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Abstract

We initiate a holographic model building approach to ‘strange metallic’ phe-

nomenology. Our model couples a neutral Lifshitz-invariant quantum critical the-

ory, dual to a bulk gravitational background, to a finite density of gapped probe

charge carriers, dually described by D-branes. In the physical regime of tempera-

ture much lower than the charge density and gap, we exhibit anomalous scalings

of the temperature and frequency dependent conductivity. Choosing the dynamical

critical exponent z appropriately we can match the non-Fermi liquid scalings, such

as linear resistivity, observed in strange metal regimes. As part of our investigation

we outline three distinct string theory realizations of Lifshitz geometries: from F

theory, from polarised branes, and from a gravitating charged Fermi gas. We also

identify general features of renormalisation group flow in Lifshitz theories, such as

the appearance of relevant charge-charge interactions when z ≥ 2. We outline a

program to extend this model building approach to other anomalous observables of

interest such as the Hall conductivity.
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1 Introduction

Some of the most interesting challenges in condensed matter physics involve strongly

interacting systems of fermions and other components. The difficulty is to understand

‘non-Fermi liquid’ (NFL) behavior, which is widely believed to require physics going

beyond weakly interacting fermions. Of particular interest are the thermodynamic and

transport properties of the ‘strange metal’ phases of heavy fermion compounds [1] and

high temperature superconductors [2, 3]. A prime example of this is DC resistivity linear

in temperature over several decades of temperature T , with T much less than the chemical

potential µ of the system, e.g. [4]. Other aspects of strange metal phenomenology include

possible nontrivial power-law tails in the AC conductivity (σ(ω) ∼ ω−ν with ν 6= 1 over

a range of scales according to [5]) and anomalous behavior of the Hall conductivity, e.g.

[6].

Even at the theoretical level, few (if any) calculations reproduce the observed behavior

in a controlled quantum field theory. In this work, we present some basic results in this

direction, exhibiting non-Fermi-liquid behaviors such as linear resistivity in a controllable

– though unrealistic – class of field theories with a holographic dual description. Another,

complementary, class of holographic systems with strange metallic behaviors appears in

[7]. We will comment on some similarities and differences between the two classes below.1

The holographic correspondence [8] provides powerful techniques for analyzing a class

of strongly coupled quantum field theories. It is natural to explore these theories at finite

charge density. At the very least this allows us to understand certain strongly corre-

lated many-body systems much better at a theoretical level, and this investigation may

ultimately lead to mechanisms for real world phenomena.2 Therefore, although current

holographic technology applies only to extreme limits of special quantum field theories,

it is worthwhile to study the physics of strongly interacting fermions and to investigate

mechanisms for strange metal behaviors in this context where reliable calculations can be

made. What we learn this way may also back react on our understanding of holography

1In particular, we will address the backreaction of the bulk fermi sea in [7] on the black hole solution

used in the analysis, and find a significant effect.
2For introductions to the holographic approach to finite density systems see [9, 10, 11, 12].
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and string theory.

The theories we will study involve a sector of (in general massive) charge carriers, in a

state of nonzero charge density J t, interacting amongst themselves and with a larger set of

neutral quantum critical degrees of freedom. The logical structure is illustrated in figure 1.

The quantum critical sector has Lifshitz scale invariance with dynamical critical exponent

Quantum critical
z

Charge carriers
Egap

self-

interactiondissipation

, Jt

Figure 1: Our model will describe probe charge carriers interacting with a quantum critical

Lifshitz bath. Parameters include the dynamical scaling exponent z, the energy gap Egap

and density J t of the carriers. Ultimately the charge-charge interactions are mediated by

the Lifshitz sector.

z. We begin with a brief summary of the scaling properties and renormalization-group

(RG) structure of such quantum field theories in §2. In a dilute limit, J t ≪ T 2/z, this

structure leads to a simple formula for their resistivity in any dimension, ρ ∝ T 2/z/J t,

which is linear in temperature for z = 2. This however is not the regime of physical

interest – we will later recover the same formula dynamically in the opposite, physical,

limit J t ≫ T 2/z. The scaling symmetry also implies that for z greater than or equal

to the spatial dimensality, a marginal or relevant interaction
∫

dtdd~xJ tJ t arises among

charge carriers. We then turn to a holographic analysis of such systems. We use probe

‘flavor branes’ to model the sector of charge carriers, along the lines of the earlier work

[13, 14, 15], but now applied to a bulk theory with Lifshitz scaling [16] (see also [17]).

(In our final section, for (UV-)completeness we provide three methods for constructing

Lifshitz fixed points from the top down, obtaining z = 2 in the simplest examples.)
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After analyzing the holographic manifestation of the renormalization-group structure, we

compute the specific heat and the DC, Hall, and AC conductivities of our system and

comment on their similarities and differences with respect to the corresponding results for

strange metals.

This opens up some new directions, which we outline at various points in the present

paper. For example, we can analyze the basic scales in holographic superconductors in this

context, exploring the relationship between Tc, the dynamical critical exponent z which

determines the strange metallic behaviors, and other parameters. New model-building

possibilities suggest themselves as generalizations of our basic setup. In particular, having

determined the results for the basic transport coefficients in our Lifshitz field theories

coupled to charged flavors, we will find it useful to consider generalizations with running

couplings arising from radially rolling scalars on the gravity side of the holographic duality.

This suggests mechanisms for mixing and matching non-Fermi-liquid behaviors such as

ρ ∼ T ν1 and σ(ω) ∼ ω−ν2 , (1.1)

for different nontrivial exponents ν1 and ν2 (though in our simplest setup, ν1 = ν2). More-

over, there are many possibilities for multiple flavor sectors subject to gauge and global

symmetries which organize them into composites that might mock up various scenarios

for fractionalization of the electron. We leave for future work the detailed construction of

theories based on these mechanisms.

A key limitation of current holographic theories vis à vis the real world is that our

theoretical control arises in the unrealistic limit of a large-rank gauge symmetry, for

example U(Nc) Yang-Mills theory at large Nc. In the present case, we use an expansion

in Nf/Nc, where Nf is the number of charged flavors, in order to control the calculations.

One would ultimately hope for control of more realistic theories with mutually interacting

sectors without such large disparities.

2 Dimensional analysis, z and renormalization

We wish to study the thermodynamic and transport properties of charge carriers inter-

acting with a strongly coupled and scale invariant quantum field theory. The quantum

4



critical theory will be neutral under the charge. We will work in a limit in which the neu-

tral quantum critical theory has many more degrees of freedom than the charged ‘flavor’

sector. This can be measured for instance using the free energy. So long as we stay within

a range of density and scales where this ‘probe flavor’ description is valid, then the charge-

carrying flavors have a negligible effect on the state of the neutral sector. We will discuss

regimes of validity below, as well as give a critical assessment of the phenomenological

relevance of this limit.

Spatially isotropic scale invariance is characterized by the dynamical critical exponent

z [18]. The theory is invariant under space and time rescaling of the form

t → λzt , ~x → λ~x . (2.1)

This scale invariance is often called a Lifshitz invariance. Invariance under this scal-

ing forces physically meaningful observables to appear in specific ratios in order to be

dimensionless. This is usefully implemented by assigning time and space the following

dimensions of momentum

[t] = −z , [~x] = −1 . (2.2)

We can now work out the scaling dimension of various quantities of interest, which we

collect here for future reference. Throughout we work with ~ = kB = e = 1. The charge

and current densities have

[J t] = d , [ ~J ] = d+ z − 1 , (2.3)

where d is the number of space dimensions. The former follows from the definition of J t as

a density while the latter follows from charge conservation J̇ t+∇· ~J = 0. The dimensions

of external scalar (Φ) and vector ( ~A) potentials are fixed by the fact that these appear

gauging derivatives. The dimensions of electric and magnetic fields then follow as

[Φ] = z , [ ~A] = 1 , [ ~E] = z + 1 , [ ~B] = 2 . (2.4)

The temperature and free energy both have dimensions of energy. This leads to the

following dimensions for the specific heat and the magnetic susceptibility

[T ] = z , [F ] = z , [cV ] = d , [χ] = z − 4 . (2.5)
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Finally, the dimensions of conductivity follow from Ohm’s law to be

[σ] = d− 2 . (2.6)

In particular, the conductivity is dimensionless in d = 2 spatial dimensions.

This simple dimensional analysis leads to the following statement. Consider a system

with an energy gap Egap to exciting charge carriers which is large compared to the tem-

perature. If the conductivity in a Lifshitz system is linear in the density J t of charge

carriers, then by the scaling given above we can conclude that the resistivity ρ = 1/σ

scales like

ρ ∝ T 2/z

J t
. (2.7)

This result is independent of the spatial dimension d. Here we are using the fact that

increasing the energy gap should not lead to larger conductivity in order to exclude sig-

nificant Egap-dependent contributions to (2.7). (Contributions to the conductivity which

decrease with Egap are negligible in the limit of large Egap/T .)

When the chemical potential µ ≪ T , linearity of the conductivity in the density is

immediate: this regime corresponds to very low density, where the conductivity is linear

in J t because it is simply the sum of the individual contributions of non-interacting charge

carriers.

However, we will also find, using the approach of [13], that in an extreme limit of

holographic systems with probe flavor branes the result (2.7) persists for µ ≫ T , which is

the regime of interest for strange metal phenomenology. Here the self interactions of the

charge carriers are non-negligible. The linearity of the conductivity as a function of charge

density in these more general cases may arise because in the probe limit µJ t ≪ FQCT,

where FQCT is the free energy of the quantum critical theory (QCT) into which the

momentum of the charge carriers is dissipated. Roughly speaking, the interactions among

the charge carriers may be a subdominant effect on the (DC) resistivity, even though these

interactions are important enough to preclude a quasiparticle interpretation of the charge

carriers. We will make this statement a little more precisely below, suggesting that it is

related to the fact that without the neutral QCT ‘medium’ to carry away momentum, the
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DC conductivity would be infinite. The mobility σ/J t as a function of doping has been

studied experimentally in e.g. [19], exhibiting weak dependence that may be consistent

with (2.7).3 Note that in contrast to single-scale models such as that discussed in [20],

where J t is taken to scale with temperature as T d/z, in our system J t is an independent

scale.

In fact, independently of the holographic correspondence, we can see from the RG

structure of our theory that interactions among charge carriers will necessarily be impor-

tant in the case z ≥ d. The dimension of J t being d, the operator J tJ t becomes marginal

at z = d, and relevant for z > d. For d = 2 – the dimensionality of interest for many

unconventional real materials such as high-Tc superconductors – this transition happens

at z = 2, the value of z for which the resistivity is linear. In general, for z ≥ d, this

operator is important at low energies in our theory, leading to additional interactions

among charge carriers. As a relevant operator for z > d, its coefficient is naturally at the

UV cutoff scale of the system.4

3 Probe D-branes in IR scaling geometries

We are primarily interested in the low temperature and low energy behaviour of the

theory. Low temperatures and energies will be defined with respect to some energy scale:

T,E ≪ ΛUV. In particular, we will restrict attention to theories for which the neutral

sector we defined above becomes quantum critical at these low energies. Here ΛUV should

presumably be of order the lattice scale (i.e. electron volts), although this may be larger

than the melting temperature of the solid, allowing scaling laws to persist up to the

melting point, as in e.g. [4]. Quantum criticality means that there are no intrinsic scales

in the low energy (IR) theory, the only scales will be external: temperature T , electric and

magnetic fields E,B and the density of charge carriers J t. Later we will add an energy

gap scale Egap for the charge carriers. In the systems we study, we will see that for J t 6= 0,

our window of control in which the charge carriers do not back react on the geometry

3We thank S. Kivelson for pointing this paper out to us.
4One could formally introduce counterterms to cancel this divergence, but this would constitute a fine

tuning in our system. We discuss this fact in some detail in section 4 below.
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does not extend all the way into the infrared (as long as all parameters are finite), but

still covers a wide range of scales in our probe approximation.

For concreteness, and with a view to ultimately connecting to interesting experimental

systems, we focus on 2+1 dimensional field theories, with 3+1 dimensional bulk duals.

The dual IR geometry therefore takes the following form at zero temperature [16]

ds2IR = L2

(

−dt2

v2z
+

dv2

v2
+

dx2 + dy2

v2

)

. (3.1)

This metric realises the scaling symmetry (2.1) as an isometry, together with v → λv.

The radial coordinate therefore has dimensions of length and extends from the (singular)

‘horizon’ v = ∞ to the ‘boundary’ v = 0. We will require the above metric to give the

correct physics for a window of radial positions v satisfying

vbr ≫ v ≫ ǫ ≡ 1

Λ
1/z
UV

. (3.2)

where vbr is an infrared ‘backreaction’ radial scale at which our probe approximation

breaks down; we will quantify this shortly. We will implement the UV cutoff approx-

imately by taking the metric (3.1) to be valid up to v = ǫ and imposing boundary

conditions there.

The full background will generally have nonzero matter fields supporting the metric

(3.1), such as those described in [16]. Furthermore, when embedded into a consistent

quantum gravity theory, such as string theory, there may be additional spatial dimensions

to those shown. We will outline three classes of examples of string-theoretic constructions

of infrared Lifshitz geometries later in the paper.

When placed at a finite temperature the metric can be written as

ds2IR = L2

(

−f(v)dt2

v2z
+

dv2

f(v)v2
+

dx2 + dy2

v2

)

. (3.3)

The precise form of f(v) will depend on the theory and various solutions of this form

have been constructed [21, 22, 23, 24]. All we will require is the presence of a horizon,

f(v+) = 0, which defines the temperature

T =
|f ′(v+)|
4πvz−1

+

∝ 1

vz+
. (3.4)
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In the second relation there is an order one number which we do not know explicitly

unless f(v) is given. Our normalisation is such that at the boundary f(0) = 1. In order

to maintain control over our calculations, we may consider cases in which the infrared

back reaction scale vbr is cloaked by a black hole horizon: vbr > v+.

We now turn to the dynamics of a probe D-brane in the background (3.3). The

background describes a quantum critical theory; we are interested in the physics of a

small number of charge carriers interacting with this theory. By a ‘small number’ here

we mean that the carriers do not backreact on the quantum critical system. As we will

emphasize, this does not imply that the charge carriers are weakly interacting amongst

themselves; in general they will have significant interactions mediated by the quantum

critical sector. A probe Dq brane is described by the Dirac-Born-Infeld (DBI) action

Sq = −Tq

∫

dτdqσ e−φ
√

|⋆g + 2πα′F | . (3.5)

The nonlinearity of this action in the field strength F encodes the interactions between

carriers. In general the Dq brane can also have Chern-Simons like couplings to bulk field

strengths. We will ignore these for the moment. In (3.5) ⋆g is the pullback of the metric

(3.3), F = dA is the field strength of a worldvolume U(1) gauge field and e−φ is the

dilaton. In order for the background solution to respect the scale invariance, φ and Tq

must be constant in the IR region.

