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Towards super-clean graphene
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Sergei Lopatin8, Yihan Zhu9, Kaicheng Jia1, Shulin Chen10, Dingran Rui4, Jingyu Sun11,12, Ruiwen Xue 13,

Peng Gao 14, Ning Kang4, Yu Han 9, H.Q. Xu4, Yang Cao3, K.S. Novoselov6, Zhongqun Tian 3, Bin Ren 3,

Hailin Peng 1,15 & Zhongfan Liu 1,15

Impurities produced during the synthesis process of a material pose detrimental impacts

upon the intrinsic properties and device performances of the as-obtained product. This effect

is especially pronounced in graphene, where surface contamination has long been a critical,

unresolved issue, given graphene’s two-dimensionality. Here we report the origins of surface

contamination of graphene, which is primarily rooted in chemical vapour deposition pro-

duction at elevated temperatures, rather than during transfer and storage. In turn, we

demonstrate a design of Cu substrate architecture towards the scalable production of super-

clean graphene (>99% clean regions). The readily available, super-clean graphene sheets

contribute to an enhancement in the optical transparency and thermal conductivity, an

exceptionally lower-level of electrical contact resistance and intrinsically hydrophilic nature.

This work not only opens up frontiers for graphene growth but also provides exciting

opportunities for the utilization of as-obtained super-clean graphene films for advanced

applications.
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S
urface contamination has long been a great challenge in the
whole society of carbon materials1, and still unresolved in
graphene2,3. The surface contamination has been inten-

sively highlighted as a major hurdle in probing intrinsic prop-
erties of graphene3–6, and strongly hinders device performance
and applications of graphene, such as surface chemistry7–10

ultrahigh speed electronics2, and transmission electron micro-
scopy (TEM) support11, where clean surface is highly needed.
Among the various methods for graphene synthesis, chemical
vapour deposition (CVD) approach, especially on Cu substrate,
holds great potentials in the scalable and cost-efficient production
in a controllable fashion12. Despite recent advances in dictating
the grain size and scalability13,14 in CVD approaches, the growth
of clean graphene films by eliminating surface contamination
remains a daunting challenge2. Although much attention has
been paid to post-growth processing aiming for higher degree of
cleanness, with an emphasis on the suppression of transfer-
related impurities15–18 and airborne contaminants5, the varia-
tions in reported cleanness indicate that the dominant processes
and intrinsic root of contamination still remain to be
unravelled2,15.

Herein, we prove that the contamination on graphene surface
is primarily introduced during the high-temperature CVD
growth. The growth of metre-scale, super-clean graphene with
advanced performances is facilely realised through the continuous
supply of Cu vapour, via an ingenious substrate design using
alternating stacks of Cu foil and foam.

Results
Intrinsic contamination on graphene surface during growth.
During the high-temperature catalytic growth of graphene on Cu,
the graphene surface becomes simultaneously contaminated due
to the generation of amorphous carbon, which has been widely
reported to be stable in CVD conditions (Fig. 1a)19. The com-
petition between the formation of sp2 crystalline carbon (gra-
phitisation process) and amorphous carbon during a CVD
reaction primarily determines the cleanness of the graphene
surface, and this phenomenon has been discussed intensely in
academic and industrial settings in relation to the preparation of
synthetic graphite and diamond19,20. In the course of graphene
growth, Cu would catalyse the decomposition of hydrocarbons as
well as the graphitisation process. However, the catalytic activity
of Cu would be limited gradually upon the increase of graphene
coverage, presumably leading to the formation of amorphous
carbon19,21.

Figure 1b shows an atomic force microscopy (AFM) view of
graphene on the Cu substrate, right after growth. Sites of
discontinuous surface contamination with a thickness of ~1 nm
are clearly visible. The presence of surface contamination
immediately after graphene growth seems quite ubiquitous,
which was also observed in samples from other research groups
(Supplementary Fig. 1). The high-resolution transmission elec-
tron microscopy (HRTEM) image of obtained graphene mem-
brane transferred without the aid of polymer scaffold15,22 clearly
manifests the universal distribution of amorphous carbon
contaminants (Fig. 1c), leaving the clean graphene areas at only
tens of nm2 (Fig. 1c, inset), in good agreement with previously
reported observations2,15. Detailed elemental inspections further
reveal that the contaminated regions are enriched with carbon
and copper species (Supplementary Fig. 2). In addition, X-ray
photoelectron spectroscopy (XPS) analysis identifies that the
carbon species within the surface contamination contain sp3-
carbon (Supplementary Fig. 3).

