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For sensor networks deployed to monitor and report real events, event source anonymity is an attractive
and critical security property, which unfortunately is also very difficult and expensive to achieve. This is
not only because adversaries may attack against sensor source privacy through traffic analysis, but also
because sensor networks are very limited in resources. As such, a practical trade-off between security and
performance is desirable. In this article, for the first time we propose the notion of statistically strong source
anonymity, under a challenging attack model where a global attacker is able to monitor the traffic in the
entire network. We propose a scheme called FitProbRate, which realizes statistically strong source anonymity
for sensor networks. We demonstrate the robustness of our scheme under various statistical tests that might
be employed by the attacker to detect real events. Our analysis and simulation results show that our scheme,
besides providing source anonymity, can significantly reduce real event reporting latency compared to two
baseline schemes.

However, the degree of source anonymity in the FitProbRate scheme might decrease as real message rate
increases. We propose a dynamic mean scheme which has better performance under high real message rates.
Simulation results show that the dynamic mean scheme is capable of increasing the attacker’s false positive
rate and decreasing the attacker’s Bayesian detection rate significantly even under high-rate continuous
real messages.
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1. INTRODUCTION

Sensor networks have been envisioned to be very useful for a broad spectrum of
emerging civil and military applications [Akyildiz et al. 2002]. However, sensor
networks are also confronted with many security threats such as node compromise,
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Fig. 1. An application of sensor networks for animal monitoring.

routing disruption, and false data injection, because they normally operate in an
unattended, harsh, or hostile environment.

Among all these threats, privacy (especially source anonymity) is of special interest
to us since it cannot be fully addressed by traditional security mechanisms such as
encryption and authentication. Consider a simple example of event reporting in sensor
networks (as shown in Figure 1). When a sensor detects an event, it sends messages
including event-related information to the base station. As shown in Kamat et al.
[2005], if an attacker (the hunter close to the base station here) can intercept the
messages continuously for a certain period of time, he may trace back to the event
source in a hop-by-hop fashion. After that, he gets to know the appearance of an
endangered animal. Following this, the attacker can take some action to capture or
even kill the animal.

To preserve source anonymity is a challenging task in sensor networks that have
scarce resources in energy, computation, and communication. Hence, only lightweight,
energy-efficient privacy-conserving mechanisms are affordable. Moreover, sensors typ-
ically have low-cost radio devices that employ standardized wireless communication
technologies, which allow an attacker to easily monitor or eavesdrop in communica-
tions between sensors. Consequently, it is also possible for a single attacker to monitor
all the network traffic either by deploying his own sensors that cover the whole deploy-
ment area or by employing a powerful site surveillance device with hearing range no
less than the network radius.

Despite its importance, so far, sensor source anonymity has not received enough
attention, and the existing solutions have limitations when directly applied to sensor
networks. For example, in phantom routing [Kamat et al. 2005], the attacker has
limited coverage, comparable to that of sensors. Therefore, only a single source is
under the attacker’s consideration at a time and the attacker tries to trace back to the
source in a hop-by-hop fashion. When the attacker becomes more powerful, for example,
has a hearing range more than three times of the sensors, the capture likelihood is as
high as 97%. In addition, a large number of anonymity techniques [Free Haven 2005]
designed for general networks are not appropriate to be used for sensor networks. This
is not only because the privacy problem is different but also because these techniques
are too expensive to be employed.

In this article, we aim to provide source anonymity for sensor networks under a
global observer who may monitor and analyze the traffic over the whole network.
Clearly, if all the traffic in the network is real event messages, it is unlikely to achieve
source anonymity under such a strong attack model. Therefore, we employ networkwide
dummy messages to achieve global privacy. The basic idea is as follows. Every node
in the network sends out dummy messages with intervals following a certain kind of
distribution, for example, constant or probabilistic. When a node detects a real event,
it transmits the real event messages with intervals following the same distribution. As
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such, neither can an attacker discern the occurrence of a real event nor can he find out
the location of the real event source.

To reduce the extra overhead caused by dummy messages, the message transmission
rate should be relatively low. In this case, however, the real event report latency could
be high, because a source node needs to postpone the transmission of a real event
message to the next interval. Therefore, the questions we try to answer are:

(1) How do we achieve global source anonymity without causing high real event noti-
fication latency?

(2) Is it possible to provide perfect global privacy without losing performance benefit?

More specifically, we make the following contributions in this article. First, we
demonstrate that it is difficult to achieve perfect global privacy without sacrificing
performance benefit. Hence, we have to relax the perfect source anonymity require-
ment and for the first time propose a notion of statistically strong source anonymity
for sensor networks. Second, we devise a realization scheme, called Fitted Probabilis-
tic Rate (FitProbRate) scheme, in which the event notification delay is significantly
reduced while keeping statistically strong source anonymity, through selecting and
controlling the probabilistic distribution of message transmission intervals. Third, the
source anonymity of the FitProbRate scheme degrades as real message rate increases.
We propose a dynamic mean scheme which has better performance under high real
message rates.

The rest of the article is organized as follows. We first formalize the problem in
Section 2. After that, Section 3 presents the FitProbRate scheme. Its performance is
evaluated in Section 4 and its security property is analyzed in Section 5. Then, in
Section 6, we introduce the dynamic mean scheme. Finally, we describe the related
work in Section 7 and conclude this article in Section 8.

2. PROBLEM FORMALIZATION

2.1. Network Model

As in other sensor networks [Zhang et al. 2005], our system also assumes that a sensor
network is divided into cells (or grids) where each pair of nodes in neighboring cells
can communicate directly with each other. A cell is the minimum unit for detecting
events; for example, a cell head coordinates all the actions inside a cell. Each cell has
a unique id and every sensor node knows in which cell it is located through its GPS
or an attack-resilient localization scheme [Liu et al. 2005]. Moreover, we assume a
Base Station (BS) located in the network and works as the network controller to collect
event data. Every event has an event id; for example, we may assign a unique id to
each type of animal. When a cell detects an event, it will send a triplet (cell id, event
id, timestamp), which provides the BS with the source location of the event as well as
the time it is detected.

2.2. Adversary Model

According to the classification in Back et al. [2001], we assume that the adversary is
external, global, and passive. By external, we assume that the adversary does not com-
promise or control any sensors. By global, we assume that the adversary can monitor,
eavesdrop, and analyze all the communications in the network. The adversary may
launch active attacks by channel jamming or other denial-of-service attacks. However,
since these attacks are not related to source anonymity, we do not address them here.