We look for an embedding given by

τ = t , σ1 = x , σ2 = y , σ3 = v , {σ4 . . . σq} = Σ , (3.6)

together with the gauge potential

A = Φ(v)dt+Bxdy . (3.7)

In (3.6), Σ refers to a submanifold of an internal space. If the background spacetime is a

direct product of (3.3) with an internal space M , the simplest way to solve the equations

of motion is for Σ to be a stationary submanifold of M , independent of {t, x, y, v}. Many

backgrounds of interest are not direct products and many probe brane embeddings of

interest are not constant in the internal directions. Nonetheless, for the moment we
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will take a ‘phenomenological’ approach and consider that the only effect of internal

dimensions is to multiply the overall Dq brane action by the volume of Σ. The effective

brane in 3 + 1 dimensions thus has tension

τeff. = TqVol(Σ)e
−φ . (3.8)

The assumption in (3.6) that the D-brane does not bend into the transverse dimensions

will shortly translate into the assumption that the charge carriers are gapless. While

this may be relevant for materials with a Dirac-cone dispersion relation for electronic

excitations (along the lines of graphene), or other situations in which there are emergent

gapless charge carrying excitations, in general we will wish to consider massive charge

carriers. We will consider the massless case first for simplicity, and generalise to the

massive case in section 6.

It is straightforward to solve the equations of motion for Φ to obtain

Fvt = Φ′ =
1

v1+z
C

√

v−4 +
(

2πα′

L2

)2
(B2 + C2)

, (3.9)

where C is a constant of integration. Near the boundary v → 0 the potential is expanded

as

Φ = µ− 1

vz−2

C

z − 2
+ · · · , (3.10)

for z 6= 2 and

Φ = µ+ C log
v

Λ
+ · · · , (3.11)

when z = 2. In this last case µ has a scheme dependence on a scale Λ. We think of µ as

the chemical potential, although for z ≥ 2 it is not the largest mode near the boundary.

We will discuss this phenomenon in detail in the following section. The coefficient C is

proportional to the charge density,

J t = τeff(2πα
′)2 C , (3.12)

as one reads off from the boundary term that arises upon varying the action with respect

to δA
(0)
t = δµ.
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Evaluating the action on this solution gives,

TSq
V2

= −τeff.L
4

∫ v+

ǫ

dv
1

v1+z
v−4 +B2

√
v−4 +B2 + C2

. (3.13)

Here V2 is the spatial volume. In this and the following few expressions, we will drop the

factors of 2πα′

L2 that appear multiplying B and C. Expanding the integrand for small v,

the contribution from the UV endpoint is

TSq
V2

= τeff.L
4

(

− 1

z + 2

1

ǫz+2
+

C2 − B2

2(z − 2)

1

ǫz−2
+

B4 − 3C4 − 2B2C2

8(z − 6)

1

ǫz−6
+ · · ·

)

(3.14)

for z 6= 2. For z = 2 we have

TSq
V2

= τeff.L
4

(

−1

4

1

ǫ4
+

B2 − C2

2
log

ǫ

Λ
+ · · ·

)

. (3.15)

For all positive z the leading term is divergent as ǫ → 0. This term is independent of

the temperature and all other parameters, and reflects the fact that the energy density is

dominated by UV physics. For the relativistic case, z = 1, this is the only divergence, but

for z ≥ 2 the second term diverges as well. The coefficient of this divergence depends on

the magnetic field and charge density. Again, naturalness requires that we include this

as representing a UV sensitivity of the physics. In the next section we will analyze why

a divergence appears at z = 2, and why additional such effects appear as z is increased

further.

When we vary the action to obtain the specific heat and other observable quantities,

depending on the application we may wish to hold fixed either the charge density J t or

the chemical potential µ. In our setup we can implement a fixed J t by adding the familiar

‘Neumannizing’ term [25]. In the following section we will discuss boundary conditions in

some detail and note that for z > 2 fixed charge is in fact the ‘natural’ boundary condition

in a renormalisation group sense. The free energy is then

f ≡ F

V2

=
TSq
V2

+ µJ t . (3.16)

By integrating (3.9) from the horizon, where Φ = 0, to near the boundary and comparing

to (3.10), we obtain

µJ t =
τeff.L

4C2

(z − 2)vz−2
+

2F1

(

1

2
,
2− z

4
,
6− z

4
,−(B2 + C2)v4+

)

. (3.17)
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For the case z = 2 one has instead

µJ t =
τeff.L

4C2

2
log

(

1 +
√

1 + (B2 + C2)v4+
Cv2+

)

. (3.18)

where we have partially fixed the scheme dependence by requiring that this quantity

remains finite as v+ → ∞.

With fixed charge, the divergences appearing in the free energy (3.14) are temperature

independent. The following difference of free energies is then finite

∆f ≡ f(T )− f(0) (3.19)

= −τeff.L
4

∫ v+

∞

dv
1

v1+z
v−4 +B2

√
v−4 +B2 + C2

+ (µ(T )− µ(0))J t (3.20)

= τeff.L
4

(

1

z

√
B2 + C2

1

vz+
+

1

2(z + 4)
√
B2 + C2

1

v4+z+

+ · · ·
)

as v+ → ∞

∝ τeff.L
4

(√
B2 + C2T +

1√
B2 + C2

T 1+4/z + · · ·
)

. (3.21)

In the last line we have not kept track of numerical coefficients, as we do not know the

precise relation between v+ and the temperature T . The full integral in (3.20) may be

performed in terms of hypergeometric functions. However it is clear, as emphasised in

[15], that the low temperature free energy only depends on the zero temperature metric

at v = v+.

It is now simple from (3.21) to compute the specific heat. The specific heat divided

by temperature is

cV
T

= − ∂2f

∂T 2
. (3.22)

The linear term in (3.21) will drop out upon taking two derivatives, leaving the second

term. Setting B = 0, this gives the specific heat

cV
T

∝ −τ 2eff L
6 α′ T

4/z−1

J t
. (3.23)

Here we restored the α′ factors. This is the leading small-T behavior at fixed J t. Within

the probe approximation, to be made precise shortly, this scaling will always be subdom-

inant to the thermodynamics of the Lifshitz sector.
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The magnetic susceptibility

χ

V2

= − ∂2f

∂B2
, (3.24)

has a UV sensitivity through f(0) if z ≥ 2. This gives a temperature independent term.

At low temperatures from (3.19) and (3.21)

χ

V2

∝ −τeff. L
2 α′2

(

1

L2
Λ

1−2/z
UV + τeff. α

′ T

J t

)

. (3.25)

where we have set B to zero after differentiating. The dependence on the UV scale is

logarithmic when z = 2. In the absence of the UV divergence, the temperature inde-

pendent term is proportional to (J t)z/2−1. We have not been careful with the relative

normalisation of the two terms in (3.25).

Let us consider the regime of control of our system (3.5). There are two issues to

address. The first is the neglect of backreaction of the brane onto the metric. In our

background, the effective action Sq takes the form (with 2πα′ = 1)

Sq = −τeff.

∫

dt d2x dv
√−g

√

1 + gttgvvF 2
vt + gttgxxF 2

tx + gvvgxxF 2
vx . (3.26)

To avoid back reaction of the probe on the metric, its stress-energy must be smaller than

the stress energy generating the original background (3.1). The original energy density

is of order M2
4 |Λ| ∼ M2

4/L
2, where M4 is the four-dimensional Planck mass and Λ the

four-dimensional cosmological constant. Varying (3.26) with respect to gtt, we find this

condition to be

γ ≡ 1 + gvvgxxF 2
vx

√

1 + gttgvvF 2
vt + gttgxxF 2

tx + gvvgxxF 2
vx

≪ M2
4 |Λ|
τeff.

. (3.27)

In our solutions γ approaches one at the boundary and grows toward larger v, the region

corresponding to the infrared regime of the field theory. As long as the brane tension

is sufficiently small, the right hand side allows for a window of scales in which γ can

grow larger than one (leading to nontrivial DBI dynamics, corresponding to interactions

between the charge carriers) while satisfying the condition (3.27). This is the regime

vbr ≫ v of equation (3.2).

In the simplest examples of brane probes, such as those discussed in [15], the probe

limit requires a power law tune Nc/Nf ≫ 1 where Nc is the rank of the Yang-Mills gauge
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group of the field theory, and Nf the number of charged matter fields (the number of probe

branes). More generally in the landscape, however, low-tension branes can arise naturally

– via an exponential hierarchy – in compactifications with strong warping (gravitational

redshift) in the extra dimensions. This effectively makes the internal volume Vol(Σ) small

in the tension (3.8).

There is another way that the description can break down at large γ. As γ gets

large the electric field on the brane is approaching its critical value, where the force on

string endpoints exactly balances the string tension [26]. Beyond this point the system is

unstable to creation of open strings. As the critical field is approached, the effective value

of the open string tension falls as 1/γ2 [27, 28] and so the effective string length scale

grows as γ. When this exceeds the typical length scale of the geometry, supergravity will

break down in an interesting way as string modes become important. The condition for

supergravity to be valid is then

α′γ2 ≪ 1/|Λ| . (3.28)

The conditions (3.27) and (3.28) are compatible with one another but independent. We

can go to a regime where the first is satisfied but the second is not; this appears to

correspond to a situation where the backreaction of the charges on the critical sector is

small, but their interaction with each other due to finite density has become stronger

than their ’t Hooft coupling interactions (setting for instance |Λ|α′ = λ−1/2). In general,

as we approach this regime, an expansion in small perturbations about the DBI action

(3.26) brings down inverse powers of the square root, i.e. powers of γ, leading to strong

non-Gaussian effects [29]. It would be interesting to understand the role of these effects

in holographic condensed matter systems.

4 Renormalization and Lifshitz holography

We would like to understand in a more general way the divergences that we encountered

with increasing z in section 3.5 For simplicity we focus on the quadratic Maxwell action,

5For a recent work on Lifshitz holography see [30].
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which governs the dominant behavior of the full action (3.26) near the boundary,

S ∝ −
∫

dt ddx dv v−d−z−1

(

1

2
v2+2zF 2

ti −
1

2
v4F 2

iv +
1

2
v2+2zF 2

tv −
1

4
v4F 2

ij

)

. (4.1)

For the dominant boundary behavior we can ignore i and t derivatives in the field equa-

tions. With the pure Liftshitz background (3.1) this gives the equations of motion

∂v(v
1+z−d∂vAt) = ∂v(v

3−z−d∂vAi) = 0 , (4.2)

with solutions

At = α + βvd−z , Ai = α′ + β′vd+z−2 . (4.3)

In this limit Av is pure gauge. The field strengths scale as

Fti ∼ α + βvd−z + α′ + β′vd+z−2 ,

Fij ∼ α′ + β′vd+z−2 ,

Ftv ∼ βvd−z−1 ,

Fiv ∼ β′vd+z−3 . (4.4)

We now focus on d = 2. In the relativistic case z = 1, the α and α′ solutions are larger

at the boundary v → 0. We thus take the usual quantization, in which these are fixed

while β and β′ are dynamical. That is, we fix the potentials and field strengths tangent to

the boundary. At z = 1, all terms in the action are convergent at v → 0. As we increase

z, at z ≥ 2 the F 2
ij term has a divergence proportional to α′2, and the F 2

tr term has a

divergence proportional to β2, and new boundary counterterms are needed to obtain a

finite on shell action.

To understand these divergences from the point of view of the field theory, recall the

momentum (inverse length) dimensions from section 2

[J t] = d , [J i] = d+ z − 1 , [At] = z , [Ai] = 1 . (4.5)

The field theory contains an explicit AµJ
µ interaction, but will generate additional diver-

gences for any gauge-invariant relevant interaction constructed from A and J . Here A is
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treated as a nonfluctuating spurion field, while J is a single trace operator, and the new

counterterms will in general involve multiple traces. The field theory volume element has

[dt ddx] = −d − z, so an interaction will be relevant if its momentum dimension is less

than or equal to d+ z. The dimension of F 2
ij is 4, so this becomes relevant at d+ z = 4.

The dimension of (J t)2 is 2d, so this becomes relevant when d = z. For d = 2, the critical

z is 2 for both operators.

The divergence from F 2
ij involves the fixed α′, so this is just an additive classical

term. It reflects the fact that the dominant momentum-, temperature-, and frequency-

independent magnetic susceptibility will come from the UV when z > 2. We saw this in

equation (3.25) above.

The divergence from F 2
tr at z > 2 is more subtle. At the same time that (J t)2 becomes

relevant, the α and β solutions cross, and the latter dominates at the boundary v → 0.

Thus we are in the situation discussed for relativistic scalars in Ref. [31]. For a generic

UV theory we will flow to the more stable boundary condition in which α is dynamical

and β is fixed.6

It is tempting to ‘renormalize’ the low energy effective theory, adding boundary coun-

terterms to cancel the divergences. In the range 2 < z < 4 the following counterterms

would do the job

Sbdy. =
1

g2eff.

∫

ǫ

dt d2x
√

|⋆γ|
[

1

z + 2
+

ζ

2

(

FijF
ij − FtvF

tv
)

]

, (4.6)

In this expression g2eff. = 1/τeff(2πα
′)2, ζ = 1/(z − 2), and ⋆γ is the induced metric on

the r = ǫ surface. For the field-independent and F 2
ij terms this just subtracts off the UV

contribution and isolates that from the IR. For the FtvF
tv term, however, the boundary

terms actually change the theory, from the IR stable β = 0 theory to the tuned α = 0

theory. To see this, perform the variation of the bulk and boundary action with respect

to At, and insert the asymptotics (4.3) to obtain

δS = e.o.m.− 1

g2eff.

∫

ǫ

dt d2x
√

|⋆γ|gvv(δAt + ζ∂vδAt)F
tv

∝ {δα + (1 + (2− z)ζ)ǫ2−zδβ}β . (4.7)

6Ref. [32] studied the 2+1 dimensional relativistic (z = 1) gauge theory and showed that it had two

IR stable realizations, the second corresponding to the gauging of the U(1) symmetry.
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We see that precisely the value ζ = 1/(z − 2), that cancels the divergence, also gives the

tuned α-fixed theory. Throughout this paper we work with the untuned, β-fixed, theory.

This has no boundary counterterms. We argued in the previous section that this fixed

charge ensemble is in fact the physically correct one for condensed matter applications of

holography, for all values of z.

The difference between the α- and β-fixed theories is subtle: in the planar limit, only

the correlators of J t are affected by the double trace deformation [33], so most observables

are the same. Intuitively, a large (J t)2 interaction would inhibit local fluctuations of J t,

explaining why β must be fixed.

The expansions (4.3, 4.4) have have higher order terms, e.g. at relative order k2v2,

which will lead to further divergences as we increase z. In the field theory, this is reflected

by the operators F 2
ij,k and (J t,k)

2 becoming relevant at z = 4. As z is further increased,

higher spatial derivatives become relevant, so that in the z → ∞ limit of AdS2×R
2 there

is an infinite number of relevant operators. Note however that terms with additional time

derivatives never become relevant. Higher powers of the fields can become relevant, e.g.

(FijFij)
2, FijFij(J

t)2 and (J t)4 at z = 6.