Tip-enhanced Raman spectroscopy (TERS) with improved
lateral resolution and sensitivity23 was utilised to explore the

composition and origin of the surface contamination. The
representative TERS spectra of some graphene regions show
prominent D (1350 cm−1) band signal (blue curve in Fig. 1d;
Supplementary Fig. 4b), while the 2D-band mapping over the
same area exhibited a high 2D band density, indicating the
intrinsically high quality of the graphene (Supplementary Fig. 4c).
The prominent D band in TERS was also observed in samples
from other research groups (Supplementary Fig. 5). Therefore,
the prominent D band intensity here is originated from the
surface contamination rather than graphene itself, and was taken
as the signature of amorphous carbon24. Note that, due to
considerably higher spatial resolution and selective enhancement
of D band intensity than that of conventional Raman techni-
ques23, the observation of visible D band would be only possible
in TERS (previous reports regarding TERS of graphene, see
Supplementary Table 2), in contrast with in-situ far-filed result
(dark cyan) and results in conventional Raman spectroscopy
(Supplementary Fig. 6 and Supplementary Table 1). Furthermore,
the TERS mapping using the D band (Fig. 1d, inset) shows a
similar distribution to that of contamination obtained by AFM. In
this way, through TERS, we can differentiate between the clean
graphene regions (with nearly no D band, red curve in Fig. 1d)
and contaminated graphene regions (high D band intensity, blue
curve in Fig.1d).

To clarify the origin of the surface contamination, a 12C/13C
isotope-labelling technique21 was employed (Fig. 1e). The evident
difference in the contamination-related peaks between the 12C
and 13C samples indicates that amorphous carbon has already
been isotopically labelled by the carbon feedstock employed in the
CVD procedure. In addition, time-of-flight ion mass spectro-
metry (ToF-SIMS) analysis verifies that the carbon source fuels
the dual formation of graphene and amorphous carbon during
CVD (Supplementary Fig. 7). Altogether, our results unambigu-
ously reveal that surface contamination is mainly introduced
during the high-temperature synthetic process.

The direct and large-area visualisation of amorphous carbon
on graphene/Cu foil is the key to the exploration of contamina-
tion mechanism towards the growth of clean graphene. This can
be readily achieved through the exposure of as-grown graphene/
Cu to TiCl4 vapour in humid air, where TiO2 nanoparticles were
in-situ deposited on the graphene/Cu25. Interestingly, these TiO2

nanoparticles would be preferentially and selectively adsorbed
onto the contaminated regions of graphene (Supplementary
Fig. 8). Thanks to the strong Mie-scattering ability of TiO2

nanoparticles to visible light, the as-grown, large-area graphene
surface turns multi-coloured after TiO2 deposition, in sharp
contrast to the unexposed graphene/Cu sheets (Fig. 1f), thereby
indicating the adsorption of large amounts of TiO2 particles on a
predominantly unclean surface (Fig. 1f, inset). This urges us to
pay further attention to the advancement of CVD synthetic
protocols leading to the production of super-clean graphene films
at a large scale.

Growth of metre-scale, super-clean graphene. Based on the
aforementioned insights, we devise a substrate architecture via
stacks of Cu foil and Cu foam (Fig. 2a) (Cu foil-to-foam distance
of ~15 μm, Supplementary Fig. 9) to realise the controlled fabri-
cation of super-clean graphene films. The key aspect is an inge-
nious catalyst design utilising Cu foam mediation leading to the
growth of super-clean graphene without detectable contamina-
tions, as witnessed by AFM (Fig. 2b). The as-obtained graphene
was further characterised by HRTEM (Fig. 2c), showing con-
tinuous, clean sheets with negligible amorphous carbon regions
and easily observable atomic lattices (Fig. 2c, inset). Indeed, our
prepared graphene possesses much higher degree of cleanness
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(accounting for >99% clean regions) as compared with the pre-
viously reported data and methods (Supplementary Table 3 and
Supplementary Fig. 10)15,26–28. This confirms the feasibility and
significance of our protocol design in obtaining super-clean
graphene, with emphasis on suppression of contamination during
growth stage. In addition, the quantitative measurement of
cleanness of graphene sample is presented in Supplementary
Fig. 11.

