab.ox.ac.uk/oucUpublications/books/algebra/papers/repmin.ps.gz.

Gardiner, P. H., Martin, C. E. & de Moor, 0. (1994) An algebraic construction of

predicate transformers. Science of Computer Programming 22, 21-44.

Gardiner, P. & Morgan, C. (1991) Data refinement of predicate transformers. Theo­

retical Computer Science 87, 143-162.

Jansson, P. & Jeuring, J. (1997) PolyP- a polytypic programming language exten­

sion. In Proceedings, POPL, ACM Press, pp. 470-82.

Martin, C. (1995) Towards a calculus of predicate transformers. In Proceedings,

MFCS, Vol. 969 of Springer LNCS, pp. 489-49.

Moller, B. (1997) Calculating with pointer structures. In IFIP TC2/WG2.1 Working

Conference on Algorithmic Languages and Calculi.

Morgan, C. (1994) Programming from Specifications, second edition. Prentice Hall.

Naumann, D. A. (1994a) Predicate transformer semantics of an Oberon-like lan­

guage. In E.-R. Olderog, ed., Programming Concepts, Methods and Calculi,

IFIP Transactions A-56, Elsevier.

Naumann, D. A. (1994b) A recursion theorem for predicate transformers on induc­

tive data types. Information Processing Letters 50, 329-336.

Naumann, D. A. (1995a) Data refinement, call by value, and higher order programs.

Formal Aspects of Computing 7, 652-662.

Naumann, D. A. (1995b) Predicate transformers arid higher order programs. Theo­

retical Computer Science 150, 111-159.

Naumann, D. A. (1996) A categorical model for higher order imperative program­

ming. Mathematical Structures in Computer Science. To appear.

Naumann, D. A. (1998) Beyond fun: Order and membership in polytypic imperative

programming. In Mathematics of Program Construction.

Towards squiggly refinement algebra 365

10 BIOGRAPHY

Too little of software practice rests on a scientific foundation, as the author learned

through experience as a professional programmer. His goal is to bridge the gap be­

tween methodological studies and the languages and tools used in practice. After

completing his doctoral study at the University of Texas at Austin he joined the fac­

ulty of nearby Southwestern University, where formal methods were being integrated

throughout the undergraduate curriculum. He is writing an undergraduate textbook

on data structures and data refinement based on this experience. He is now Assistant

Professor of Computer Science at Stevens Institute of Technology.