Next, we discuss how an adversary may analyze the collected traffic. First, the at-
tacker may simply examine the content of an event message that may contain the source
location id. Second, even if the message is encrypted, it is easy for the global adversary
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to trace back to the source of the message if the encrypted message remains the same
(i.e., not modified or reencrypted) during its forwarding, because given the global view
of all the network traffic the adversary is capable of identifying the immediate source
of a message and further reconstructing the forwarding path. Third, the attacker may
perform rate monitoring and time correlation. In a rate monitoring attack, the adver-
sary pays more attention to the nodes with different (especially higher) transmission
rates. In a time correlation attack, he may observe the correlation in transmission time
between a node and its neighbor, attempting to deduce a forwarding path.

Moreover, the attacker may perform more advanced traffic analysis to find out real
source(s). For example, the attacker might grasp statistical tools, such as goodness of
fit test, to infer whether time intervals from all sensors follow the same distribution or
not. In the long run, the attacker can accumulate enough data and derive the mean of
time intervals from every sensor. The attacker might compare whether data flows from
certain sensors do not have the same mean. After having the information of means, the
attacker can further compare every time interval with the corresponding mean, trying
to distinguish relatively small and large intervals and identify patterns from data of
time intervals. We assume that the attacker has sufficient resources (e.g., in storage,
computation, and communication) to perform the aforesaid attacks.

Note that here we assume the attacker does not go to the suspicious spots for in-
vestigation. Because of resource constraints the attacker will choose to go only when
his detection rate is high and his false positive rate is low. However, as shown in the
simulation of Section 5.4, we can see that the high detection rate of the attacker is at
the cost of high false positive rate and low Bayesian detection rate. If the attacker still
chooses to physically travel to the identified places under this condition, then he will
gain little after a very large quantity of investigations. The detected event might have
even completed after such a long delay caused by investigating false alarms.

2.3. Problem Definition

According to Pfitzmann and Hansen [2000], a mechanism to achieve anonymity appro-
priately combined with dummy traffic yields unobservability, which is the state that
Items Of Interest (IOIs) are indistinguishable from any IOI of the same type. All the
subjects under consideration constitute an unobservability set. In our case, the unob-
servability set consists of all the N cells in the network. Specifically, we are interested
in event unobservability, which is defined as follows.

Definition 2.1. Event unobservability is a privacy property that can be satisfied if
an attacker cannot determine whether real events have occurred through observation.

Straightforward solutions exist to provide event unobservability by means of dummy
traffic. For example, in a ConstRate scheme, all the cells in the network send out
messages at a constant rate no matter there are real events or not (messages are
always encrypted by a secret key shared between a node and the BS [Zhu et al. 2003]).
Since the traffic in the network always keeps the same pattern, it effectively defeats
any traffic analysis techniques. Clearly, the average transmission latency in a source
cell is half of the interval. Although this deterministic solution provides the property of
perfect event unobservability, it has an inherent difficulty in setting the constant rate.
If the rate is too small, the message delay will be too high; if the rate is too large, this
approach will introduce too much dummy traffic into the network.

This motivated us to design probabilistic solutions which provide the chance of
reducing the waiting time. For example, we may adopt an exponential distribution
to determine the time intervals between message transmissions, which is referred
to as the ProbRate scheme here. Under our attack model, a global attacker can
easily know the distribution and its mean by a statistic test over the collected time
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intervals. However, when we keep the seed for generating random numbers secret
from an attacker, the attacker may not be able to notice if a message transmission
is due to a real event or a dummy message even if a cell sends out a real event
message immediately. Intuitively, a cell cannot always send real event messages
immediately in the presence of burst events; otherwise, an attacker may notice the
change of the underlying distribution. Therefore, it is difficult to guarantee perfect
event unobservability while providing low latency.

Hence, the question becomes: how to reduce the latency as much as possible while still
providing a satisfactory degree of event unobservability? In order to achieve low latency,
we need to relax the perfect event unobservability requirement and accept statistically
strong event unobservability.

Let the inter-message delay (imd) between message k(k > 0) and k + 1 from cell
i(1 ≤ i ≤ N) be imdi

k = ti
k+1 − ti

k, where ti
k is the transmission time of message k from

cell i. A global observer can see a sequence of continuous inter-message delays, which
can be represented by a distribution Xi = {imdi

1, imdi
2, . . .}. Ideally, in a scheme with

perfect privacy, inter-message delays from all the cells follow the same distribution. In
our case with statistically strong guarantee, distributions of inter-message delays are
actually statistically indistinguishable from each other. Next, we first introduce the
definition of statistically indistinguishable distributions.

Definition 2.2. Two probabilistic distributions Xi and Xj(1 ≤ i, j ≤ N, i �= j) are
statistically indistinguishable from each other iff they follow the same type of prob-
abilistic distribution with the same parameter (i.e., they have the same distribution
function) statistically. They are indistinguishable from each other in the sense that by
a statistic test one cannot differentiate them.

Take the exponential distribution as an example. This distribution has only one
parameter λ(=1/μ). Hence, if two probabilistic distributions are both exponential dis-
tributions with very close means, they are statistically indistinguishable from each
other. Note that if a distribution is controlled by multiple parameters (e.g., two in
a normal distribution), two datasets are statistically indistinguishable only when all
these parameters of the probabilistic distribution derived from the two datasets are
the same or very close. Clearly, the more parameters a distribution has, the harder it
is to prove its statistical indistinguishability. As such, in the following we will limit our
discussion on a one-parameter distribution.

For the one-parameter distribution, the property of statistically strong event unob-
servability is related to two security parameters α and ε, where α controls the goodness
of fit to a specific probabilistic distribution and ε controls the closeness of the parameter
derived from the observations to that of the population. These two security parame-
ters are used together so that message transmission time intervals from all the cells
in the network, including the real sources if any, follow the “same” distribution with
the “same” parameters. Here “same” means that an attacker cannot tell the difference
through a statistical hypothesis test. More formally, we call this statistically strong
event unobservability as (α, ε)-unobservability, because two parameters α and ε tightly
relate to this privacy property.

Definition 2.3. (α, ε)-unobservability (α, ε > 0) is a type of statistically strong event
unobservability, in which a distribution Xi (with parameter λi) is statistically indistin-
guishable from a probabilistic distribution X (e.g., exponential with parameter λ) under
the following conditions:

(1) n
∫ +∞
−∞ [F(Xi) − F(X)]2�[F(X)]dF(X) ≤ c,

(2) (1 − ε)λ ≤ λi ≤ (1 + ε)λ,
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where n is the sample size, F is a Cumulative Distribution Function (CDF), � is a
weight function, and c is a critical value determined by α.

In this definition, although α is not explicitly shown in Conditions 1 and 2, the right-
hand side of Condition 1 (i.e., c) is determined by α. Here c is a critical value and α is its
corresponding significance level for a statistical hypothesis test. In a statistical hypoth-
esis test, there is normally a constructed table which lists critical values corresponding
to different significance level α.