Folding the copper foil to form an alternating foil/foam stacked
roll leads to the growth of large-scale (0.3 m × 1m), super-clean
graphene (Supplementary Fig. 12). Upon exposure to the
vaporised TiO2, the graphene/Cu shows no colour change to
the naked eyes (Fig. 2d), suggesting a significantly lower-level
adsorption of TiO2 nanoparticles and hence a clean surface of
grown graphene as compared with the contaminated films
prepared via traditional route (Supplementary Fig. 8b, c).
Notably, the design of stacked architecture, rather than carbon
precursor and/or surface morphology of the substrate, stays as the
key parameter in determining the realisation of super-clean
graphene. In this sense, sub-centimetre-sized, single-crystalline
graphene with super-clean surface can be achieved by using
controllably limited carbon supply (Supplementary Fig. 13)29.

During a CVD reaction, Cu substrate would catalyse the
decomposition of carbon feedstock and graphitisation process,
whose catalytic ability, in turn, would determine crystalline
quality of carbon material, i.e., the generation of crystalline
graphene or amorphous carbon. In such case, gradually inhibited
catalytic ability of Cu due to the increasing coverage of graphene
enables the formation of amorphous carbon onto the graphene
sheet during the growth (Supplementary Fig. 14a, b). Produced by

the decomposition of carbon precursor, a large quantity of carbon
species would desorb from Cu substrate, being abundant in the
boundary layer to induce the generation of amorphous carbon to
contaminate graphene (Fig. 2e; Supplementary Fig. 14c–f and
Supplementary Fig. 15)30,31. Hence, the catalytic activity of Cu is
relatively insufficient in a conventional CVD reaction. In contrast,
due to its high specific surface area, the use of Cu foam mediation
is expected to provide sufficient supply of Cu vapour, to
unintermittently catalyse the decomposition of carbon species.
Then, the formation of amorphous carbon would be suppressed,
enabling the growth of crystalline graphene with super-clean
nature (Fig. 2e; Supplementary Fig. 14g, i). Note that at low
pressure, the Cu foil itself can provide Cu vapour, such as
previous reported Cu envelop structure32,33, which can be also
used for the remote catalytic growth of graphene on oxide
substrates34. However, the amount of Cu vapour is very limited,
and especially it would be reduced with the increasing coverage of
graphene on Cu foil. Thus, a continuous supply of sufficient Cu
vapour is very important for suppressing the formation of
amorphous carbon. In this regard, the lower growth rate of
graphene on Cu foam than that on Cu foil guarantees a
continuous supply of Cu vapour during the entire growth
process, which is the key factor in obtaining clean graphene
(Supplementary Fig. 16).

Super-clean graphene surface after transfer onto target sub-
strates. Transferring graphene onto target substrates, such as
SiO2/Si substrate, is needed for further device fabrication and
applications. However, after transfer, the common CVD-grown
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graphene suffers from an abundant distribution of polymer
residues, such as polymethyl-methacrylate (PMMA) residues
(Fig. 3a). Interestingly, the availability of super-clean graphene
surface on Cu foil ensures a clear reduction of polymer impurities
after transfer, as confirmed in the AFM image, where polymer
residue and the amorphous carbon are clearly invisible (Fig. 3b).
The surface cleanness is comparable with mechanically exfoliated
counterpart with only substrate-induced small fluctuation, evi-
dent from the similar height histogram (Fig. 3c). In addition, this
small fluctuation becomes invisible after transferring super-clean
graphene onto atomically flat mica substrate (Supplementary
Fig. 17). For a large-area evaluation of cleanness, graphene was
transferred with the assistance of deuterated PMMA (2H-
PMMA). Therefore, it was possible to quantify the amount of
PMMA residues using mass signature of isotope 2H (Fig. 3d,
inset). After the removal of 2H-PMMA by acetone, ToF-SIMS
was conducted to detect the amount of the 2H on graphene
surface. For unclean graphene sample after transfer, a clear 2H−

peak is observed at the m/Z of 2, indicating the abundant PMMA
residues. In contrast, 2H− peak is invisible in clean sample,
confirming clear reduction of transfer-related impurities on gra-
phene surface after the transfer (Fig. 3d). The large-scale clean-
ness is additionally confirmed by the statistic of intensities of 2H−

peaks of unclean and super-clean graphene surface after transfer
(Fig. 3d, inset).