5 Massless charge carriers

A key observable capturing strange metallic behavior is the conductivity. We will start

by analyzing the DC conductivity of our system, following closely the work of Karch and

O’Bannon [13], keeping the full nonlinear dependence of the current resulting from a given

constant electric field. Using similar methods [34] we also compute the Hall conductivity.

Then we will obtain the optical conductivity by computing the linearized response of the

system to small oscillating electric field perturbations. We focus first in this section on

the massless case, to illustrate the techniques. Then in the next section we will include

a mass for the charge carriers, motivated by the large energy gap of carriers relative to

temperature in real-world strange metals.
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5.1 DC conductivity

In order to compute the DC (ω = 0) conductivity, the strategy is to turn on an electric field

E ≡ Ftx on the D-brane probe and compute the resultant current 〈Jx〉 in the boundary

theory. This then allows us to directly read off the field and temperature dependent

conductivity σ(E, T ) from Ohm’s law

Jx = σ(E, T )E . (5.1)

To this end, we revise the ansatz (3.7) for the worldvolume gauge field, now looking for

solutions of the form

A = Φ(v)dt+ (−Et+ h(v))dx . (5.2)

With this ansatz, the action (3.5) becomes

S = −τeff

∫

dt d2x dv
√
gxx
√

−gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2) . (5.3)

The action depends only on the derivatives Φ′ and h′, resulting in two quantities which

are independent of the radial direction v,

C =
−g

3/2
xx Φ′

√

−gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2)
,

and

H =
−gtt

√
gxx h

′

√

gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2)
. (5.4)

These are the same expressions found in [13] and, as pointed out by those authors, obey

the relation gtth
′C = gxxΦ

′H. The near-boundary profile of Φ is once again given by

(3.10) for z 6= 2 and (3.11) for z = 2. Meanwhile, the asymptotic behavior of h(v) is

h(v) → h0 +
H

z
vz + . . . . (5.5)

We set h0 = 0 and identify the coefficient of the decaying term with the current

Jx = τeff(2πα
′)2 H . (5.6)
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This equation is completely analogous to that defining the charge density in (3.12). The

normalization factor of 1
z
in (5.5) follows from computing Jx as the derivative of the

on-shell action with respect to h0. The on-shell bulk action (5.3) can be written as,

S = τeff

∫

dtd2xdv g3/2xx

√−gttgvv

[

gttgxx + (2πα′)2E2

(2πα′)2(gttC2 + gxxH2) + g2xxgtt

]1/2

. (5.7)

The divergences (UV sensitivities) of this expression are as discussed in the previous

sections, and do not involve E.

As pointed out in [13], both the numerator and the denominator of [. . .]1/2 change sign

between the boundary v = 0 and the horizon v = v+ (recall that gtt < 0). The reality of

the action means that this sign change must take place at the same point in the radial

direction, v+ > v⋆ > 0, such that both

− gttgxx

∣

∣

∣

v=v⋆
= (2πα′)2E2 , (5.8)

and

(2πα′)2
(

gttC
2 + gxxH

2
)

= −g2xxgtt
∣

∣

v=v⋆
, (5.9)

should be satisfied.7 Using the finite temperature metric (3.3), the first of these equations

fixes v⋆ in terms of the electric field,

f(v⋆) =
(

2πα′

L2

)2
E2 v2z+2

⋆ . (5.10)

Meanwhile, the second equation can be rewritten to give the sought-after equation for the

conductivity,

σ(E, T ) =

√

(2πα′)4τ 2eff +
(

2πα′

L2

)2
v4⋆(J

t)2 . (5.11)

The right-hand-side of (5.11) is the root-mean-square of two terms: the first is a constant

piece and arises from thermally produced pairs of charge carriers. It is expected to be

7It might appear that a boundary condition is being imposed at the point v⋆, rather than the horizon,

but in fact this is equivalent to the usual condition of ingoing b.c. on the horizon. One can study this

by approximating the near-horizon geometry as Rindler, for which a finite ingoing wave satisfies the DBI

field equation, and then taking the zero frequency limit. Outgoing b.c. give the opposite sign for H.

19



Boltzmann suppressed when the charge carriers have large mass, as we will see shortly.

The surviving term exhibits the simple power-law (2.7) for the DC resistivity, namely

ρ ∼ T 2/z

J t
. (5.12)

As discussed in §2, one situation in which this behavior is generic is a regime of dilute

charge carriers which are coupled to a Lifshitz bath in such a way as to inherit its scaling

symmetry (2.1). The diluteness of the charge carriers implies that the conductivity is

approximately linear in J t and the rest follows from dimensional analysis. However, here

we see that the linearity in J t arises in the massless case only in the concentrated (i.e.

non-dilute) regime J t ≫ T 2/z, while in the very massive case it arises for all J t/T 2/z in

the DC conductivity. We will discuss this further below.

The first term in (5.11) is independent of both temperature T and electric field E.

This is due to the fact we are in a 3 + 1 dimensional bulk, rather than any Lifshitz

scaling. This same constant term was seen in Section 5 of [13]. The second term on the

right hand side contains the dependence on the temperature and on the electric field.

Both of these arise through v⋆ defined in (5.10). To compute the nonlinear, E dependent

corrections to the conductivity, we need to know the specific function f(v), which will

depend on the the matter content sourcing the Lifshitz background. On dimensional

grounds, such corrections depend on the ratio (2πα′)2

L4

E2

T 2+2/z . In the relativistic case (z = 1),

the nonlinearities of the conductivity in the electrical field could be elegantly understood

by considering the drag force on a single string and using Lorentz invariance [13]. This

does not appear to be the case at general z.

A translationally invariant medium with a net charge density should have an infinite

DC electrical conductivity. Specifically, the real part should have a delta function and

the imaginary part should have a pole: σ(ω) ∼ δ(ω) + i ω−1 at small ω. This can be seen

either directly from hydrodynamics or via the holographic correspondence (e.g. [35, 36]).

The underlying reason is that the conserved momentum cannot relax and, combined with

a net charge density, this gives a current that does not relax. Yet we have just obtained a

finite DC conductivity. The reason for this [13] is that in the probe limit the momentum

can be transferred to the quantum critical ‘bath’ without any backreaction on the charged

probe system. Technically, the coefficient of the divergence goes to zero in the probe limit,
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so that the probe and ω → 0 limits do not commute. A physical circumstance in which

this probe approximation could be legitimate is if the quantum critical excitations are

more efficient at dissipating heat into the environment (via interaction with impurities

etc.) than the charge carriers.

The fact that the DC conductivity would diverge in the absence of the Lifshitz bath

suggests a heuristic understanding of why this conductivity is linear in the charge density,

if the first, constant, term in (5.11) is taken to be Boltzmann suppressed. This is not

an immediate result as interactions between the charges are important as evidenced, for

instance, by the nonlinear dependence of the free energy (3.13) on the charge density. The

fact that the Lifshitz medium is responsible for making the potentially infinite conductivity

finite suggests that medium-carrier interactions are playing a dominant role in the DC

limit. The diluteness of the carriers with respect to the medium then suggests that this

interaction will be proportional to the density of carriers, leading to the linear dependence

of the finite DC conductivity on J t.

5.2 DC Hall conductivity

The techniques of [13] can be extended to compute the conductivity tensor,

J i = σijEj . (5.13)

The calculations are identical to those of [34] and we present only the results. The

conductivity is once again expressed in terms of a function v⋆(T,E,B), defined by the

requirement that

−gttg
2
xx = (2πα′)2(gttB

2 + gxxE
2)
∣

∣

∣

v=v⋆
, (5.14)

which generalizes (5.8). For E and B small, this gives v⋆ ∼ v+ ∼ 1/T 1/z. Corrections to

this expression are functions of the dimensionless ratios E/T 1+1/z and B/T 2/z. The Hall

conductivity has a simple expression in terms of v⋆,

σxy = − J tBv4⋆

( L2

2πα′
)2 +B2v4⋆

. (5.15)
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Notice that the Hall conductivity is automatically linear in charge density. When both B

and E are small, this becomes σxy ∼ T−4/z. The expression for σxx is

σxx =
1

1 + (2πα
′

L2 )2B2v4⋆

√

(2πα′)4τ 2eff[1 + (2πα
′

L2 )2B2v4⋆] + (2πα
′

L2 )2(J t)2v4⋆ . (5.16)

It’s simple to see that this reduces to our previous expression when B = 0. In particular,

when the J t term dominates in the square root, and B is small, then we reproduce the

result σxx ∼ v2⋆ ∼ T−2/z.

Among the interesting, anomalous, results exhibited by strange metals is the ratio

σxx/σxy. The anomalous behavior (σxx)−1 ∼ T is accompanied in the cuprates by the

scaling σxx/σxy ∼ T 2 (e.g. [6]). This is to be contrasted with Drude theory8 which implies

σxx/σxy ∼ (σxx)−1. Within our probe calculation, this ratio is given by

σxx

σxy
= −

(

L2

2πα′

)2
1

J tBv4⋆

√

(2πα′)4τ 2eff[1 + (2πα
′

L2 )2B2v4⋆] + (2πα
′

L2 )2(J t)2v4⋆ . (5.17)

The relevant experimental limit for the ratio is when the first term is subdominant in the

square root, leading to σxx/σxy ∝ T 2/z ∼ (σxx)−1. We see that this aspect of the probe

computation does not reveal strange behavior, but rather mimics the Drude result. In

a later model-building section we will consider generalizations of the setup which might

evade this conclusion.

5.3 AC conductivity

Let us next calculate the frequency dependent conductivity. In this case, we will focus on

the linear response rather than working out the full nonlinear dependence on the electric

field as we did in the DC case. To do this, we will expand in small fluctuations about

the background (3.9), working at zero magnetic field (B = 0) and zero momentum for

simplicity. As before we extract the conductivity from the ratio of non-normalizable and

normalizable modes of Ax near the boundary v → 0, having introduced a background

electric field Ex(t) ≡ ReEx(ω)e
−iωt:

Ax(ω) =
Ex(ω)

iω
+

Jx(ω)

zτeff.(2πα′)2
vz + · · · . (5.18)

8Recall that in Drude theory: σxx = e2n
mτ

1
τ−2+e2B2m−2 while σxy = e3nB

m2

1
τ−2+e2B2m−2 . Thus σxx

σxy =

m
eBτ

= Ben
σxx(B=0) .
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The coefficients in this expansion will be determined by solving the bulk equations of mo-

tion, with the ratio between the response Jx and the source Ex obtained from a boundary

condition at the horizon ensuring that the former is determined causally (via the retarded

Green’s function) from the latter. The implementation of ingoing boundary conditions at

the horizon [37] is by now standard, see e.g. [9] for a discussion.

The fluctuations of the probe gauge fields take the form

δA = (At(v)dt+ Ax(v)dx+ Ay(v)dy)e
−i(ωt−kx) . (5.19)

The quadratic action for fluctuations about the background solution (3.9) is found to be

S(2) = −τeff.(2πα
′)2

2

∫

dvd3x v1−zγ

(

fF 2
vi −

v2z−2

f
F 2
ti − v2z−2γF 2

tv +
1

γ
F 2
xy

)

, (5.20)

where γ is defined as

γ =

√

1 +
(

2πα′

L2

)2
C2v4 , (5.21)

as in (3.27) and i runs over x and y.

For simplicity, we specialize to the case k = 0, applicable when the applied field has

wavelength much longer than the mean free path of charge carriers. In this case, the

equations of motion for the transverse and longitudinal fields are the same; let us focus

on the longitudinal (x-) component.

v1−zf
(

v1−zγfA′
x

)′
= −γω2Ax . (5.22)

It is useful to map this equation into a Schrödinger form

−d2Ψ

ds2
+ UΨ = ω2Ψ . (5.23)

This is achieved with the change of variables

Ax =
1

γ1/2
Ψ , (5.24)

with

d

dv
=

vz−1

f

d

ds
, (5.25)
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leading to the potential

U =
(γ − 1)f

γ2v2z

(

(γ + 1)

(

1− z +
3

γ2

)

f + vf ′

)

. (5.26)

The AC conductivity is obtained by imposing ingoing boundary conditions at the horizon

s → ∞, ensuring a causal relationship between Ex and Jx. We will shortly present

numerical results for the conductivity, after commenting on some of the physics evident

from the above formulae.

The potential U (5.26) exhibits different behavior for different ranges of charge density

C and z. At zero charge density, C = 0, we have γ = 1 and the potential vanishes. It is

then straightforward to solve analytically for σ(ω), which is nonzero and constant at all

temperatures

σ(ω) = τeff.(2πα
′)2 ≡ σ0 . (5.27)

In the absence of any ambient charge density, the current can only arise from thermal

fluctuations or particle production. The constancy of the result, technically following

from the absence of scattering when U = 0, reflects more than just the scaling symmetry

of our system. General quantum critical theories in 2+1 dimensions have a conductivity

σ(ω/T ) that tends to different constant values as ω → 0 and ω → ∞ [38]. The frequency

independence here is related to additional symmetries of the Maxwell and DBI actions

[39].

The above C = 0 result is for massless charge carriers. However, in the real world

systems we are ultimately interested in modeling, the effective energy gap Egap of the

charge carriers is often greater than the temperature, and the current resulting from their

thermal production should be Boltzmann suppressed. Their mass is also often greater

than the frequency scale ω ∼ 103 − 104cm−1 ∼ 10−1 − 1eV of the electric field applied

in the relevant measurements (see Fig 14 of [40] for an example in the cuprates). So

their dynamical production by the oscillating electric field should also be suppressed. As

a result, we do not expect the order one constant value we just obtained in our C = 0

massless calculation to survive in a more realistic treatment. We will study the massive

case in the next section.
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Having made this cautionary remark, let us continue to analyze the physics of the

solution. The potential U of (5.26) approaches zero at the horizon. As we approach the

boundary v → 0, U becomes of order C2v4−2z. For z < 2, the potential is everywhere

bounded, and approaches zero at the boundary. For z = 2, U approaches a constant value

of order C2 at the boundary, and for z > 2 the potential blows up at the boundary. Again

z = 2 is a marginal case separating two behaviors.

The regime (2πα′)2

L4 C ≪ 1 is the dilute limit, in the sense that the charge density is

small compared to the temperature scale. Specifically

1

τeff.2πα′L2

J t

T 2/z
≪ 1 . (5.28)

In this limit it is immediate that the potential (5.26) becomes proportional to C2. The

conductivity σ(ω) is directly related to the reflection amplitude for scattering off the

potential [41]. The correction to the constant result (5.27) will therefore be proportional

to C2. This simplifies the general scaling form of the conductivity when the charge density

is small,

σ

(

ω

(J t)z/2
,
J t

T 2/z

)

∼ τeff.(2πα
′)2 +

1

τ 2eff.(2πα
′)2L4

(J t)2

T 4/z
F
(ω

T

)

+ · · · . (5.29)

In this limit, DBI nonlinearities due to the charge density have been made small, the

interactions between charge carriers are negligible and one might have expected the con-

ductivity to be proportional to the density. However, in this case of massless charge

carriers, the leading correction to the constant conductivity is found to be quadratic in

the density. The observable we are computing here would be perhaps best characterized

as a mobility rather than a conductivity. The result (5.29) is consistent with the previous

DC result (5.11). In (5.11) the linear dependence on the charge density arises in the

opposite limit to (5.28), in which interactions between the charges are important. It is

worth emphasizing again therefore that the calculation of the conductivity which we are

using does capture nonlinearities in the charge density, and the linearity emerging in the

DC limit at large density is nontrivial.