The left side of Condition 1 calculates the distance between two CDFs. Details of eval-
uating the distance between two distributions could be found in Anderson and Darling
[1952] and Marsaglia and Marsaglia [2004]. If the distance between two distributions
is smaller than a critical value determined by significance level α and their parameters
are close to each other in a way determined by ε in Condition 2, these two distributions
satisfy (α, ε)-unobservability. The preceding distance evaluation of CDFs was used in
Anderson-Darling test [Anderson and Darling 1954] for goodness of fit tests; therefore,
to achieve (α, ε)-unobservability our schemes will directly use Anderson-Darling tests.
The previous definition is rather general, which leaves a large room for defining α and
ε according to different applications or extending it to the multiple-parameter case.

3. THE FITPROBRATE SCHEME

In this section, we discuss the building blocks of our scheme, including the policy for
dummy traffic generation and the policy for embedding real event messages. Finally, a
running example is used to illustrate the entire process of our scheme.

3.1. Policy for Dummy Traffic Generation

The transmission rate of dummy messages determines the network transmission over-
head. As discussed in Section 2.3, high rate causes high message overhead, whereas
low rate increases the delay of reporting real events. In addition, the ProbRate scheme
where message transmission rate follows a probabilistic distribution provides an oppor-
tunity for reducing latency, compared with the ConstRate scheme where message trans-
mission rate is fixed. Hence, we prefer probabilistic message transmission intervals.

Now we need to decide what probabilistic distribution to use. There are many proba-
bility distributions, for example, exponential, uniform, weibull, normal. The advantage
of an exponential distribution is that it has only one parameter (λ = 1/μ, where μ is
the mean), which makes it relatively easy to achieve (α, ε)-unobservability. Therefore,
to maximize the communication randomness and to simplify the problem, we choose
the exponential distribution to control the rate of dummy traffic generation.

Specifically, Algorithm 1 implements our idea of probabilistic dummy traffic gener-
ation. Suppose there are a series of k dummy messages, our goal is to make the time
intervals between two consecutive messages (imdi, i = 1, 2, . . . , k − 1) follow an expo-
nential distribution. Given a mean μ and a global variable seed, the algorithm returns
the time interval to transmit the next dummy message. The mean μ of the exponential
distribution is a system parameter and we assume it is known to the adversary because
he can calculate it from observed message intervals. However, the seed for generating
random numbers is kept secret from the adversary, and the seed is hard to guess and
different for each cell. In this way, the attacker cannot predict the next time interval
for each cell.

3.2. Policy for Embedding Real Traffic

When a real event happens, by exactly following the ProbRate scheme, that is, de-
termining the waiting time based on Algorithm 1, in the long run, we cannot gain
anything over the ConstRate scheme if the message transmission rates in these two
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ALGORITHM 1: Probabilistic Traffic Generation
Input: mean μ;
Output: a time interval following the exponential distribution with mean μ;
Procedure PTG:

1: seed(seed); {Assign seed as the seed for random number generation, a unique seed is
preloaded in each sensor.}
2: return exponential(μ); {Given the mean μ, return a random value following an exponential

distribution for message time intervals.}

schemes have the same mean. On the other hand, if the real event message is sent out
right away, the distribution of time intervals could be skewed (i.e., the mean becomes
smaller), leaving the real event evident. So our goal is to keep the message transmission
intervals following the same distribution while reducing the real event report latency.

More formally, when a real event Ek happens after the dummy events Ei(1 ≤ i ≤ k−1),
the corresponding message should be sent out only when the next time interval (imdk)
and the earlier ones (imdi, i = 1, 2, . . . , k − 1) satisfy the following two conditions:

—The whole series {imd1, imd2, . . . , imdk−1, imdk} still follow the same exponential
distribution;

—imdk is as small as possible.

From the attacker’s perspective, in order to detect real event messages, he may perform
a statistic test to determine if the message transmission intervals always follow the
same exponential distribution of the same mean μ, after monitoring the network traffic
and collecting sufficient message transmission intervals. More specifically, the statistic
test can be broken into two parts: test if the distribution is exponential and test if
the mean is μ. To defend against the attacker’s strategies, we adopt the following
techniques.

(1) A statistic test called Anderson-Darling test is adopted to keep the message inter-
vals of each cell following an exponential distribution, controlled by parameter α.

(2) A method is used to ensure the measured sample means of the distribution do not
deviate too far from the true mean μ, controlled by parameter ε.

Next, we introduce these two techniques separately.

3.2.1. Anderson-Darling Test. Anderson-Darling test [Stephens 1974] (A-D test in short)
is a goodness fit test to determine if a series of data follow a certain probabilistic
distribution. The basic idea is to evaluate the distance between the distribution of the
sample data and a specified probabilistic distribution. If the distance is statistically
significant, the data do not follow this distribution. More formally, the test is defined
as follows.

—H0: The data follow a specified distribution.
—Ha: The data do not follow a specified distribution.
—Test statistic: A2 = −n − S, where

S =
N∑

i=1

2i − 1
n

[log F(Xi) + log(1 − F(Xn+1−i))].

Here F is the CDF of interest, n is the sample size, and Xi denotes the ith datum.
—Significance level: α (typically equals to 0.05).
—Critical region: The critical values for the A-D test depend on the specific dis-

tribution being tested. Tabulated values and formulas have been published by
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ALGORITHM 2: Goodness of Fit Test
Input: a sequence of data {xi, 1 ≤ i ≤ n};
Output: TRUE, if {xi, 1 ≤ i ≤ n} follows an exponential distribution; FALSE, otherwise.
Procedure Anderson-Darling:

1: sort xi into an ascending order: x1 ≤ x2 ≤ · · · ≤ xn;
2: calculate the test statistic: A2;
3: if (A2 < c) {
4: then return TRUE;
5: else return FALSE;
6: end if

Stephens Stephens [1974]. If the test statistic A2 is greater than the corresponding
critical value c, the hypothesis that the distribution is of a specific form will be
rejected.

Algorithm 2 shows some details of this A-D test for an exponential distribution. The
input is a series of xi, that is, the time interval between two consecutive messages sent
out from a cell, and the output is a decision if the series follow an exponential distri-
bution. This algorithm mainly involves a sorting and a statistic calculating operation.
The time complexity for sorting is O(n log n) (e.g., by quicksort) and time complexity for
calculating the test statistic is O(n), where n is the window size (the size of the input).
Therefore, the complexity of this algorithm is O(n log n).

In our problem setting, we want to use the A-D test to find an appropriate
inter-message delay (imd) for transmitting the real event message, such that
Algorithm 2 will return TRUE when given the whole series of time intervals
{imd1, imd2, . . . , imdk−1, imd}. Because the A-D test is a statistical test, the solution to
pass the test is not unique. Therefore, the A-D test is repeated until the test is passed.
Because a small but random delay is preferred, the search process for imd starts from
0, and increases in a small random pace whenever it fails the A-D test.