Optical and electrical properties of super-clean graphene. Our
super-clean graphene, almost devoid of amorphous carbon

(>99.0% clean regions), represents the quality of CVD-derived
graphene with optical and electrical properties comparable with
that obtained by mechanical exfoliation. The large-area transfer of
clean and unclean samples onto transparent polyethylene ter-
ephthalate (PET) substrates was achieved by means of a thermal
release tape method14, where super-clean graphene sample
exhibits a lighter contrast than that of the unclean counterpart
(Fig. 4a, inset). The elimination of amorphous carbon and low-
level of polymer residues after the transfer altogether contribute
to the enhanced light transparency in both monolayer and mul-
tilayer graphene films (Fig. 4a; Supplementary Fig. 18).

From the point of view of device applications, the construction
of high-performance graphene transistors relies heavily upon the
reliable fabrication of electrical contact and graphene channel
with high carrier mobility35. In our study, we found that
commonly used contact metals (Au, Cr and Pd) were preferen-
tially adsorbed on the contaminated regions upon deposition
(Supplementary Fig. 19). This would result in small grain sizes of
the deposited metal and less effective contact between the metal
and graphene. Furthermore, transfer-related polymer residues
would lead to a larger coupling length and reduce the coupling
strength between the metal and graphene, giving rise to larger
contact resistances36. In contrast, using a graphene transistor
array (six transistors for transfer length method (TLM)
measurements) (Fig. 4b, inset)37, the extracted contact resistance
of super-clean graphene devices is 115 ± 19Ω μm with minimum
value of 96Ω-μm at room temperature when the channel is
slightly p-doped (Fig. 4b; Supplementary Fig. 20), substantially
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lower than the previously reported values (Supplementary
Table 4) and that of unclean graphene with similar work
function, confirming the importance of improving cleanness for
better contact36,37 (Supplementary Fig. 21).

Furthermore, the measured field-effect transistor mobility of
the transferred graphene on SiO2/Si substrate ranges from 14,900
to 18,500 cm2V-1 s-1 at room temperature and ~31,000 cm2·V-1·s-

1 at 1.9 K (Fig. 4c), higher than those of the unclean samples and

previously reported values of CVD graphene on SiO2 substrates
(Supplementary Fig. 22, Supplementary Tables 5, 6). Besides the
suppression of amorphous carbon, the reduction of polymer
residue was reported to result in an enhanced carrier mobility4.
The carrier mobility of graphene is also sensitive to the transfer
process and water doping. Thus, the transfer process is carefully
controlled to obtain a convincing comparison (see the Methods
section). The exceptional quality of obtained graphene was
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1 to 6 μm. The error bar represents the relative deviation. c Typical plot of the resistance of graphene as a function of the gate voltage (Vg) at room

temperature (blue line) and 1.9 K (red line). Inset: longitudinal (Rxx, red line) and Hall resistance (Rxy, blue line) of super-clean graphene at magnetic field

intensities of 5 T at 1.9 K. Contact metal: Pd/Au, 10/80 nm. The fitting is based on nonlinear fitting method (see Supplementary Fig. 22)
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further corroborated by the evolution of the quantum Hall effect
with magnetic field in devices, where the prominent quantum
Hall platform is visible at low magnetic field intensities (Fig. 4c,
inset).

Encapsulation of graphene would significantly improve the
carrier mobility due to the reduced transfer-related doping,
substrate scattering and squeezing effect of h-BN to enhance the
interface cleanness38–40. Following reported encapsulation
techniques38,39, in encapsulated as-grown clean graphene sam-
ples, the carrier mobility can be further improved to 625,000 cm2

V-1 s-1 for hole side and 1,083,000 cm2V-1 s-1 for electrons side,
along with observation of ballistic transport at 1.9 K (Supple-
mentary Fig. 23). The reduced and uniform full-width at half
maximum (FWHM) of 2D in Raman results were also observed,
as an indicator of enhanced carrier mobility in encapsulated
graphene (Supplementary Fig. 24)41. Consequently, the improved
cleanness and optimisation of transfer techniques, such as
significant improvement in the fabrication of large and thin h-
BN flakes would be both important for future electrical
application of graphene38.