We now move away from the dilute limit and explore numerically the dependence of

the dissipative conductivity Reσ(ω) for different values of z. To proceed, we need to make
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a choice for f(v). This will depend on the particular matter fields sourcing the Lifshitz

background. For generic examples, one can expect the asymptotic behavior f ∼ 1− v2+z

near the boundary v → 0. This is because the normalisable mode of gtt is dual to the

energy density T tt, which has scaling dimension [T tt] = z + 2. Indeed such asymptotic

behavior was found in the simple models of [42, 43], which used a massive vector field

coupled to gravity. Thus, for illustration we will take

f = 1−
(

v

v+

)2+z

. (5.30)

The temperature of these backgrounds is, from (3.4), T = (2+z)/4πvz+. We will comment

below on the sensitivity of the results to this choice of f . The resulting conductivities are

shown in figure 2 below.
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Figure 2: The real part of the conductivity as a function of frequency for z = 1 (left)

and z = 2 (right). The four curves in each graph correspond to 1
τeff.2πα′L2

Jt

T 2/z equal to

{0, 10, 20, 30} (left) and {0, 2, 5, 10} (right), with J t = 0 giving the expected constant

lines.

For all values of z, the conductivity exhibits a peak reminiscent of Drude theory at

ω = 0, approaches a nonzero constant value σ0 at ω → ∞, and exhibits a dip in the

middle. Using the form for f in (5.30), it is easy to evaluate (5.11) in the large charge

density limit to obtain

σ(ω = 0)

τeff.(2πα′)2
=

1

τeff.2πα′L2

J t

T 2/z

(

2 + z

4π

)2/z

. (5.31)
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The final z dependent term leads to the peak being bigger for a given J t/T 2/z at larger z,

as seen in the figure. All the conductivities exhibit a dip at intermediate frequencies. This

can be understood from a sum rule: one can straightforwardly show using the Kramers-

Krönig relations that
∫∞

0
dωRe σ(ω) is independent of the dimensionless ratio J t/T 2/z.

In using the Kramers-Krönig relations it is important that the conductivity tends to its

asymptotic value σ0 sufficiently quickly in ω. For 1 < z < 2, Re σ(ω) approaches σ0 from

above; that is, it has a second peak (albeit much smaller than the Drude-like peak). For

z > 2, Re σ(ω) approaches σ0 from below.

Plotting the Schrödinger potential one can see that there is dip close to the horizon

where the potential becomes negative. The dip is not sufficiently big to allow negative

energy bound states (which would lead to an instability of the spacetime), but it does

allow for a low energy resonance. This is the ‘Drude peak’. This observation gives some

indication of how sensitive our numerical results are to the form of f chosen in (5.30).

Experimentation shows that the overall shape of the conductivity plots is fairly robust

if we do not modify f drastically. That is, if we do not modify the minimal form of the

potential in which there is a dip at the horizon that is then connected smoothly onto the

asymptotic boundary behavior discussed above. However, if we introduce oscillations into

f in such a way that additional dips are introduced into the potential, then we can get

additional peaks in the conductivity. Typically one finds a second or more peaks at low

frequencies that are smaller than the peak at ω = 0. Curiously, such additional peaks

also arise if one takes (5.30) with z < 1.

In real-world strange metals, Reσ(ω) has a Drude-like peak at ω = 0, and approaches

zero at large ω more slowly than in Drude theory (see e.g. Figure 14 of [40]). In our case,

as discussed above, the massiveness of charge carriers as compared to the temperature

and ω should lead to suppression of the C = 0 conductivity σ0. Before turning to the

massive case, we make one final observation.

Although we have set the momentum k to zero in our computations, in it straightfor-

ward in principle to work with a finite momentum. One interesting observation is that

the combination of momentum and energy appearing in the Schrödinger equation is

v2−2zfk2 − γ2ω2 . (5.32)
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The feature of interest in this combination is that the coefficient of k2 goes to zero at

the horizon, while that of ω2 does not. This leads to the existence of low energy modes

with arbitrary momentum, manifested for instance in a nonzero spectral density at zero

temperature. This has something of the flavor of a Fermi surface; with a weakly coupled

Fermi surface there are zero energy modes with finite momentum connecting different

points on the Fermi surface. These exist for k < 2kF and lead to a sharp feature at

k = 2kF . While interesting properties of the finite k perturbation spectrum were found

in [14, 15, 44], no such sharp feature was observed. This suggests that D-brane probe

theories in the relativistic regime γ ≫ 1 do not describe weakly coupled fermions. It is

worth scrutinizing these systems more closely, taking into account effects that appear as

γ grows, cf (3.2) and (3.27). In addition to the back reaction on the metric, there are

important effects in the open string sector that arise as the electric field Ftr approaches

the critical value, γ → ∞ [28, 27]. Fermi surfaces have been found directly in other

holographic systems in [7] (see [45] for an early approach to this problem).

6 Massive charge carriers

We will now study the effect of including a nonzero mass m for the charge carriers de-

scribed by the flavor brane, as in [13]. As discussed above, this is the case of interest in

modeling some features of real-world strange metals, whose energy gap is large compared

to the temperature:

Egap ≫ T . (6.1)

For instance Egap might be at the lattice eV scale which is larger than the melting tem-

perature of the relevant materials.

As discussed in previous works on flavor branes [46] and on finite-density holography

[47], a finite mass scale involves a configuration in which the volume of the internal cycle

the flavor brane wraps varies with radial position, shrinking toward the horizon. In the

case of massive flavors at T = µ = 0 [46], the volume shrinks smoothly to zero at a finite

radial position v = v0; the brane forms a cigar-like shape with its tip at v0. Charge carriers
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correspond to strings stretching from the tip of the cigar down to the Poincaré horizon

v = ∞. At finite temperature, a black hole horizon arises at a finite radial position v+.

For large enough mass (i.e. small enough v0), the flavor brane still shrinks to a point

outside the black hole horizon. Charge carriers in this 0 < T ≪ Egap, µ = 0 theory

correspond to strings stretching from the flavor brane at v0 to the horizon at v+. To

obtain finite density and temperature, in a dilute limit one can simply introduce a small

density of such strings and ignore back reaction on the brane configuration. We will refer

to this as the string regime. For larger densities, the back reaction of the charge density

on the brane is important; the upshot of this will be that the brane forms a ‘spike’ or

‘tube’ stretching to the horizon from v0 in place of the bundle of strings that pertained

in the dilute limit [47]. While the spike is string-like in some senses, it has a finite (order

one in general) extent into the transverse internal space. An artist’s rendering of these

two possibilities is shown in figure 3.

Figure 3: Schematic depiction of the massive flavor brane in the string regime (left) and

spike regime (right).

In the following subsections, we will generalize these considerations to our Lifshitz

backgrounds and use the resulting brane and string configurations to compute the AC

conductivity for massive charge carriers. First we will consider the dilute limit in which

the strings do not back react on the shape of the flavor brane, and extend standard

calculations of drag forces [48, 49] to the Lifshitz case. This will lead to analytic results
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exhibiting a tail in the AC conductivity going like σ(ω) ∼ ω−2/z over a range of frequencies

for z ≥ 2, giving nontrivial exponents for z 6= 2. Next we will analyze the problem for

the case of larger densities, exhibiting again the scaling σ(ω) ∼ ω−2/z as well as analytic

and numerical solutions to the equations for the brane embedding and Maxwell field

fluctuations. This latter regime includes nontrivial interactions among charge carriers.

Finally, we will comment on the potential for rolling scalar backgrounds to shift this

exponent and to generalize our results for the Hall conductivity. These last comments

will point the way towards a model-building approach to holographic condensed matter

physics.

We are working at fixed charge density, where the difference between the string and

spike regimes is a factor of L2/α′ in the charge density. In terms of the chemical potential

µ, in order for the density not to be exponentially suppressed by the Boltzmann factor

e−(E−µ)/T , one needs µ > Egap. The effect of Boltzmann suppression has been discussed

holographically in, for instance, [50, 51].

6.1 Drag calculation: conductivity in the dilute regime

In the extreme dilute limit, one can think of the carriers as individual strings stretching

between the flavor branes and the thermal horizon. There are no interactions between

the carriers in this limit. The flavor brane itself is given by the zero density solution, a

cigar-like shape with v = v0 at the tip. This framework has been extensively employed

for DC calculations in the relativistic case. e.g. [13, 15]. Here we apply it to DC and

AC conductivities, in our Lifshitz background. We will obtain our first instance of scaling

σ(ω) ∼ ω−2/z.

Expanded to quadratic order in transverse fluctuations and in the gauge t = τ, v = σ,

the Nambu-Goto string action becomes

SN-G. =
L2

2α′

∫

dt

∫ v+

v0

dv (fv−1−zxi′xi′ − f−1vz−3ẋiẋi) +

∫

dt ẋiAi(t, x)

∣

∣

∣

∣

v=v0

. (6.2)

The surface term in the field equation is then

−L2

α′
fv−1−z∂vx

i + Fi0 + Fijẋ
j = 0 at v0 . (6.3)
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At zero frequency the field equation is easily integrated

xi = V i

(

t+
1

v2+

∫ v u1+z

f(u)
du

)

, (6.4)

where V i is an integration constant and ingoing boundary conditions at the horizon have

been used to fix the relative normalization of the two terms. At the boundary, assuming

v0 ≪ v+, we get

v−2
+

L2

α′
V i = Fi0 + FijV

j , (6.5)

which is Drude’s law with m/τ ∝ (L2/α′)T 2/z. The mass v−1
0 drops out as in Ref. [13].

We are evaluating the electric and magnetic fields at the tip of the cigar. In the zero

frequency case these are equal to their asymptotic values. The DC conductivity in the

dilute limit of these massive carriers is therefore

σ =
τJ t

m
∝ J t

T 2/z
. (6.6)

As we anticipated, the constant term in the massless result (5.11) is no longer present.

Now consider the AC case. First we establish the range of scales of interest. The mass

of the charge-carrying fundamental string hanging down from v0 to the horizon is

Egap =

∫ v+

v0

dv
√−gvvgtt/α

′ =
L2

zα′vz0
. (6.7)

where we used the relation Egap = Mc2. Another natural scale is ω0 = v−z0 . This corre-

sponds to the energy scale of bulk excitations at the radius v0. Also, v
z
0 ≫ T corresponds

to the flavor brane being outside the horizon. The existence of the two scales Egap and

ω0, differing by a power of the ’t Hooft coupling, is similar to the existence of distinct

hadronic scales for supergravity and string excitations in AdS/QCD. In the present case,

we are presumably interested in the lowest scales, below ω0, but it is interesting to look

in all ranges for interesting behaviors.

A related point, made in [51] in the AdS (z = 1) case, is that our drag calculation

is valid for densities small enough that the Nambu-Goto action is subdominant to the

brane action. The former scales like L2/α′ times the string density, while the latter scales

like, for instance τeff.L
4 ∼ NfNcL

4/α′2. So in terms of scalings with L2/α′, as long as the
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density of strings is much less than of order L2/α′, their back reaction on the brane will

be small.

The bulk equation of motion for x(v, t) = Re(Xω(v)e
−iωt) is

∂v(fv
−1−z∂vXω) = −ω2f−1vz−3Xω(v) . (6.8)

At zero magnetic field, with F01 = E, the boundary condition (6.5) implies that if we

evaluate the conductivity at v = v0 then

σ =
J tVω(v0)

E
=

iωJ tXω(v0)

E
=

iωJ tXω(v0)v
1+z
0

(L2/α′)f∂vXω(v0)
. (6.9)

Consider first the very high frequency limit. For ω ≫ ω0 we can use a WKB approxi-

mation in the whole range v0 ≤ v ≤ v+; the derivatives acting on the exponents dominate.

As noted above, this can be consistent with ω < Egap when L2/α′ is large. The leading

WKB solution to the bulk equation of motion is

Xω(v) ≈ C1e
−i

∫ v
v0
ωvz−1/f

+ C2e
i
∫ v
v0
ωvz−1/f

. (6.10)

The conductivity (6.9) in this regime is then

σWKB =
J tα′

L2T 2/z

(

v0
v+

)2

+O(1/ωvz0) =
J tα′

L2
v20 + . . . . (6.11)

This goes to zero as the gap is taken to infinity. Note that in this regime there will be

additional propagation effects in connecting the fields at v0 to the fields at the boundary,

which may give additional structure. In particular, at frequencies sufficiently higher than

the scale v0 one should expect to recover the massless dilute result σ0 of (5.27).

We can also treat the regime T ≪ ω ≪ ω0. For v ≪ v+ we can approximate f = 1

and solve the equation of motion directly in terms of a Bessel function. For v ≫ ω−1/z

we can again use WKB. These ranges of v overlap when T ≪ ω. The Bessel solution is

Xω = vzζH
(1)
ζ (ωvz/z), ζ =

1

2
+

1

z
, v ≪ v+ . (6.12)

We do not need the explicit WKB result, but just the fact that WKB gives zero reflection,

so that the ingoing Bessel function (6.12) is still ingoing at the horizon v+. To evaluate

the conductivity in the range ω ≪ Egap, expand the solution for small argument:

Xω ∝ 1− 1

Γ(−ζ)

(

ωvz

2z

)2

+ eiπζ
(

ωvz

2z

)2ζ

. (6.13)
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So this is interesting: if z < 2 then ζ > 1 and the ω2 term dominates ∂vXω. The

conductivity (6.9) is then

σ = 2zΓ(−ζ)
J tα′v2−z0

L2

1

iω
. (6.14)

This is a nice Drude result, matching in magnitude the WKB result.

If z > 2 then ζ < 1 and the ω2ζ term in ∂vXω dominates. The conductivity acquires

a nontrivial scaling with frequency and is proportional to ω1−2ζ = ω−2/z,

σ = 4(2z)2/ze−iπ/z
J tα′

L2

1

ω2/z
. (6.15)

The crossover of scaling behavior at z = 2 originates as follows: the inertial mass
∫

dt ẋ2

has dimension z − 2, and so becomes irrelevant for z > 2. In this regime the inertia of

the probe is dominated by the bulk degrees of freedom it drags around. Note that the

conductivity here is independent of the scale v0.

The value z = 3 looks interesting; it gives a falloff in frequency like that seen in strange

metal data (e.g. [5]). However, this is not for the same z as gives the observed linear

DC resistivity in our simplest setup, since we found that ρ ∼ T 2/z, which would need

z = 2. Below, after generalizing our analysis to larger densities, we will outline a way to

generalize the model to obtain different exponents for these quantities.