Algorithm 3 shows the details of the search algorithm. It has a series of time intervals
as input and returns the first imd that can pass the A-D test. The selection of the
granularity (INCREASEPIECE) affects the running time. We set INCREASEPIECE
to be a random number between 0 and the first quartile of the input dataset, as shown
in the algorithm (line 2). Based on our experiments, this can achieve a relatively small

ALGORITHM 3: Search for a Proper Delay to Send a Real Event Message
Input: a sequence of inter-message time intervals {imdi(1 ≤ i ≤ n)};
Output: a proper delay imd to send a real event message;
Procedure search delay:

1: μ = mean(imd1, imd2, . . . , imdn);
2: INCREASEPIECE = rand(0, first quartile);
3: imd = -INCREASEPIECE;
4: repeat
5: if imd > upper bound then
6: INCREASEPIECE = rand(0, first quartile);
7: imd = -INCREASEPIECE;
8: end if
9: imd+ = INCREASEPIECE; {A-D test begins from 0}
10: ret=Anderson-Darling({imd2, imd3, . . . , imdn, imd});
11: until ret == TRUE;
12: return imd;
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delay within a relatively short time. From line 4 to line 11, the test repeats until it finds
a value which can pass the A-D test or a value which cannot be accepted because the
delay becomes larger than a specified upper bound (line 5), for example, the maximum
value of imd1, imd2, . . . , imdn. In the latter case, another INCREASEPIECE will be
selected (line 6) and the searching process starts over from the value of 0. The whole
algorithm terminates when a proper delay is found. Because many values can pass the
A-D test with the same input, an appropriate value can be found quickly. This has been
verified by experiments. With sample sizes of 20, 40, 80, 160, 320, 640, 1280, 2560,
5120, and 10240, Algorithm 3 always terminates within 2∼10 rounds.

3.2.2. Sample Mean Recovery. If there are multiple continuous real events happening,
Algorithm 3 will be called repeatedly. In this case, the sample mean will gradually
decrease as smaller delays are favored in Algorithm 3. According to the Central Limit
theorem, the sample means follow a normal distribution. From the perspective of an
attacker, every time he observes a new time interval, he will need to make a “yes” or
“no” decision on whether a real event has occurred. If “yes”, he will take an action (e.g.,
to check the suspicious cell by himself); otherwise, he will do nothing. However, when
he makes a “yes” decision, it is possible that it is a wrong decision. Thus, as a balance
between false positive rate and false negative rate, an attacker needs to determine a
threshold. Once the difference between the sample mean and the true mean is beyond
this threshold, he will consider the occurrence of a real event and take an action.

Thus, we need to deliberately recover the sample mean so that it will never deviate
from the true mean beyond this threshold. Specifically, in our scheme we will set this
threshold as εμ, because in Definition 3 the condition (1 − ε)λ ≤ λi ≤ (1 + ε)λ is
equivalent to (1− ε)μ ≤ μi ≤ (1+ ε)μ for the exponential distribution with λ = 1/μ. We
will search for an appropriate new time interval for the next message (real or dummy
event) such that the sample mean of the entire time series including the new one is
within εμ from the true mean. Algorithm 4 serves this purpose. It calculates the value
needed to recover the mean (line 3) and a random number is selected between this
value and a value following exponential distribution with mean μ (line 4) until this
random number can pass A-D test (lines 5–8).

From the preceding discussions, the significance level α defined in the A-D test is
used to control the acceptable distance between the observed distribution of message
transmission time intervals and the exponential distribution. ε reflects an acceptable
difference between the sample mean and the true mean, which will not cause suspicion
from the attacker. With these two parameters, our FitProbRate scheme can achieve
the statistically strong source anonymity defined by (α, ε)-unobservability.

ALGORITHM 4: Recovery of Mean
Input: mean μ, a sequence of data {xi, 1 ≤ i ≤ n};
Output: a proper delay to send out the next message;
Procedure recovery:

1: sum = sum(x2, x3, . . . , xn);
2: dx = μ-sum/(n − 1);
3: y1 = (μ + dx) ∗ n-sum;
4: y2 = PTG(μ); {defined in Algorithm 1}
5: repeat
6: x = rand(y1, y2);
7: ret = Anderson-Darling({x2, x3, . . . , xn, x});
8: until ret == TRUE
9: return x;
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Fig. 2. A running example to illustrate the entire process.
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Fig. 3. Comparing average delay in the FitProbRate scheme (α = 0.05, ε = 0.1) with the ConstRate scheme.

3.3. A Running Example

To illustrate the whole process, a running example is shown in Figure 2. According to
Algorithm 1, three dummy messages are supposed to be sent out at time A, B, and E,
respectively. At time C, a real event happens, so Algorithm 3 is called and this real
event is sent out at time D. After this, according to Algorithm 4, the dummy message
at time E is canceled and rescheduled at time F. From the attacker’s point of view,
he can only see the intervals between A and B, B and D, D and F, which follow an
exponential distribution and the mean is stable. Thus, the attacker cannot tell if any
real event has happened.

All algorithms can be easily implemented in sensor networks because they only
involve simple operations. For example, TinyOS supports all functions used in our
algorithms such as log and exp. These algorithms can be further optimized. For exam-
ple, in Algorithm 2, the calculation of S involves a summation of n values. Whenever
Algorithm 3 calls the A-D test (Algorithm 2), n − 1 values in the time series are the
same as that in the previous call. Thus, only one additional log and one additional exp
operations are needed.

4. PERFORMANCE EVALUATIONS

In this section, we compare the performance of the FitProbRate scheme, the ConstRate
scheme, and the ProbRate scheme.

4.1. Comparison between FitProbRate and ConstRate

In the simulation, the mean of dummy message intervals is 20s. Real events arrive
according to a Poisson arrival process with the mean changing from 1/20 to 1/100.
Figure 3 shows the delay to send a real event in both schemes. As can be seen, the
average latency in the FitProbRate scheme is less than 1s, whereas the average latency
in the ConstRate scheme is 10.87s, which indicates that FitProbRate can significantly
reduce the transmission delay of the real event messages.
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Fig. 4. Performance comparison between the FitProbRate scheme (α = 0.05, ε = 0.1) and the ProbRate
scheme under different real traffic patterns. In (a)–(c), 1, 3, or 5 real event messages are generated in a
burst. In (d)–(f) the solid lines are the time points when real events are ready and the dotted lines are the
time points when real event messages are actually forwarded. (g)–(i) show the numerical values of real event
transmission latency under three different real traffic patterns.

4.2. Comparison between FitProbRate and ProbRate

In this simulation, dummy messages are generated at the average rate of 1/40s and
the simulation runs for a total of 3600-s simulation time. For easy illustration, we only
show part of the simulation result in Figure 4. In the ProbRate scheme, real event
messages and dummy messages are treated equally; that is, their transmission time
intervals are determined by the output of Algorithm 1. To make a more comprehensive
comparison, we examine three traffic patterns at different levels of burstiness for real
event message generation, as shown in three different columns of Figure 4.

In Figure 4(a), each real event message arrives at the time point according to an
exponential distribution; in Figure 4(b) and (c), three and five real event messages
are generated in a burst, at the same time points as in Figure 4(a). Figures 4(d)
through (f) visualize the time slots at which real event messages are ready as shown
by the solid lines. The dotted lines are the time points when real event messages are
actually forwarded. From these figures, we can observe that real event messages are
forwarded more frequently in our scheme than the ProbRate scheme. As a result, the
transmission latencies of real event messages in our scheme will be much smaller than
that in ProbRate.

Figures 4(g) through (i) quantify these observations. As shown in the figure, the
FitProbRate scheme can significantly reduce the real event message forwarding latency
compared with the ProbRate scheme. If the real events happen in burst, the latency
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will be higher. As traffic pattern 3 is more bursty than traffic pattern 1, the average
delay in Figure 4(i) is also much higher than that of Figure 4(g). This is because the
average waiting time must increase to recover from mean skewness when more real
messages need to be sent out within a certain time.

5. SECURITY ANALYSIS

We first prove that the FitProbRate scheme has the property of (α, ε)-unobservability.
Then, we show the performance of our scheme under various powerful statistical tests.

5.1. Security Property

We have the following theorem on the security property of the FitProbRate scheme.

THEOREM 5.1. The FitProbRate scheme has the property of (α, ε)-unobservability.

PROOF. To prove that the FitProbRate scheme has the property of (α, ε)-
unobservability, we need to prove that the statistically strong event unobservability
has been achieved under the control of parameters α and ε.

Under the control of parameter α, by Algorithm 3 the distribution Xi of message
transmission intervals from any cell i(1 ≤ i ≤ N) can pass the A-D test. This
means that the difference between the empirical Cumulative Distribution Function
(CDF) from the ordered sample data and the cumulative distribution function of the
corresponding exponential distribution X is smaller than the critical value c decided
by the predetermined significance level α, according to the nature of A-D test. Namely,
the following formula holds: n

∫ +∞
−∞ [F(Xi) − F(X)]2�[F(X)]dF(X) ≤ c, where n is the

sample size, F is the CDF, and � is the weight function of the goodness of fit test.
Moreover, under the control of parameter ε, once the sample mean μi from any cell i

deviates from the population mean μ of the exponential distribution in a noticeable way,
that is, |μi − μ| ≥ ε, Algorithm 4 will be automatically triggered to recover the mean.
Hence, the sample mean from any cell in the network cannot be differentiated from the
population mean under the control of ε. That is, at any time (1 − ε)μ ≤ μi ≤ (1 + ε)μ.

In summary, probabilistic distributions of message transmission intervals from
real sources are statistically indistinguishable from those of other cells that send out
dummy messages. By Definition 2.3, we say the FitProbRate scheme has the property
of (α, ε)-unobservability.

Assuming the employment of our scheme, we consider what the attacker can do to
detect real events. Clearly, we cannot limit an attacker from using any statistical tool,
so what we show shortly are based on our guessing of the general while powerful tech-
niques that might be used by the attacker. We believe other statistic testing methods
will render the similar results.

We assume that the attacker has enough resources (e.g., in storage and computation)
to collect and analyze message time intervals from all the cells in the network. Then,
the attacker will try to identify sources with different distributions of message time
intervals. To do this, the attacker can first conduct some goodness of fit tests to check
whether the probabilistic distributions of message time intervals from every cell follow
the exponential distribution. If the distribution from any cell cannot pass the goodness
of fit test, the corresponding cell will be marked as a potential real source. Two widely
used distribution test tools are adopted here: Anderson-Darling (A-D) test [Anderson
and Darling 1952] and Kolmogorov-Simirnov (K-S) test [Romeu 2003]. For those dis-
tributions that can pass the goodness of fit test, the attacker then further performs
the mean test. Those cells whose sample means deviate from the true mean beyond
a certain degree will be marked as potential real sources, too. The SPRT (Sequential
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Probability Ratio Test) [Wald 1947] is a good choice for the mean test, because SPRT
could minimize the number of samples required to make a decision after continuous
observations.

Next, we demonstrate the robustness of our FitProbRate scheme in defending against
these testing techniques by the attacker, including its robustness to the distribution
tests as well as its robustness to the mean test. We also check the performance of the
FitProbRate scheme under a so-called “01” test.

5.2. Robustness to Distribution Tests

To detect abnormal probabilistic distributions of message time intervals, the attacker
can check whether a probabilistic distribution Xi is exponential. For the attacker, the
hypotheses in the test are as fellows.

—H0-the distribution is exponential: F(Xi) = F(X).
—H1-the distribution is not exponential: F(Xi) �= F(X).

When the attacker makes a decision, there are some risks for him to get wrong decisions.
The decision is called a detection, if H1 is accepted when it is actually true. If in this
case H0 is accepted, then it is called false negative. On the other hand, if H0 is in fact
true, accepting H1 is a false positive. For the attacker, the false positive rate is denoted
as α′ and the false negative rate is denoted as β ′. Note that in our scheme the false
positive rate is actually equal to the significance level α defined in the A-D test and we
denote our false negative rate as β. To differentiate from ours, the attacker’s rates are
denoted as α′ and β ′ correspondingly.

One may argue that if the attacker selects a significance level α′ different from
that in our algorithm (α), then the attacker may detect the perturbed probabilistic
distributions from the real sources. However, there is a trade-off between false positive
rate α′ and false negative rate β ′ in the attacker’s distribution test. To explain this, let
us consider two extreme cases. If the rejection region has critical values −∞ and +∞,
then the attacker always accepts H0. In this case, α′ = 0 and β ′ = 1. On the contrary,
if the rejection region has the critical values 0 and 0, then the attacker always rejects
H0. In this case, α′ = 1 and β ′ = 0. Hence, it is impossible for the attacker to make both
α′ and β ′ arbitrarily small for a fixed sample size n. If the attacker chooses a very small
α′ in the test, then he is at the risk of having a high β ′, which means he has a high
chance of failing to detect real events. Likewise, if the attacker chooses a smaller β ′,
then the attacker will examine more fake sources, wasting more of his resources and
time (for traveling to the fake sources).