In the above calculation we have not included the propagation of the source electric

field from the boundary through the brane to the cigar tip v0. This may be justified in

the very large mass limit corresponding to very small v0. In fact, the energy gap could

be at or beyond the lattice UV scale, in which case the string solution would be correct

throughout the regime in which the background Lifshitz geometry is applicable. In the

next section, we will analyze the full problem for large densities, for which the brane

extends all the way to the horizon.

6.2 Finite densities

Now let us analyze the conductivity for massive charge carriers in a regime where their

back reaction on the flavor brane cannot be neglected. We want to introduce an extra

scalar field into our DBI action that is dual to a relevant ‘mass’ operator in the boundary
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field theory. This scalar field determines the volume of the internal cycle wrapped by the

brane, and will roughly dictate how far the brane sits from the horizon in the ‘Minkowski’

embedding (when J t = 0) [46].

The action for this scalar field is not universal, but depends on the internal space of

the geometry. The brane wraps an n-dimensional submanifold Σn of this internal space

and, for simplicity, we will focus attention on the motion of the brane in a single direction,

parameterized by θ, orthogonal to Σn. We take the volume of the submanifold wrapped

by the brane to be V (θ)n. The effective DBI action reduced to 3 + 1 dimensions is then

given by,

S = −τeff

∫

dτd3σ V (θ)n
√

|⋆g + 2πα′ F | , (6.16)

where the pull-back metric on the brane, ⋆g, now includes kinetic terms for θ. In what

follows, we make the choice of normalization gθθ = L2. For much of the calculation below,

we leave V (θ) unspecified, but when required for definiteness we choose V (θ) = cos θ, as

befits a brane wrapped on a sphere Sn inside Sn+1 [46]. In general the range of θ will also

remain unspecified; for example, we could take more generally V (θ) = cos cθ for any c.

As in the massless analysis above, the equation of motion for Φ can easily be integrated

once to give

Φ′ =

√

−gtt(gvv + L2θ′ 2)C
√

g2xxV (θ)2n + (2πα′)2C2
. (6.17)

Here, as previously, C is a constant of integration. There is no such luxury for the

background profile θ(v). To write the second order equation of motion, it is useful to first

define the ‘boost factor’

γ =

√

1 +

(

2πα′

L2

)2
C2v4

V (θ)2n
. (6.18)

This agrees with our previous definition (5.21) for the massless case when V (θ) = 1. To

avoid clutter, we will drop factors of
(

2πα′

L2

)

throughout the following calculation, restoring

them only in the final answer for the conductivity. The background profile of the brane

must satisfy,

∂

∂v

{

gxxgtt γ θ
′

√

−gtt(gvv + L2θ′ 2)

}

+
1

V n(θ)

∂V n

∂θ

gxx
γ

√ −gtt
(gvv + L2θ′ 2)

[

(γ2 − 1)θ′ 2 − gvv
L2

]

= 0 (6.19)
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This equation looks somewhat formidable, but we can get insight from numerical solutions.

In order to perform numerics we need to make a choice for V (θ) and for f(v). As in

our numerical studies of the massless case in section §5.3, we will choose for simplicity

f = 1− (v/v+)
2+z. We will furthermore take V (θ) = cos(θ) and n = 2, which corresponds

for instance to the brane wrapping a two dimensional sphere inside a three dimensional

sphere of unit radius.
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Figure 4: The brane profile for z = 1 (left) and z = 2 (right) with 1
τeff.2πα′L2

Jt

T 2/z equal

to {10, 100, 1000, 10000} and {0.5, 10, 500, 10000} respectively. In all plots m
T

= 20 and

n = 2.

Figure 4 shows the profile for the exponents z = 1 and z = 2, with m/T fixed at the

moderately large value of 20 and scanning over a range of charge densities. Here the mass

scale m of the charge carriers is determined by the coefficient of the non-normalisable

mode of θ near the boundary. We will define m more precisely very shortly. In all cases

shown in the figure, θ is approximately constant over a wide range v0 < v < v+,

θ(v) ≈ θ+ , (v > v0) . (6.20)

The constant regimes arise because γ is large in this range, allowing a solution with

θ′ = 0. This behavior will allow us to obtain analytic results for the conductivity in the

low frequency range ωvz0 ≪ 1. The constant solution and its large charge density regime

of applicability has been discussed previously in the z = 1 case (see e.g. equation (2.37)

of [47]).
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At low densities, the top-most curves, the profile follows the zero density solution until

close to θ = π/2, where it rapidly transitions to a narrow spike. For the special case of

n = z+1, which happens to apply to the left-hand graph, there is an analytic solution at

zero density, sin θ = v/v0. The value of v0 is fixed by the asymptotics as discussed below.

At large densities, the bottom-most curve, one observes that θ never becomes large. A

linearized solution is then available.

Of course, sufficiently close to the boundary we can always linearise (6.19) in θ; the

scalar field must go to zero near the (UV) boundary because it is dual to a relevant

operator. The potential must satisfy V ′(0) = 0 in order for there to be a solution. Since

we are at v ≪ v+, we can set f = 1. The two solutions near the boundary are then

θ(v) =
∑

±

c±v
(z+2±α)/2 + · · · , (6.21)

where α =
√

(2 + z)2 + 4nV
′′(0)
V (0)

. The coefficient c− of the non-normalisable mode is a

parameter in the field theory action, which sets the scale of the carrier mass. Specifically

m ≡ c
2z/(z+2−α)
− , (6.22)

which follows from relating the coupling of the operator O to m by dimensional analysis.

Meanwhile the normalisable mode determines the expectation value: 〈O〉 ∼ c+. In order

for the operator O to be relevant, we need z + 2 > α, which requires V ′′(0) < 0.

As long as θ remains small we can extend the linearized solution to larger v. The

solution to equation (6.19) linearised is9

θ(v) =
∑

±

c±v
(2+z±α)/2

2F1

(

2− z ± α

8
,
2 + z ± α

8
, 1± α

4
;−Y

)

, (6.23)

where Y = C2v4/V (0)2n. Using the hypergeometric transformation formulae, we can

express this in terms of functions of 1/Y . The condition that the growing mode at the

horizon, i.e. for Cv2 ≫ 1, vanish then gives

c+ = −c−C
α/2V (0)−n/2I−α,z/Iα,z , (6.24)

9When z = 2 the form simplifies to θ(v) =
∑

± d±v
2±α

2

(

1 +
√

1 + C2v4V (0)−2n
)∓α

4

.
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where

Iα,z =
Γ(1 + α/4)Γ(z/4)

Γ([2 + z + α]/8)Γ([6 + z + α]/8)
. (6.25)

One then obtains the horizon value (for small temperatures)

θ+ = (I−α,−z − Iα,−zI−α,z/Iα,z)(m
1/2zC−1/4V (0)n/4)z+2−α.

The linear approximation is self-consistent when this is small, Cz ≫ m2 up to factors of

order 1. In this limit we can see that v0 ∼ C−1/2, rather than being tied to the mass scale

m.

Before moving on to solve for the conductivity this background, we can briefly discuss

the thermodynamics of these solutions. The on-shell action is easily evaluated to give

TS

V2

= −τeffL
4

∫ v+

ǫ

dv
V (θ)n

v5+z

√

1 + v2fθ′2

v−4 + C2V (θ)−2n
. (6.26)

This formula generalises (3.13) to include a mass. (Just as in (3.13), we have dropped

powers of
(

2πα′

L2

)

; we have also set the magnetic field B to zero). The ‘spike’ or ‘tube’

region (6.20) then gives the contribution

TSspike

V2

= −τeffL
4V (θ+)

n

∫ v+

v0

dv
1

v5+z
1

√

v−4 + C2V (θ+)−2n
. (6.27)

This expression is the same as (3.13), but with the effective tension and the constant

C multiplied by powers of V (θ+). This contribution in fact contains almost all of the

temperature dependence of the free energy in the limit in which we are working, through

the endpoint v+. This then leads to the same thermodynamic temperature scalings we

found in section §3. There is additional temperature dependence through the µJ t term.

In the large charge density limit, where the linearised solution (6.23) is applicable, µ(T )

is given to leading order by the θ = 0 result, again recovering the previous massless

temperature scalings.

6.3 DC conductivity

The DC calculation presented in section 5.1 generalizes in a straightforward manner to

the massive case; equation (5.11) becomes,

σ(E, T ) =

√

(2πα′)4τ 2effV (θ⋆)2n +
(

2πα′

L2

)2
v4⋆(J

t)2 . (6.28)
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Here V (θ⋆) is evaluated at v⋆ defined in (5.8). When the mass of the charge carriers is

large in comparison to the charge density, V (θ(v⋆)) → 0 ensuring that the first term in

the conductivity, which is independent of J t, is suppressed as expected [13]. We can see

an instance of this in figure 4; in the upmost curve, the mass is larger than the charge

density and V (θ) ∼ 0 over a large range.

When the charge density is large compared to the mass, then V (θ(v⋆)) is finite and

order one, as we see in the lower curves of figure 4. The second term in the above equation

for σ still dominates because J t is large.

6.4 AC conductivity

The AC conductivity can be understood as a competition between the four dimensionful

quantities {T,m, J t, ω}. We are primarily interested in the low temperature regime, in

particular T ≪ m, (J t)z/2, and are therefore well away from phase transitions of the sort

described in e.g. [47]. Furthermore, we are working at fixed charge rather than fixed

chemical potential. At fixed chemical potential, there can be a phase transition to a

phase with no charge density when µ . m, as described in e.g. [50]. In short we are

mainly interested in the effect of m versus J t at low T .

6.4.1 Numerical results

Figure 5 shows the conductivities for the same parameter values as for the profiles in figure

4. One observes resonances at low charge density; these become discrete excitations of

the brane in the zero density limit. There is also an approach to a constant value at

high frequency; at frequencies much larger than the mass scale the massless result is

recovered. There are dips in between the peaks, as well as between the Drude peak and

the asymptotically constant behavior, as required by the Kramers-Krönig relations (to see

that the sums rules hold for the large density cases with z = 2, one needs to integrate out

to much large frequencies than those shown in the above plot). We are most interested

in the behavior at frequencies below these natural scales of the system, where the drag

calculation gave a power law. Here too we can perceive such a power law in the numerics,

the decay in the left hand region of the plots, as we now proceed to derive analytically.

38



0 20 40 60 80
0

2

4

6

8

10

12

Ω

T

Re HΣL

Τeff H2 Π Α 'L2

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Ω

T

Re HΣL

Τeff H2 Π Α 'L2

Figure 5: The dissipative conductivity for z = 1 (left) and z = 2 (right), with the same

parameter values as in figure 4

6.4.2 Maxwell fluctuations

Our goal now is to study the Maxwell fluctuations in the background solution θ(v). The

low frequency behavior arises from the regime v0 < v < v+ where θ is constant. We expand

the gauge field in fluctuations (5.19) and, for simplicity, consider zero momentum, k = 0.

In principle, we should also expand the scalar profile around the background θ(v) but

rotational invariance ensures that there are no mixing terms. The linearized equation for

the longitudinal fluctuation takes the form,

∂v

(

V (θ)nγ

√ −gtt
(gvv + L2θ′ 2)

A′
x

)

= −V (θ)nγ

√

−(gvv + L2θ′ 2)

gtt
ω2Ax . (6.29)

We can again put this fluctuation equation into Schrödinger form (5.23), now with the

change of variables Ψ = (V (θ)nγ)1/2 A⊥ and

d

ds
=

v1−zf
√

1 + θ′ 2v2f

d

dv
. (6.30)

The potential in the Schrödinger equation (5.23) is given by

U =
1

2

1
√

V (θ)nγ

d

ds

(

1
√

V (θ)nγ

d (V (θ)nγ)

ds

)

. (6.31)

We now solve the Maxwell equations in various regimes that will overlap at large

ω. Firstly, away from the asymptotic boundary (v = 0), the Schrödinger potential U is
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bounded, and in this regime we can solve the Schrödinger equation for Ax with ω2 ≫ U .

The answer is

Ax(v) ∝
eiωs(v)

V (θ)n/2γ1/2
, (6.32)

where

s(v) =

∫ v

0

uz−1

f

√

1 + θ′2u2fdu . (6.33)

There is no assumption about large C here. We have imposed ingoing boundary conditions

at the horizon, which fixes the sign of the exponent. This solution is to be matched onto

a solution that extends closer to the boundary.

Secondly, consider the large C limit and use the constant solution (6.20) for v > v0.

The Schrödinger equation for Ax can be solved for v0 < v ≪ v+, where f = 1. The

general solution is

Ax(v) = a1v
z
2
−1J 1

2
− 1

z

(

ωvz

z

)

+ a2v
z
2
−1J− 1

2
+ 1

z

(

ωvz

z

)

. (6.34)

When z = 2 these solutions are degenerate and the second Jν function is replaced by a

Kν function. At ωvz ≫ 1 this solution can be matched onto the ‘WKB’ solution (6.32)

which then picks out the mode that is ingoing into the horizon (the existence of an overlap

region requires ω ≫ T ). Thus we must have

Ax(v) ∝ v
z
2
−1H

(1)
1

2
− 1

z

(

ωvz

z

)

. (6.35)

If we furthermore assume that ωvz0 ≪ 1 then close to v = v0 we can take the limit ωvz ≪ 1

of the Hankel function to obtain

Ax(v) = Ax(v) = 1− π
(

tan π
z
− i
)

Γ
(

1
2
− 1

z

)

Γ
(

3
2
− 1

z

)

(

ωvz

2z

)1− 2

z

+ · · · . (6.36)

In the case z = 2 logarithms appear. The expansions thus require T ≪ ω ≪ v−z0 , which

is consistent with our previous assumption v+ ≫ v0. Equation (6.36) is similar, but not

identical, to an expansion appearing in the string computation (6.13). The dictionary

between the two can be determined by comparing the sources for the bulk field Bvx,

yielding ẋ = v3−zFvx which is found to map the Hankel functions onto each other. Further,
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the implication for a ‘local conductivity’ evaluated at v = v0 will now be seen to be the

same in the two pictures. The (a priori nontrivial) agreement between the two different

regimes is due to the spike behavior emerging in the large density limit. As we saw

previously for thermodynamics in (6.27), the emergent tube behaves effectively like a

string with a different tension. The local conductivity will be

σ(ω, v0) =
−iJx(v0)

ωAx(v0)
∝ τeff.Cv3−z∂vAx(v0)

ωAx(v0)
, (6.37)

where we used the usual definition

Jx(v0) = ΠAx(v0) =
∂L

∂A′
x(v0)

, (6.38)

evaluated on the constant θ background solution. The expansion (6.36) then gives

σ(ω, v0) ∝















τeff.Cv2−z0 ω−1 if z < 2

τeff.C (ω logωv20)
−1 if z = 2

τeff.C ω− 2

z if z > 2

. (6.39)

Together with the extensions considered immediately below, these scaling laws are our

main result for the conductivity at finite density.

Thirdly, we need to move into the region v < v0. We could avoid this step if we set

v0 to be below our UV cutoff radius ǫ. This would not necessarily be unreasonable, as we

might expect the mass scale to be of the order the lattice scale. In this case (6.39) would

be the final result. However, we will proceed without this assumption and consider the

conductivity as v → 0. Before presenting a computation, we will first give an argument

that anticipates the result. In essence, we will see that since we are working in a regime

ωvz0 ≪ 1, the frequency dependence just found in (6.39) will persist after continuing our

solution to the boundary.

Consider the local conductivity as a function of v: σ(ω,C, v0; v). We are in the regime

where f ∼ 1, because v < v0 ≪ v+, so v+ drops out and we have included all the remaining

parameters on which the conductivity could depend. Writing the local conductivity in

terms of its value at the boundary, we have without loss of generality

σ(ω,C, v0; v) = σ(ω,C, v0; 0)f̃(ωv
z, Cv2, v/v0) , (6.40)
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where the function f̃ approaches 1 at the boundary, v → 0.

Let us expand f̃ in powers of ω, which means powers of ωvz, ωvz0, and ωC−z/2. These

are all small: everywhere in the range of 0 ≤ v ≤ v0 we have that ωvz ≪ 1, which,

combined with the additional assumption that Cv20 & 1 means that also ωC−z/2 ≪ 1.

There cannot be any inverse powers of these quantities since that would ruin the boundary

behavior f̃ → 1. We do have the constant ω0 term because we know f̃ → 1 at the

boundary.

So in the limits of parameter space in which we are working, i.e. the physically relevant

regime T ≪ ω ≪ v−z0 . Cz/2, the ω-dependence of f̃ will be trivial. This means that the

ω-dependences found above in (6.39) will persist upon continuing the calculation from

v = v0 out to the boundary v = 0. The dependence on Cv2 and v/v0 need not be trivial,

and we expect a reshuffling of the dimensionful prefactors in (6.39).

We will now confirm this argument with an explicit calculation. For the linearised

(large charge density) solution, where θ remains small, we may set θ = 0 in the Maxwell

equation. Furthermore, at the low frequencies of interest ω2v2z . ω2v2z0 ≪ 1, the solution

to (6.29) is

Ax(v) = p1 + p2 (
√
Cv)z 2F1

(

1

2
,
z

4
, 1 +

z

4
,−C2v4

)

. (6.41)

The conductivity, evaluated on the boundary, is given by σ(ω) ∝ τeff.C
z/2ω−1p2/p1. Ex-

panding the solution (6.41) for Cv2 ≫ 1, i.e. into the constant regime, one obtains

Ax(v) = p1 + p2
Γ
(

1
2
− z

4

)

Γ
(

1 + z
4

)

√
π

+ p2
z

z − 2

(√
Cv
)z−2

+ · · · . (6.42)

which can be matched to (6.36). Restoring factors of 2πα′ and L2, the conductivity is,

σ(ω)

τeff.(2πα′)2
∝















(

2πα′

L2

)z/2
Cz/2 ω−1 if z < 2

(

2πα′

L2

)

C (ω logωv20)
−1 if z = 2

(

2πα′

L2

)

C ω− 2

z if z > 2

. (6.43)

This is now an exact result for the conductivity evaluated at the boundary, including

factors of C and v0. This result has required T ≪ ω ≪ v−z0 .
(

2πα′

L2

)z/2
Cz/2. Roughly this

corresponds to a low temperature regime where the frequency is lower than the energy

42



gap and charge density scales. These are both of order eV in the cuprates, and so this

regime may be roughly compatible with the experimentally measured anomalous scalings

(e.g. [5]), depending on the precise numerical relation of C and v0 to the charge density

and energy gap scales.

6.5 Model building

So far we have found two strange metal-like behaviors involving nontrivial exponents,

ρ ∼ T ν1 and σ(ω) ∼ ω−ν2 , (6.44)

with

ν1 = 2/z, ν2 = 2/z (z ≥ 2) , (6.45)

in pure Lifshitz backgrounds. In real-world strange metals, such as the cuprates, ν1 ≈ 1

and (according to some analyses, e.g. [5]) ν2 ≈ .65. These values would correspond in our

formulae to z = 2 and z = 3, respectively. It would be interesting to find a generalization

of our computations which produces different exponents for these two quantities. In this

subsection we will outline a mechanism for accomplishing this, though it is fair to say

that our simplest examples give the scaling (6.45).

Our strategy is to consider pseudo-Lifshitz solutions, in which the metric is Lifshitz but

there are scalar fields that run in the solution. One example of this setup was described

in [52], and others with interesting properties are under investigation [53]. The tension

τeff of the flavor brane generally depends on scalar fields such as the string coupling and

internal volumes in the four-dimensional Lifshitz background; in essence it is itself a scalar

field. In one of our regimes of interest, this brane forms a string-like spike realizing a finite

density of charge carriers.

Let us consider the case where the tension of this spike varies with radial position v

such that

τ ∼ vκ . (6.46)

There are various potential examples of this. One could consider, for example, a situation

where the string coupling runs in the solution. Then, if the flavor strings involved were
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D-strings, this would affect the dilute drag calculation of §5.4.1 by making the tension

1/gsα
′ run with scale, as we now show.

We can compute the AC conductivity in the situation just outlined. We will use the

dilute limit drag approach of §5.4.1 for simplicity, bearing in mind our previous observation

that the same scalings go through in the large density limit due to the formation of a spike.

The bulk equation of motion (6.8) on the bundle of strings becomes

∂v(fv
−1−z+κ∂vXω) = −ω2f−1vz−3+κXω(v) . (6.47)

For f ≈ 1, this has Bessel function solutions like those in (6.12), but now with index

ζκ =
1

2
+

1

z
− κ

2z
. (6.48)

This leads to a nontrivial falloff, for z ≥ 2− κ,

σ ∼ ω(κ−2)/z , (6.49)

i.e. the exponent is now ν2 = (2− κ)/z.

The next question is what happens to the DC calculation. The DC calculation in

§5.4.1 depends on f(v), which in turn depends on the black hole solutions with scalar

hair. As in §5.4.1 we impose ingoing boundary conditions at the horizon, which means

that

∂vX|v→v+ ∼ V

(v − v+)T
, (6.50)

in terms of the velocity V , with the temperature T ∼ f ′(v+)/v
z−1
+ .

The DC (ω = 0) equation of motion implies

fv−1−z+κ∂vXω = Ṽ , (6.51)

for a constant Ṽ . The conductivity is therefore

σDC ∼ J tV

E
∼ J t

α′

L2

V

Ṽ
∼ J tv2−κ+ , (6.52)

where we imposed the ingoing boundary condition (6.50) to obtain V
Ṽ

= v2−κ+ . The

question of whether the exponent in the DC resistivity is modified therefore boils down to
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the question of how T ∼ f ′(v+)/v
z−1
+ scales with v+ in this system with running scalars. It

would be interesting to pursue this in detail in future work. If one still has f = 1−vn/vn+,

then we get the same answer as before, T ∼ 1/vz+, and then we have ρ ∼ T (2−κ)/z, i.e.

ν2 = (2 − κ)/z. This would not decouple the two behaviors (DC and AC conductivity),

but does generalize our mechanism from pure Lifshitz, allowing for linear resistivity for

different z 6= 2 if the scalar determining the tensions runs with nontrivial κ as in (6.46)

above.

However, now we may use the fact that the DC calculation at ω = 0 and the AC one

in the regime ω ≫ T involve different ranges of scales. In a general solution, κ may itself

depend on radial position. For example, κ may jump across a domain wall in the bulk.

So it may be possible to shift the exponent ν2 relative to ν1 in order to mimic the strange

metallic behaviors. Strange metal phenomenology requires the nontrivial exponent ν1 6= 2

at ω = 0, for T ranging up to the melting temperature. At a given temperature T , the

phenomenology requires ν2 6= 1 over a range of frequency ω greater than T . In order to

accomplish this using the strategy just outlined, the domain wall would need to remain

outside the black hole horizon.

Similarly, let us briefly consider model-building possibilities for addressing the Hall

conductivity and generalizing it from the Drude-like result we obtained above in our

simplest model. If we could insert a different power of v in front of the F 2 terms in the

action it would change the scaling of the hall ratio (5.17), for the following reason. The

Hall ratio (5.17) for J t ≫ B, the case which is Drude-like, depends on B while the DC

conductivity T (2−κ)/z/J t does not depend on E or B. However, such an extra power would

also change the scaling of the J t terms in various quantities, and a full computation is

needed to see if there is a net effect.

One way such a modification might arise is if we had some source of stress energy

which generates an appropriate conformal factor in front of the Lifshitz metric, which

would be a distinct effect from the v-dependent tension leading to the shift by κ. Another

possibility is to consider a bulk theta angle, θ
∫

F ∧ F , which would shift J t by Bθ, also

affecting the Hall result.

Although these generalizations of our basic structure are somewhat complicated, it
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seems very interesting to investigate what set of bulk ingredients produce the suite of

anomalous strange-metallic behaviors. We leave detailed model building to future work,

and next turn to microscopic constructions of holographic Lifshitz backgrounds.

7 Lifshitz from string theory

In this section, we address an open problem in the literature on holographic duals with

Lifshitz symmetry, outlining three string theoretic constructions of such solutions.

S =

∫

d4x
√−gM2

P (R− 2Λ)− 1

2

∫

(F2 ∧ ∗F2 +H3 ∧ ∗H3)− c

∫

B2 ∧ F2 (7.1)

generates, for a special value of Λ, a Lifshitz solution with metric (3.1) (let us change the

radial coordinate to r = 1/v to match the form of the metric given in [16]). The form

fields in the solution are

F2 =

√

2z(z − 1)

L
θt ∧ θr, H3 =

2

L

√
z − 1 θx ∧ θy ∧ θr , (7.2)

in terms of the orthonormal basis of forms

θt = Lrzdt, θx = Lrdx, θy = Lrdy, θr = L
dr

r
. (7.3)

The condition on Λ that is required for this solution is that c and Λ be related according

to

c2 =
2z

L2
, Λ = −z2 + z + 4

2L2
. (7.4)

Turning this around, this means that in the Landscape of string vacua, the possible values

of the dynamical critical exponent z will be determined by the discretuum of possible

values of the cosmological constant and ‘mass’ c.

7.1 Lifshitz solutions from Landscape dual pairs

As reviewed above and in [54], in order to obtain the Lifshitz geometries as derived in

[16] from string theory, one requires not just the matter content (7.1) of [16] but also the
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relationship (7.4) between the Chern-Simons coefficient c and the cosmological constant Λ

in the four-dimensional effective theory. Another requirement is that the fluxes producing

the Lifshitz geometry not destabilize the moduli. It is interesting to ask whether this

is possible to obtain in the Landscape, where Λ is often tunable, and if so what is the

content of the dual field theory which generates this Lifshitz scale invariance. We will now

outline such solutions in a corner of the landscape developed recently where the dual field

theory is also known implicitly via the low energy limit of a specific brane construction.10

In string theory, the cosmological term Λ in (7.1) is a potential for dynamical scalar

field moduli of the compactification of extra dimensions. The fluxes F2 and H3 in the

above construction may come from a variety of fluxes in the underlying higher-dimensional

theory. Let us study the compactifications [56] of F theory on an elliptic fibration over

a six-manifold of the form Y 5 × S1, where the 5-manifold Y 5 is a Hopf fibration over a

four-dimensional base B. This model has a moduli potential of the form (with radii given

in string units and gs ∼ 111)

U ∼ M4
P (RfR6R

4)−1

(

R2
f

R4
− ǫ

R2
+

N2
c

R8R2
f

+
Q2

1

R2
6

+
Q2

3

R4R2
6

+
Q̃2

3

R4R2
f

)

(7.5)

where R
√
α′ is the size of B, Rf

√
α′ the size of the Hopf fiber, and R6

√
α′ the size of the

S1 factor in the geometry. The term proportional to ǫ arises from the curvature of the

compactification, including the effects of the 7-branes which partially cancel the positive

curvature of the Y 5 component. Here Nc is the number of units of 5-form flux along Y 5

and Q1 is the 1-form flux quantum number along the S1 factor. We have also included RR

3-form flux quantum numbers Q3 and Q̃3 threaded through 3-cycles in Y 5×S1, applicable

in the generic case that Y 5 contains 2-cycles and dual 3-cycles. Extremizing the potential

with respect to R, Rf , and R6, we get a solution with

R2
f ∼ ǫR2, R4 ∼ Nc

ǫ
, R2

AdS ∼ R2

ǫ
∼ R2

6

Q2
1

. (7.6)

10See [52] for recent constructions of Lifshitz-like theories with radially rolling scalars, and [55] for other

constructions of Lifshitz geometries that may be related to Chern-Simons theories.
11The string coupling is order one on the mutually nonlocal sets of 7-branes in the simplest constructions

[56]. The dilaton per se is typically heavy in F theory compactifications, and the moduli of the 7-branes

are flat to very good approximation, leading at worst to allowed tachyons.
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In deriving this we assume thatQ3, Q̃3 are small enough to make these terms subdominant,

but if we turn off the 1-form flux, similar scalings result but with Q1 replaced here by

Q3/R
2, Q̃3/R

2.

To begin let us identify p-form potential fields that descend to the 1-form and 2-

form potentials A1 and B2 prescribed in [16]. We cannot immediately take the flux B2 in

(7.1) to be simply the Neveu-Schwarz 2-form field of type IIB string theory in general in F

theory, since the type IIB 2-form fields generically undergo monodromy about the 7-branes

in these backgrounds. It is possible, however, to impose that the SL(2,Z) monodromy

matrix fix one eigenvector in the space of 2-form potential fields BNSNS
2 , CRR

2 ; this is not

compatible with fixing the axio-dilaton at a constant value, and in particular is away from

the Sen limit of weakly coupled orientifolds.

It is perhaps simpler to work with the S-duality invariant potential field C4. Let us

consider obtaining the Chern-Simons term in (7.1) for example from the worldvolume

coupling
∫

f2 ∧ C4 (7.7)

arising on D5-branes. We can consider a D5-brane wrapped on a 2-cycle in Y , at a point

in the S1, with its charge cancelled by flux, by an O5-plane, or by an anti-D5-brane at

the diametrically opposite point on the circle (though the latter is likely to suffer from a

disallowed tachyon). Equivalently, we may dissolve 5-branes into 7-branes and consider 7-

branes which wrap the S2×S1 times a contractible circle in the dual S3, with worldvolume

flux through the S2 and use the
∫

f∧f∧C4 coupling. In order to match to the parameters

of the effective theory, we must normalize the fields accordingly. To start, define

F̂2 ≡ f2, B̂2 ≡
∫

S2

C4 (7.8)

Rescaling the fields so as to normalize them as in (7.1) reveals that

c ∼ V
1/2
2

V 1/2
√
α′

(7.9)

where V2 ∼ R2 is the volume of the wrapped S2 in string units. Putting this together

with the structure of the moduli potential, we obtain

4z

z2 + z + 4
≡ c2

Λ
∼ V2R

2

V ǫ
∼ 1

Q1(Ncǫ)1/2
(7.10)
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where in the last step we plugged this into the stabilized solution (7.6). Again it is

interesting to note that the available values of the dynamical critical exponent z are

determined by the available values of the cosmological constant in the string landscape.