Next we use simulations to verify the previous statement. To test false positive, we
generate 10,000 groups of pure exponential distributed data. Then we perform K-S
and A-D tests on them separately under different significance levels (ranging from
0.01 to 0.1). Finally, based on the test results, we get the false positive rate as shown
in Figure 5. To test false negative, instead of using pure exponential distributed data,
we add real event disturbance into the data and perform the same test.

In Figure 5, the x-axis is the significance level used by the attacker and the y-axis
represents the false rate (either false positive or false negative). We can observe that
the false negative rate β ′ of the attacker’s test (A-D test or K-S test) is high, which
indicates that it is hard for the attacker to detect the disturbed message transmission
intervals of real events. Second, if the attacker tries to decrease the false negative rate
β ′ by selecting a higher significance level in his distribution test, then the false positive
rate α′ will increase. As such, no matter which statistical distribution test the attacker
uses, there is a trade-off between false negative rate and false positive rate for the
attacker.
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Fig. 5. A trade-off between α′ and β ′ for the attacker (α = 0.05).

We also check the impact of the significance level in our scheme to the detection
rate of the attacker. If the significance level α in the A-D test of our scheme is larger,
for example, it is increased from 0.05 to 0.10, then the distributions of message time
intervals from real sources in our scheme exhibit less abnormality, that is, F(Xi) is
closer to F(X). Hence, it is harder for the attacker to detect the real events and thus
the false negative rate of the attacker is slightly higher (the figure is not shown here
because it has only slight difference with Figure 5).

5.3. Robustness to Mean Test

After the distribution test, the attacker may conduct a mean test to detect the disturbed
means. As message interval data come in continuously, SPRT [Wald 1947] is a natural
choice for such a test. In the SPRT test, after the attacker chooses a threshold ε′ (in
contrast to the corresponding recovery threshold ε defined in our scheme), the attacker
can do the following to detect real event messages.

—Test two alternatives H0 : μi ≥ μ, H1 : μi ≤ μ1, if we denote μ1 = (1 − ε′)μ, where
μi is the sample mean from cell i and μ is the population mean of the exponential
distribution. Because in our scheme sample mean tends to be smaller than population
mean according to Algorithm 3, with μi ≥ μ the attacker can safely decide that no
real event has occurred.

—Choose among three possible decisions: (i) accepting H0 means that there are no
real event messages; (ii) accepting H1 means that there are real event messages; or
(iii) continue the test due to insufficient observations.

Following Wald [1947], the aforesaid composite hypotheses could be converted to simple
hypotheses H0 : μi = μ and H1 : μi = μ1. Accepting H0 may cause false negative (β ′)
and accepting H1 may cause false positive (α′).

In more detail, the SPRT mean test for the attacker works as follows. Each time a
new message time interval imdi

k(k ≥ 1) from cell i is observed, the following statistics
will be calculated:

sk = log
f (imdi

1, μ1) · · · f (imdi
k, μ1)

f (imdi
1, μ) · · · f (imdi

k, μ)
,

where f is the probability density function of the exponential distribution. Two bound-
aries A and B are decided according to the predetermined false positive rate α′ and
false negative rate β ′: A = log 1−β ′

α′ and B = log β ′
1−α′ . If sk ≤ B, the test is terminated

and H0 : μi = μ is accepted. If sk ≥ A, the test is terminated and H1 : μi = μ1 is
accepted. If B < sk < A, more observations are needed to make a decision.

Simulation results of the SPRT test for the attacker are presented in Table I and
Table II. In both tables, we set the significance level α = 0.05 and the recovery threshold
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Table I. Number of Observations to Draw a Decision in SPRT when
α′ Changes (β ′ = 0.05)

α′ 0.01 0.05 0.10 0.20 Test result
# of obs. 2198 2192 2058 2054 accept H0

(ε′ = 0.05) (false negative)
# of obs. 612 612 611 591 accept H0

(ε′ = 0.10) (false negative)

Table II. Number of Observations to Draw a Decision in SPRT when
β ′ Changes (α′ = 0.05)

β ′ 0.01 0.05 0.10 0.20 Test result
# of obs. 3156 2192 1799 1316 accept H0

(ε′ = 0.05) (false negative)
# of obs. 921 612 472 361 accept H0

(ε′ = 0.10) (false negative)

ε = 0.05 for our scheme; all the generated message transmission intervals in the
simulation have passed the exponential distribution test, and about one half of them
are actually disturbed ones due to randomly generated real events. In Table I, we fix
the attacker’s false negative rate β ′, and check the impact of α′ and ε′ to the number
of observations needed for the attacker to make a decision. In Table II, we check the
impact of β ′ and ε′ under the condition that α′ is fixed. From these two tables, we can
see that the test results always accept H0 (theoretically H1 could also be accepted,
subject to the traffic pattern)), which means there is a high chance for the attacker to
fail in real event detection.

In addition, there is long delay for the attacker to make a decision. For example,
when α′ = 0.05, β ′ = 0.20, and ε′ = 0.05, after the first message more than 1,000
observations are needed for the attacker to draw a decision. Even if the attacker’s
conclusion is correct in the end, this may already render the detection worthless.

We further notice from the tables that the number of observations for the attacker
to make a decision decreases with the attacker’s false positive/negative rate. When the
number of observations to make a decision decreases, both the false negative rate β ′
and false positive rate α′ of the attacker become higher. That is, if the attacker wants
to make a faster decision, the attacker will have to be willing to accept higher false
positive and false negative. Also, the number of observations for the attacker to make
a decision decreases with the attacker’s recovery threshold ε′. If the recovery threshold
is higher (e.g., increased from 0.05 to 0.10), the sample data exhibit less abnormality
according to the attacker’s criteria. Therefore, the attacker draws a quicker conclusion
to say that there are no real event messages (although it is still a wrong decision).

In conclusion, the attacker cannot effectively detect the occurrences of real events
even after he employs the SPRT-based mean test. We notice that SPRT test is not the
only choice for the attacker to detect changed sample mean, but we believe that due
to the statistical nature of the problem the attacker cannot obtain perfect accurate
results.

5.4. Performance under “01” Test

In practice, it is unrealistic to assume that the global attacker has infinite resources
to launch attacks. Therefore, we suppose that the attacker maintains a sliding window
of most recent w(w > 0) time intervals for each source in the network, in which w is
determined by the storage and computation capability of the attacker. Each time when
a new time interval from a source is observed, the attacker updates the corresponding
sliding window by accepting the new time interval and removing the oldest one from
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Fig. 6. Sample means fit in a normal distribution with mean of 9.97 and standard deviation of 0.26.

the same source. Based on this, the attacker could continuously calculate a sequence of
sample means for each source. Each sample mean is the average of all the time intervals
in the sliding window. Because for anonymity purposes the parameter μ of the traffic
generator for every source is the same, according to the Central Limit theorem, sample
means from all the sources follow a normal distribution with μ as the mean.

We use simulated data (Figure 6) to illustrate this. In the simulation, μ for traffic
generator in our system is 10. The attacker’s sliding window size is 1,000. From the
fitted figure, we can see that sample means follow a normal distribution with mean
9.97 (which is very close to μ) and a small standard deviation 0.26.

That is to say, under the control of parameters α and ε, all the sample means are
close to each other and also to the parameter of the traffic generator, which is μ. Hence,
the population mean from each source (which is the mean of sample means) is close to
μ, too. Furthermore, the attacker might observe that some time intervals are smaller
than population mean and others are larger than population mean. For simplicity,
the attacker could denote the former intervals as “0”s and the latter ones as “1”s. For
instance, if a series of time intervals from one sensor is [0.5, 9.6, 10.7, 15.2, 3.9, 19.4]
and the mean is 10, then they could be represented as a string “001101”. Under this
condition, the attacker could identify certain patterns from the data of time intervals
and try to distinguish the real source(s) thereafter.

In the FitProbRate scheme, a real message with a time interval smaller than the
mean will be represented as “0”, which is followed by a recovery time interval that is
normally larger than the mean as “1”. Then, the attacker is able to identify some “01”
patterns and infer that “0”s in these “01” patterns are likely to be real messages. Note
the difference between our “01” pattern and the regular string “01”. Our “01” pattern
means two time intervals: the first time interval is smaller than the mean and the
second time interval is larger than the mean. The regular string “01” represents two
characters: a character “0” followed by a character “1”. We call the attacker’s test to
identify our “01” patterns (instead of regular string “01”) the third type of test from the
attacker, which is “01” test.

Case of single message. Here a detection is defined as “a 01 pattern has been identi-
fied”. Then, detection rate is formulated as follows.

Definition 5.2. Suppose the number of detected “01” patterns caused by real mes-
sages is denoted as t and the total number of “01” patterns caused by real messages
in the traffic is denoted as t′(t ≤ t′), then the detection rate of attacker’s “01” test is
defined as:

detection rate = t/t′.
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Fig. 7. The attacker’s detection rate and false positive rate (in percentage) as a function of real message
rate for the FitProbRate scheme under “01” test.
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Fig. 8. Receiver Operating Characteristic(ROC) curve for the FitProbRate scheme under “01” test.

Obviously, detection rate is between 0 and 1. Under the “01” test, in normal cases, the
attacker has high detection rate, because “01” patterns are easy to detect if sample
mean is close to μ.

We use simulations to validate this. In our simulations, there are totally 100 cells in
the network and 5 of them are real sources. The goodness of fit test in our simulation
is K-S test with significance level of 5%. Window size w = 1,000. μ = 10. Every
point in the figures is averaged over 100 data. As shown in Figure 7 and Figure 8,
the attacker’s detection rate is as high as 100%. Note that Figure 8 is the Receiver
Operating Characteristic (ROC) curve of the attacker, which reflects the relationship
between attacker’s detection rate and false positive rate.

However, according to base-rate fallacy, with “01” test although an attacker can
theoretically capture even 100% real event messages, its false positive rate could also
be high, subject to the real event rate. Here false positive rate is formulated as the
following.

Definition 5.3. Suppose the total number of detected “01” patterns by the attacker
is v, the total number of cells is N, and the number of messages from each cell is m,
then the false positive rate of attacker’s “01” test is defined as

f alse positive rate = v − t
m× N − t′ .

As shown in the figure, the attacker’s false positive rate is as high as 20%.
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Fig. 9. The attacker’s detection rate and false positive rate (in percentage) as a function of real message
rate for the FitProbRate scheme under λ = 5 if attacker tries to detect “01” patterns.

To better understand the effectiveness of the attacker’s detection, we check the
Bayesian detection rate [Axelsson 1999] of the attacker, which is defined as the prob-
ability for an alarm to really indicate a real message. In more detail, we have the
following definition.

Definition 5.4. Suppose the total number of detected “01” patterns by the attacker
is v and the number of detected “01” patterns caused by real messages is t, then the
Bayesian detection rate of attacker’s “01” test is defined as

Bayesian detection rate = t/v.

From Figure 7, we can see that the attacker’s detection is very ineffective because
the high detection rate is actually at the cost of high volume of false alarms. When the
real message rate is 0.1, the attacker’s Bayesian detection rate is only 2.13%, which
means the 450 true alarms actually indicate 209,000 false alarms for the attacker.

Case of multiple continuous messages. When a source detects the real event, nor-
mally it will send multiple real messages, lasting a duration. According to Kerckhoffs’s
principle, we assume that the number of real messages that are sent together λ is
known to the attacker. For example, λ could equal to 3 or 5. If the real event lasts for
a longer time, then λ could be larger. If λ = 3, the attacker tries to find the match of
“000” pattern, because there are three continuous real messages. Similarly, if λ = 5,
the attacker tries to find “00000”. We notice that if the attacker does not know the
value of this important parameter λ the attacker’s detection rate will decrease and the
attacker’s false positive rate will increase significantly in the following simulations.

As shown in Figure 9 and Figure 10, when the number of continuous real messages
sent out together is λ = 5, the attacker’s detection rate is still as high as 100%. However,
the attacker’s false positive rate decreases from 20% to around 10% and the false
positive rate slightly decreases with real message rate. Also, the attacker’s Bayesian
detection rate increases a lot. When the real message rate is 0.1, this rate increases to
above 20%. Apparently, in the FitProbRate scheme, the attacker has better performance
if the real message rate is higher or there are multiple continuous real messages sent
out together. We need design a scheme that does not have such a limitation.

6. A DYNAMIC MEAN SCHEME

We observe that the attacker has good performance because the sample mean is stable
and the attacker’s population mean can reflect our system parameter μ accurately.
Hence, we construct a dynamic mean scheme by introducing perturbation on the pa-
rameter of probabilistic distribution, which is the mean. In this scheme, μ is not a
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Fig. 10. Receiver Operating Characteristic(ROC) curve for the FitProbRate scheme under λ = 5 if attacker
tries to detect “01” patterns.

fixed parameter. Instead, we have a disturbance granularity gr. After each granularity
number of message intervals, μ will change to a new value following a uniform distri-
bution in the range of [a, b](0 < a < b) (Algorithm 5: Probabilistic Traffic Generation
by Introducing Uniform Distribution). In this case, the attacker may still calculate his
own population mean between a and b, but this population mean is not accurate in the
sense that it cannot reflect the dynamic nature of the parameter.