Alternatively, one can consider the Chern-Simons coupling
∫

f ∧ C6 on the 7-branes

already present in the model, as long as there is a monodromy-invariant combination of C6

and its S-duality partner in the 7-brane background. There are also bulk (closed string)

Chern-Simons couplings that may be used depending on the compatibility of their form

fields with the 7-branes in the model.

Finally, we must ensure that the added fluxes do not destabilize the moduli. Note that

the rescaling we did to normalize the fields as in (7.1) puts all the moduli-dependence of the

new degrees of freedom into the Chern-Simons term, which depends on one combination

of moduli (7.9); let us denote this combination eσc/MP in terms of a canonically normalized

scalar field σ. For z of order 1, this Chern-Simons term is of the same order as the leading

terms in the moduli potential, and for larger z it becomes less important. Canceling the

variation of the action with respect to σc, in the presence of this term, therefore shifts σ

by at most an amount of order MP . Since the radii are large to begin with, this leaves

us near the original solution. Furthermore, the Chern-Simons term does not contribute

to the variation of the action with respect to the four-dimensional metric, so the effective

four dimensional cosmological term is also close to its original value, still negative.

7.2 Landscape of holographic Lifshitz superconductors

Having now constructed Lifshitz solutions from the top down, we can consider systems

with superconducting instabilities and study how their parameters vary as we scan over

a corner of the landscape (c.f. [57]). In particular, it is interesting to ask whether the

non-Fermi liquid behaviors like (2.7) that we find are correlated with higher temperature

holographic superconductivity, analogously to what happens for some real world materials

(although strange metallic behavior is also observed in non-high Tc materials such as heavy

fermions), or if instead these features are independently variable. This type of question –

one which has been much discussed in the context of cosmology and particle physics – is

notoriously difficult to answer reliably. Here we will restrict ourselves to a few comments
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in the context of the constructions given above.

As reviewed for example in [9], holographic superconductors arise when the normal-

izable mode of a bulk charged scalar field condenses. Solutions of this type in Lifshitz

geometries have been described recently in [58]. We will not make a detailed study of

such theories here but rather discuss general features of the superconducting instability.

A charged scalar field has a (radially dependent) contribution to its mass squared of

order gttΦ(v)2 (where recall Φ = At in our notation). Now in our probe brane solution

(3.9), gttΦ(v)2 grows toward the IR region of the geometry (toward larger v). Roughly

speaking, an instability toward condensation of the scalar field sets in at the radial posi-

tion for which the total mass squared of the charged scalar goes more negative than the

Breitenlohner-Freedman (BF) bound [59, 60, 57]. The critical temperature Tc is deter-

mined by this scale, since the temperature of the black hole needed to barely screen this

instability depends on its radial position. This argument is incomplete as it is not the

asymptotic BF bound that is relevant in general. For instance at low temperatures it is

a near horizon BF bound that controls the instability.

One could ask the question of whether Tc increases as we increase z, deviating further

and further from Fermi liquid theory (2.7). The question is not precise until we decide

what to hold fixed in making this comparison. In the construction of §7.1, charged scalar

fields with bare mass m = 0 arise naturally from intersections of flavor branes. Therefore

these constructions come with the potential to become superconducting. In [16] the

analogue of the BF bound for Lifshitz geometries was derived:

m2L2 > −4 ⇒ m2 > −8|Λ|/(z2 + z + 4) . (7.11)

As discussed above, we can vary z by varying the ratio (7.4). If we hold M2
P/|Λ| fixed

as we increase z then it is clear from (7.11) that the scalar massless comes closer to

an instability in the absence of an electric field background. This may translate into a

higher Tc, although the profile Φ(v) itself depends on z so one should perform a complete

calculation to be sure. However, it is not clear that this is physically the correct ratio

to fix. More abstractly we have enough parameters in the construction to increase z

while keeping fixed |Λ|/(z2 + z + 4) and hence Tc. So even in the restricted corner of the

landscape we have studied so far, varying over different theories (analogous to varying
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over materials in the real world) can independently change z and Tc. It would be very

interesting to delve deeper into this question to see if useful correlations arise among

appropriately defined quantities in the landscape of holographic non-Fermi liquids. We

leave that for future work.

7.3 Lifshitz from brane polarization

In Eq. (3.27) we have seen that the backreaction of the brane fields on the metric becomes

strong in the IR. We have not yet solved the backreaction problem in general, but in

studying it have found an unexpected and novel realization of a Lifshitz solution, which

we describe here.

One mechanism by which singularities are resolved in string theory is brane polariza-

tion [61, 62], where a brane wrapped on the would be singularity expands to a finite radius

due to the potential from form fields, and screens the diverging fields. For hadronic sys-

tems at finite density, it has been noted that baryons can polarize in this way [63, 64, 65].

That work was in the probe approximation for 3+1 QCD; here we would like to take into

account backreaction in a conformal background.

For a single static baryon the action is

S =

∫

dt (−M
√−gtt + At) , (7.12)

where we have reduced on the dimensions in which the baryon is wrapped. We couple a

continuous distribution12 ρ(v) ≥ 0 of baryons to Einstein-U(1) theory,

S =

∫

d4x

[√−g

(

1

2κ2

[

R+
6

L2

]

−F(|F |2)
)

+ ρ
(

−M
√−gtt + At

)

]

, (7.13)

with F = dA. We have taken a general function of |F |2 = FµνF
µν/2; for field strengths in

the vt plane this allows us to treat DBI and Maxwell together, as well as generalizations.

We have omitted many fields that could appear in a realistic string background, such

as the dilaton and the compactification radius. In a more top-down treatment we must

12The baryons are discrete, but we have found in brane models that their density per curvature volume

is large, and so their backreaction will be smooth.
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include these; we will address this after first analyzing the simpler effective theory (7.13).13

We are interested in solutions with metrics of the form

ds2 = L2

(

−e2γt(v)dt2 + e2γx(v)(dx2 + dy2) +
dv2

v2

)

, (7.14)

and gauge potential At(v).

Whenever a solution to the equations of motion can be found that is compatible with

the constraint ρ ≥ 0, then we can eliminate ρ from the action. The ρ equation of motion

implies that

At = MLeγt(v) or ρ(v) = 0 , (7.15)

representing either an extremum or an endpoint of the action. In the former case, the

resulting action for γt,x is

S =
L2

κ2

∫

dv

v
eγt+2γx

{

3− (κ2L2)F(−M2v2γ′2
t /L

2) + 2v2γ′
tγ

′
x + v2γ′2

x

}

. (7.16)

Also, the At equation gives

ρ = 2ML∂v(e
2γxF ′vγ′

t) . (7.17)

In a scaling solution, vγ′
t = f and vγ′

x = k are constants. In this case the equations of

motion reduce to

0 = 3− (κ2L2)F(−M2f 2/L2)− f 2 − fk − k2 , (7.18)

0 = −f 2 − fk + 2k2 + (2κ2M2)(f 2 + 2fk)F ′(−M2f 2/L2) . (7.19)

Let us specialize to the Maxwell action

F(x) =
x

2g2
=

|F |2
2g2

(7.20)

Then

0 = 3 + (µ2 − 1)f 2 − fk − k2 , (7.21)

0 = −f 2 − fk + 2k2 + 2µ2(f 2 + 2fk) , (7.22)

13In fact, this truncated action has a nonsingular solution even without brane polarization, as we will

discuss in a later subsection, though as we will also discuss this solution is subject to an instability in

the presence of a bulk fermi sea.
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where µ2 = M2κ2/2g2. The dynamical critical exponent is given by the ratio z = f/k.

The two possible values are readily obtained from Eq. (7.22),

z = −2 ,
1

1− 2µ2
(7.23)

Note that

ρ =
2fkLM

g2v
e2γx (7.24)

is positive only when f and k have the same sign, so we must take the second solution,

and only for 1 > 2µ2; also, f and k as given by Eq. (7.21) are then real. Similar results

hold for the DBI and other actions.

The density (7.24) is constant per unit three-volume in the bulk, and so its integral

diverges toward the boundary. At finite baryon density, the charge density must be zero

for v less than some minimum value, and the full solution is AdS4 near the boundary,

with a transition region around the discontinuity in the density, and approaching to the

Lifshitz solution in the IR.

This suggests an interesting element of the holographic dictionary. Discrete remnants

of translation symmetry is a familiar possibility in real space. Holography maps the radial

direction into scale. Putting these together, a discrete remnant of scale symmetry may

occur naturally in field theories with holographic duals.

To apply this mechanism to our construction, we have two cases: the U(1) is electro-

magnetism, or it is a new gauge symmetry on another brane. In the latter case, this can

provide the Lifshitz bulk that we need in our construction. The other case, where the elec-

tromagnetic U(1) is inducing the polarization, is interesting and brings up the question

of the microscopic origin of our model. Generally, there are color branes with strongly

coupled gauge fields, and flavor branes, with charged fields living on the intersection. The

electron itself must be neutral under the emergent color group, and so is identified with

the lightest color singlet electromagnetically charged state. In many models, depending

on the brane configuration, this will be the baryon. Thus one can think of the electron

in these models as separating into N spinons (in some others it will be a scalar-fermion

bilinear). In the phase we are discussing here, these would be confined into localized

electrons, so this would likely be a normal rather than a strange state.
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7.3.1 Baryon-induced Lifshitz: top down considerations

In the above discussion, there were two string-theoretic issues left unresolved: the moduli-

dependence in the effective action (7.13) and the possible values of z (equivalently µ2) in

(7.23). Let us analyze these next using more details of the internal structure of string

and M theory compactifications. We will start by determining z in a class of string

constructions assuming the moduli are still stabilized in the presence of the new sources

generating Lifshitz. Then we will explain how the stabilization of the moduli is affected

by the new sources, finding that they remain stabilized for a range of z which includes

the value (z = 2) that we obtain in our simplest models.

Let us take the Maxwell case for simplicity. The baryon is a p-dimensional-brane

wrapped on a p-cycle Σp of volume Vp in Planck or string units (for example one could

consider the M theory case, with eleven-dimensional Planck length ℓP ). The U(1) is

A ≡ A(1) =
∫

Σp
A(p+1) in terms of the p+ 1-form potential A(p+1) sourced by the p-brane.

Because we will be interested in computing z, let us normalize these elements explicitly:

A(p+1) ≡ A(1) ∧ ω(p), µp

∫

Σp

ω(p) ≡ 1 (7.25)

This way we reproduce the coupling
∫

d4xρAt in the effective theory (7.13). In M theory

we have M2-branes (p = 2) and M5-branes (p = 5), with µp = (2π)−pℓ
−(p+1)
P .

As discussed above,

z =
1

1− 2µ2
, µ2 =

M2κ2

2g2
. (7.26)

Here

M = Vpℓ
p
P τp (7.27)

in terms of the p-brane tension τp = µp. Also

κ2 =
(2π)8ℓ2P
2V

, (7.28)

and from the dimensional reduction of the kinetic term for A(p+1) we have

1

2g2
=

1

p!(2π)8ℓ9P

∫

d7x
√

G7 ω(p)i1...ip ω
i1...ip
(p) . (7.29)
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where
√
G7 is the square root of the determinant of the metric of the internal seven

dimensions. Note that for a simple product geometry, or anything close to it such as a

fibration, this quantity will scale like V/V 2
p , leaving no dependence of z (7.26) on V and

Vp.

In general, in order to evaluate µ2 (7.26), we need information about the geometry

to compute (7.29). However, a very simple case to consider to begin with is that of D0-

branes sitting at a point in the compactification on a six-manifold X6. Coming back to

string theory then, we have for the D0-brane mass

M =
1

gs
√
α′

(7.30)

The form ω(p) (7.25) becomes simply ω(0) =
√
α′.

The D0-brane sources the 1-form gauge field A(1) in type IIA string theory, with kinetic

term |F |2V ol(X6)α
′/4κ2

10. Plugging into (7.26), using that κ
2 = κ2

10g
2
s/V ol(X6), we obtain

µ2 =
1

4
⇒ z = 2 (7.31)

It is interesting that this calculation lands us on the simple value of z which also leads

to linear resistivity in our simplest setup. (In order to connect to that discussion, we

need to include flavor branes in the compactification on X6). One obtains the same result

z = 2 for a Dp-brane wrapped on one factor of a product manifold. On more complicated

manifolds there are effects that go in both directions. If there are components of ω(p)

not tangent to the wrapped brane, as in nontrivial fibrations, they increase the kinetic

term (7.29) and therefore also µ2 and z; if µ2 ≥ 1/2 then the branes do not polarize at

all. On the other hand, if the brane wraps in a region with warping, its tension, as well

as µ2 and z, are reduced.

Specific examples of IIA compactifications with known field theory duals which we

can use for this purpose include the near horizon limit of D2-branes and flavor D6-branes

(equivalently a certain orbifold of M theory on S7) and the IIA limit of the ABJM theory

[66] (another orbifold of M theory on S7). Another class of models arises at large radius

from type IIA on S6 with 6-form flux and flavor D4-branes. Altogether, this simple

construction provides concrete, though ultimately discrete, Lifshitz geometries from string

theory.
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More generally, we could consider baryons in M theory on a spectrum of different

manifolds such as Q(1, 1, 1) and Yp,k [67]. See [68] for a recent discussion of baryons

from wrapped 5-branes in Q(1, 1, 1); these do not condense in their simplest setup as can

be seen from similar reasoning to that given above. It will be interesting to analyze the

spectrum of available values of z from brane-polarization induced Lifshitz in the Landscape

(Freund-Rubin and beyond). Of course, these are at best toy models for several reasons;

for example, the supersymmetry preserved by some of the underlying theories [67, 69, 66]

renders them distant from direct condensed-matter applications.

Let us next address the question of whether the moduli are destabilized by the polar-

ized branes and the field strength Fvt turned on in our background. Let us begin with a

stabilized AdS4 solution in the absence of these additional ingredients, and analyze their

effects on the moduli, in a metric that takes a product form as just discussed. After

substituting the solution to the ρ equation of motion, we have a term in the Lagrangian

proportional to

−√−g
1

g2
F 2 ∼ √−g

M2f 2

g2L2
∼ √−g

τ 2pV f 2

L2
(7.32)

In the last step we used (7.27) and that in the product-like form of the metric, 1
g2

∼
V
V 2
p

(the inverse powers of Vp coming from the fact that A descends from the higher-

rank p-form potential A(p)). This term scales like the 4-dimensional curvature term.