ALGORITHM 5: Probabilistic Traffic Generation by Introducing Uniform Distribution
Input: system parameter a and b for uniform distribution, disturbance granularity gr;
Output: time intervals that follow exponential distribution;
Procedure:

1: i = 0;
2: loop
3: if i% gr == 0 then
4: mu = unifrnd(a, b);
5: end if
6: i = i + 1;
7: return exprnd(mu);
8: end loop

For example, after a long time observation, the attacker estimates a population mean
of 12. However, the dynamic mean of traffic generator has a parameter of μ = 5 for
the next real message. Then, the first real message may be sent out with an interval
of 2, the second real interval is 7, and the third one is 10. Thus, overall the observed
pattern by the attacker will be “000” instead of “011”. In this way, the baseline of mean
becomes obscure, so that the attacker’s detection becomes inaccurate.

Furthermore, we can postpone the recovery of real messages from the next message
interval to a random number of message intervals �t later. �t could follow another
uniform distribution in the range of [0, c](c > 0). To make sure that the recovery will
happen soon, c will not be a very large value.

In the dynamic mean scheme, message time intervals do not follow a specific dis-
tribution any more, so that the attacker cannot grasp certain statistic tools, such as
goodness of fit test, to detect the disturbance. This actually provides us more flexibility
to control and cover real messages’ time intervals. In this case, “01” test is still a pos-
sible attack. We use simulations to check the performance of this scheme under “01”
test and compare it with that of the FitProbRate scheme.
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Fig. 11. The attacker’s (Bayesian) detection rate and false positive rate (in percentage) as a function of real
message rate for the dynamic mean scheme under λ = 5.
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Fig. 12. The attacker’s Receiver Operating Characteristic (ROC) curve for the dynamic mean scheme under
λ = 5.

In the simulation, system parameters a = 5, b = 20, and c = 5. The real mes-
sage duration is λ = 5. The disturbance granularity is gr = 10. From Figure 11 and
Figure 12, we can see that the false positive rate of the attacker in the dynamic mean
scheme increases and the attacker’s Bayesian detection rate decreases, compared with
that of the FitProbRate scheme under λ = 5 (Figure 9 and Figure 10). For example,
when real message rate is 0.1, the attacker’s false positive rate increases from 7.58% to
12.9% by 70.18% and the attacker’s Bayesian detection rate decreases from 23.33% to
15.18% by 34.93%, at the cost of more complexity and higher computational resource
consumption in our system.

Degree of anonymity. If the attacker can observe more numbers of pattern “00000”
from a cell when λ = 5, then this cell is more likely to be a real source. For a certain
probability, a fake source may happen to have pattern “00000” from its message time
intervals; however, real sources have this specific pattern with a higher possibility.
Suppose ci is the count of pattern “00000” for cell i. Then, we can model the probability
pi for a cell being a real source as

pi = ci∑N
i=1 ci

, (1)

in which N is the total number of cells in the network.
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Fig. 13. Comparison of degree of anonymity for different schemes.

According to Dı́az et al. [2002], the entropy of a network could be expressed as

H(X) = −
N∑

i=1

pi log2(pi). (2)

The maximum entropy of the network is

HM = log2(N). (3)

Then, the degree of anonymity of the network is defined as

d = H(X)
HM

. (4)

We use simulations to calculate and compare the degree of anonymity for different
schemes. As shown in Figure 13, our system’s degree of anonymity decreases with real
message rate. Degree of anonymity is higher when the number of continuous messages
λ = 3 than that when λ = 5. Moreover, our dynamic mean scheme has a higher degree
of anonymity compared with the FitProbRate scheme. For example, when the real
message rate is 0.1 and λ = 5, our dynamic mean scheme has a degree of anonymity of
0.9948, whereas the FitProbRate scheme has a degree of anonymity of 0.9786.

7. RELATED WORK

Since Chaum’s seminal work in 1981 [Chaum 1981], so far hundreds of papers
[Free Haven 2005] have been concentrated on building, analyzing, and attacking
anonymous communication systems. Due to space limits, we can only discuss those
most relevant ones in sensor networks.

In Deng et al. [2004], techniques for hiding the base station (message destination)
from an external global adversary are studied. In their schemes, every sensor node is
a mix and transmits at a constant rate. Different from their work, we are interested in
source location privacy. In Ozturk et al. [2004] and Kamat et al. [2005], a random-walk-
based phantom flooding scheme is proposed to defend against an external adversary
who attempts to trace back to the data source in a sensor network where sensor nodes
report sensing data to a fixed base station. A more recent work [Xi et al. 2006] proposes
a new random walk algorithm. In Hoh and Gruteser [2005], a path confusion algorithm
is proposed to increase source location anonymity. Note that these schemes only work
for a local adversary model. In our scheme, we consider a powerful attacker who has
the global view of all the network traffic.

In Yang et al. [2008], to provide source event unobservability, schemes like ConstRate
or ProbRate are used by the sensors. The focus of this work is to reduce the overall
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network traffic by proactively dropping the dummy messages on their way to the BS.
Clearly, this work is complementary to ours and they can be seamlessly integrated
to provide both low latency and low communication overhead. In Mehta et al. [2007],
also under the global attacker model, two schemes are proposed. The first one is the
ConstRate scheme; the second one is a k-anonymity like source-simulation scheme
where (k − 1) fake sources simulate the mobility pattern a mobile real source.

Li et al. [2009] give a state-of-the-art survey in privacy preservation techniques for
wireless sensor networks. Kamat et al. [2007] introduce buffering delay to provide
temporal privacy, which is suitable for delay-tolerant applications of wireless sensor
networks. Ouyang et al. [2008] propose four schemes: naive, global, greedy, and prob-
abilistic, to deal with laptop-class attacks. Shao et al. [2009] propose a cross-layer
solution in which the event information is first propagated several hops through a
MAC-layer beacon. Then, it is propagated at the routing layer to the destination to
avoid further beacon delays. To improve source location privacy, Li and Ren [2010] pro-
pose dynamic routing schemes, in which messages are first transmitted to randomly
selected intermediate nodes to confuse the attacker. Later on, in Pongaliur and Xiao
[2011], randomly selected intermediate nodes transform the packets to obfuscate the
transmission link from destination to source.

8. CONCLUSION

In this article, after analyzing the source anonymity problem under the global attacker
model, we identify the fundamental trade-off between performance and privacy. For
the first time, we propose the notation of statistically strong source anonymity for sen-
sor networks. We also devise a realization scheme called FitProbRate, which achieves
statistically strong source anonymity under such a specific circumstance. Performance
evaluations demonstrate that by this scheme, the event report latency is largely re-
duced and source location privacy could be preserved even if the attacker conducts
various statistical tests. We also propose a dynamic mean scheme which has good per-
formance even under continuous real messages with high rates. In our future work, we
will investigate various real-world attack models.
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