Let us focus on the type IIA examples mentioned above. If we Weyl rescale, sending

gµν → gµνg
2
s/V ol(X6) to go to four-dimensional Einstein frame, we remove the moduli

dependence from the Einstein term in the standard way. In so doing, we also almost

remove the moduli dependence from the extra term (7.32), since it scales the same way

in terms of powers of gµν . Remembering that f = dγt/d log v and that gtt ∼ e2γt , and

integrating by parts once, one finds a residual dependence on one combination of the

moduli which is proportional to µ2f(f+2k) log(V ol(X6)/g
2
s). We find in explicit examples,

such as type IIA on S6 with 6-form flux and flavor D4-branes, that this extra term shifts,

but does not eliminate, the solution for the moduli for sufficiently small µ2. In particular,

the value of interest (7.31) for our explicit construction is in this range.

Another question is whether there are relevant perturbations of these Lifshitz solutions

as in [16], so that one must tune to reach the fixed point. We leave this question for future
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work. There is yet another type of potential instability to consider in holographic models

which we will describe in the final subsection below. The present models are subject to

this instability, but as we will see the effect is negligible – the instability is very slow – in

certain limits (large N , large radius or finite temperature).

7.4 Backreaction in a Fermi surface model

Refs. [7] considered a possible holographic model of a Fermi liquid, in which a Reissner-

Nordstrom black hole is surrounded by a bulk density of charged fermions. Although

somewhat different from the baryon gas considered in the previous model, we are led to

examine the backreaction of the fermions on the solution.

The Einstein-Maxwell action

S =
1

2κ2

∫

d4x
√−g

(

R+
1

L2
2

− L2
2

2e23
FµνF

µν

)

, (7.33)

has an AdS2 × R
2 solution

ds2 = L2
2

(−dτ 2 + dv2

v2
+ dxidxi

)

,

Aτ = e3/v . (7.34)

In the constructions of [7], this near-horizon geometry goes over to AdS4 toward the

boundary, but our discussion will only involve the AdS2 region. Coupling in a Dirac

fermion of massm and charge q, there is a condensation of bulk fermions when qe3 > mL2.

Let us calculate the total charge carried by these fermions. This is simple in the case

qe3 ≫ 1, qe3 ≫ mL2. The WKB approximation gives coordinate momentum kv ∼ qe3/v,

which is large on the scale v on which the geometry varies. Thus we study the bulk Fermi

sea in a locally flat geometry. The Fermi energy seen by an inertial observer is

qAτ̃ = qAτ/
√−gττ = qe3/L2 , (7.35)

and the number density for relativistic fermions, in inertial coordinates, is

ñ =
q3A3

τ̃

3π2
=

q3e33
3π2L3

2

. (7.36)
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To obtain the total density in the field theory we must integrate with the invariant volume

element in the radial direction,

ρCFT = q

∫

L2dv

v
ñ . (7.37)

The divergence at small v is cut off by the transition to the AdS4 geometry, but the

divergence at large v is real and implies that backreaction cannot be neglected.

This density should be compared with the charge density of the black hole itself,

ρRN =
1

κ2e3
, (7.38)

so that
ρCFT

ρRN

≈ q4e43
κ2

L2
2

ln∞ . (7.39)

We have assumed qe3 to be large to permit the WKB approximation, but the conclusion

is general as long as we are in the regime where there is a density of fermions. The vector

potential Aτ leaves a scale symmetry unbroken, so the density will always be constant in

inertial coordinates, and thus diverge with the spatial volume of AdS2. For qe3 not large,

the coefficient of the logarithm is small in the supergravity regime, and so the effect of

the backreaction becomes significant only at the largest scales.

To figure out the true geometry we again adopt the metric Ansatz

ds2 = L2
2

(

−e2γτ (v)dτ 2 +
dv2

v2
+ e2γx(v)dxidxi

)

. (7.40)

The action is

S = Sψ +
L2
2

2κ2

∫

d3x

∫

dy

(

eγτ+2γx(1 + 4γ̇τ γ̇x + 2γ̇2
x) +

1

e23
e−γτ+2γxȦ2

τ

)

, (7.41)

where y = ln v and a dot denotes ∂/∂y. The field equations are

1− 4γ̈x − 6γ̇2
x −

1

e23
e−2γτ Ȧ2

τ = 2κ2L2
2T

τ̃ τ̃ ,

1− 2γ̈x − 2γ̈τ − 2γ̇2
x − 2γ̇xγ̇τ − 2γ̇2

τ +
1

e23
e−2γτ Ȧ2

τ = −2κ2L2
2T

x̃x̃ ,

1− 4γ̇τ γ̇x − 2γ̇2
x −

1

e23
e−2γτ Ȧ2

τ = −2κ2L2
2T

ṽṽ ,

e−γτ Äτ − e−γτ (γ̇τ − 2γ̇x)Ȧτ = κ2e23L2j
τ̃ . (7.42)

58



We will again assume e3q to be large, so the inertial frame energy density, pressure, and

charge density are given by the local equation of state of the Fermi gas,14

T τ̃ τ̃ = 3T ṽṽ = 3T x̃x̃ =
q4A4

τ̃

4π2
, j τ̃ =

q4A3
τ̃

3π2
, Aτ̃ ≡ Aτ/L2e

γτ . (7.43)

It is natural to look for a solution with Lifshitz scaling, as the contraction of the

transverse directions will regulate the divergence of the charge. Inserting

γτ = ay , γx = by , Aτ = µecy , (7.44)

one finds that the field equations require that c = a and that

1− 6b2 − a2w = 3ǫw2 ,

1− 2a2 − 2ab− 2b2 + a2w = −ǫw2 ,

1− 4ab− 2b2 − a2w = −ǫw2 ,

abw = ǫw2 . (7.45)

Here we have defined w = µ2/e23, while

ǫ =
κ2

L2
2

q4e43
6π2

(7.46)

is the same dimensionless expansion parameter appearing in the charge ratio (7.39). These

four equations for the three unknowns a, b, w satisfy one linear relation, owing to the

Bianchi identity.

Expanding for small ǫ, we find

a ∼ −1 + ǫ , b ∼ −ǫ , w ∼ 1− ǫ , (7.47)

so we recover the unbackreacted solution as ǫ → 0. The Lifshitz exponent z = a/b ∼ 1/ǫ is

large. Even for small ǫ, however, there is a large qualitative effect. The total flux emerging

from v = ∞ now vanishes, and the charge previously attributed to the black hole is now

carried entirely by the bulk fermions. One can also see this from the charge (7.37): at

small ǫ the charge density is essentially unchanged, but the total volume is now
∫

dv

v1+2ǫ
=

1

2ǫ
, (7.48)

14Backreaction of a bulk Fermi gas in another situation was considered in Ref. [70].
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with the result that the bulk contribution to the charge density is exactly equal to that

which had been attributed to the black hole. Although the local density of bulk fermions is

suppressed by κ2/L2
2, which is an inverse power of N , the bulk volume gives the reciprocal

power. Further, the horizon area is now zero, eliminating the widely discussed puzzle

regarding the zero temperature entropy.

Note that for mL2 > qe3 (which is outside the regime of Fermi surface behavior [7])

there is no bulk charge and the horizon is still present. As e3 is increased, it becomes

energetically favorable for the charge instead to be carried by explicit bulk fermions. In

this phase, the black hole is unstable to radiating all its charge into the bulk. There is no

intermediate regime where the charge is shared between the black hole and the bulk. It

would be interesting to understand the behavior of the entropy during the transition.

The Fermi liquid pole identified in the second and fourth papers of [7] arises from a

state in the domain wall region between the AdS4 and AdS2 geometries, and so is not

strongly affected by this modification in the extreme IR.15 Also, the modification of the

throat involves energy scales exponentially small in L2/κ2, and so will have little effect at

temperatures larger than this. However, given there may be no small parameter L2/κ2 in

the real systems, the backreaction effect is likely to be important. The relation between

the bulk and boundary Fermi surfaces should be better understood.

7.5 Charged black holes versus probe branes

For many applications of the holographic correspondence to condensed matter systems,

it is essential to introduce a finite charge density. Some of the deepest questions in the

field are concerned with strongly coupled physics at finite density and the rearrangement

of the Fermi surface that appears to occur at quantum critical points in the cuprate and

heavy fermion phase diagrams. The strange metallic physics of these materials, that has

been the inspiration and focus of this paper, is likely to be tied to an exotic non-Fermi

15Note that the existence of these states in the domain wall, and the presence of the Fermi sea down to

the AdS2 horizon, are not directly connected. Over most of the parameter space of Ref. [7], the former

implies the latter. However, T. Faulkner informs us that there are situations where this will not be the

case, and so the AdS2 geometry will still be present.
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liquid description of matter at finite density.

To capture the correct new physics, it is expected to be important to be in a regime

in which the strongly coupled charged degrees of freedom are not dilute, in the sense

of including nonlinearities in the charge density. While holography automatically works

in a strongly coupled regime, without quasiparticles, there have been two approaches to

finite density in the applied holography literature, and it may be useful to compare and

contrast.

The charge density is the time component of a conserved current. Via the basic

holographic dictionary, a conserved current has a dual description as a Maxwell field.

Nonlinearities in the charge density in the field theory will be captured by interactions

of the Maxwell field in the bulk. In one approach (e.g. [71, 35, 36, 60, 7]) the Maxwell

action takes the usual simple quadratic form F 2. However, this Maxwell field is then

coupled to a dynamical metric and possibly charged fields which induce interactions in

the Maxwell sector. One fairly robust feature of this setup (in the large N limit) is that at

the quantum critical point (i.e. without relevant operators turned on or condensates) the

finite density theory is dual to a charged black hole which at zero temperature becomes

an extremal black hole with a near horizon AdS2 × R
2 region.

A second approach is to consider a nonlinear action for the Maxwell field (e.g. [47, 13,

14, 44]) and ignore the interactions of the Maxwell field with the metric. This is the probe

approximation we have used in this paper. There is some ambiguity in choice of an action

here, a favorite is the DBI action [72], as this arises naturally on D-branes in string theory.

It also has the appealing property of a maximal field strength. Within string theory, the

square-root (DBI) action we have been using to govern the gauge fields is dual to the

action m
∫

dt
√
1− ẋ2 for the motion of relativistic particles. An interesting aspect of the

D-brane actions is that it may be possible to construct explicitly the gravitational dual

of a theory in which at weak coupling the charge density is carried entirely by fermions.

Ultimately to move into an experimentally interesting regime it is likely to be necessary

to combine these approaches. For instance, a phenomenological 3+1 dimensional bulk

model incorporating aspects from both approaches is a gravitating DBI action

S =
1

2κ2

∫

d4x
√−g

(

R+
8

L2

)

− 1

κ2L2

∫

d4x

√

− det
(

gab +
κL
g
Fab

)

, (7.49)
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with F = dA. The numerator of the cosmological constant term is 8 = 6 + 2 in order to

cancel the contribution of −2 from the DBI action at F = 0. One solution of this theory

that can be found explicitly is the metric

ds2 =
4L2

15ρ2

(

−
(

1− ρ2

ρ2+

)2

dt2 + dρ2

)

+ L2
(

dx2 + dy2
)

, (7.50)

and field strength

F =
gL√
15κ

(

1− ρ2

ρ2+

)

dρ ∧ dt

ρ2
=

g

2κL
vol2 . (7.51)

These are candidate solutions for the near horizon geometry of low temperature black

holes. The temperature is given by T = 1
πρ+

. In the zero temperature limit, ρ+ → ∞, the

metric becomes AdS2×R
2. Thus we see, as one should have anticipated, once gravitational

backreaction is included the DBI theory has important features in common with the

Einstein-Maxwell approach. As derived in the previous subsection, bulk fermions will

condense in this background, leading to a Lifshitz solution all told.

7.6 Fermi seasickness

For completeness, let us briefly note another source of instabilities which we have come

across in analyzing string-theoretic models of finite-density field theory.16 We will start

by describing the effect, and then explain that it is a very long-time instability in many

finite density systems, including those that we study.

String theory contains branes of various dimensionalities [74]. Within the d + 2 non-

compact dimensions, some of these are domain walls lying at some radial position v(t) in

the gravity side warped throat geometry; the radial position is a motion collective coor-

dinate of the brane. We include time dependence here because generically a domain wall

feels a nontrivial potential driving it to a larger or smaller value of v. If the potential

provides a restoring force driving all domain walls toward the IR (large v), then these

branes do not represent an additional instability. But if the potential drives any of the

branes up toward the UV end of the throat, this represents a new instability.

16A similar class of instabilities is under investigation in other works [73].
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Such a potential may get contributions from many sources. In a quantum critical

theory, its form is limited by the scaling symmetry; an example of this is the λφ4 =

L4/α′4v4 potential for anti-D3-branes in AdS5. Our main interest here is that at finite

density, the bulk gauge field dual to the quantum field theory chemical potential in general

contributes to this potential.

The effect of interest is rather simple. Consider for example a set of color p-branes and

flavor q-branes, with q > p. For massive charge carriers, the two are displaced from each

other. Flavors are p-q strings. A chemical potential for these strings introduces a finite

density of them. They pull out on the color branes, moving them away from the origin in

the space of adjoint scalar fields, toward the flavor branes. So far we have described this in

the weakly coupled D-brane picture, so let us translate this to strong coupling. The flavor

branes become space filling branes on the gravity side of the holographic correspondence,

the strong ’t Hooft coupling limit of the field theory. A flavor U(1) gauge field with an Fvt

field strength implements the chemical potential as we discussed at length in the above

analysis. This field costs energy, but it can reduce its energy by ending on a domain wall

p-brane at a finite radial position v in the bulk. This introduces a potential driving the

brane up the throat. The potential suggested by this effect is linear, and hence tends to

beat the underlying quantum critical potential near the origin even if the latter leads to

a restoring force.

More generally, independently of the presence of flavor branes, this instability can

arise if the gravitational pull toward the bottom of the throat is overcompensated by

electric fields from fluxes which are presence in the construction. In the models of brane-

polarization-induced Lifshitz discussed above, we find that this instability arises for the

D2-brane theories describe there, with the exception of D2-D4. But the latter has an

instability in a transverse direction: a D2-brane brought out to a finite radial position is

unstable to dissolving into the flavor D4-branes in that case.

As we have mentioned, this instability involves a scalar field collective coordinate of the

domain wall branes. We might expect this problem to be absent in realistic field theories

for condensed matter physics, which may not include such scalar fields. However, in

holographic systems controlled by a general relativistic approximation and UV completed
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by string theory, the ubiquity of branes suggests that this is a fairly generic issue. From

the point of view of the dual field theory, most CFT’s with geometric duals have nontrivial

moduli spaces or pseudomoduli spaces, and at finite density it often turns out to the case

that the moduli are driven away from the IR point of interest. It may be possible to

prevent this problem with model building maneuvers, such as projecting out scalar modes

via orbifolding (e.g. by requiring that all the p branes be fractional branes).

Once this problem is present, is there any way to obtain relief from Fermi seasickness

without eliminating the Fermi sea itself and returning to the dry landscape? Firstly, it is

interesting to note that the motion of the brane collective coordinate toward or away from

the origin is limited by the speed of light in the bulk [29]; in the large-Nc approximation

in which we are working this process takes forever. Warming the system up also helps:

the black hole pulls the color branes back toward the origin. This renders the system

metastable.
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