Furthermore, super-clean graphene also exhibits an intrinsi-
cally hydrophilic property (Supplementary Fig. 25) and higher
thermal conductivity (Supplementary Fig. 26) and electrical
conductivity (Supplementary Fig. 27) than that of unclean
graphene.

Discussion
In essence, our results elucidate the origins of surface con-
tamination of CVD graphene and outline a possible path towards
the large-scale production of super-clean graphene with reliable
high-quality equivalent to that of the mechanically exfoliated
counterpart by designing a Cu foam mediator. The method
presented here not only opens up avenue for advanced applica-
tions of graphene at the industrial level but also promotes further
studies on the tailored synthesis of other two-dimensional crystals
with super-clean nature.

Methods
Growth of super-clean graphene films. The super-clean graphene was grown by
the low-pressure CVD method. The Cu foil (25 μm-thick, 99.8%, Alfa Aesar) after
electrochemical polishing was placed below a Cu foam (840 g1·m−2 in areal density
and 1.0 -mm thickness) (Supplementary Fig. 9) and then they were loaded into
CVD system equipped with a 2.5-cm-diameter quartz tube. The system was heated
to 1030 °C in 1 h with H2 (200 sccm, ~102 Pa), followed by annealing in H2

(200 sccm, ~102 Pa) for 1 h to eliminate the surface oxygen and contamination.
Subsequently, CH4 was introduced to initiate the graphene growth for different
duration. Note that, the molar ratio of CH4 and H2 was carefully controlled to
produce large graphene single crystals. The flow rate of CH4 is ~0.1–1.0 sccm with
pressure from 0.3 Pa to 2.8 Pa. After growth, the system was quickly cooled down
to room temperature while still under the same flow. The 13C-isotope-labelled
methane is purchased from the Sigma-Aldrich company (production number
#490229) with 13C atom ratio of 99%. The 2H-PMMA is purchased from Polymer
source company (production number #P100226-dsPMMA) with Mn= 820,000
and Mw= 1,500,100.

The domain size of graphene single crystals grown using the vertical stacking
structure of Cu foil and Cu foam can be tuned from tens of micrometres to large
than three millimetres by carefully controlling the carbon source supply (H2:CH4

molar ratio). The domain size distribution of graphene grown using different H2:
CH4 molar ratio is 22.5 ± 1.2 μm for H2:CH4 molar ratio of 200, 125 ± 14 μm for
H2:CH4 molar ratio of 300, 350 ± 11 μm for H2:CH4 molar ratio of 400, 750 ±
80 μm for H2:CH4 molar ratio of 500, 1750 ± 152 μm for H2:CH4 molar ratio of
1000, 2500 ± 575 μm for H2:CH4 molar ratio of 2000, respectively.

Graphene transfer. The graphene was transferred onto quartz or SiO2/Si substrate
by the PMMA method. The graphene film was spin-coated with PMMA and baked
at 170 oC for 5 min. Then, 1 M Na2S2O8 solution was used to etch Cu foil away.
After being washed by deionized water, PMMA/graphene was subsequently placed
onto target substrates. Especially, for reducing transfer-related doping, a dry
transfer method was used, where a window cut in scotch tape was applied to the
backside of Cu before etching Cu substrate. After etching, the resulting suspended
graphene/PMMA/membrane across the tape window can be rinsed by isopropanol

and then dried overnight. Subsequently, the membrane was adhered onto a heated
SiO2/Si substrates at 150 oC. Finally, PMMA was dissolved by acetone. The super-
clean graphene on Cu was transferred onto TEM grid without the assistance of
PMMA to endure no interference from polymer residue. In detail, by the eva-
poration of isopropanol drop between graphene on Cu and TEM grid, a TEM grid
is directly contacted with graphene as a supporting layer in the subsequent etching
and drying process.

TERS measurement. TERS measurements were performed on a modified upright
TERS system (NTEGRA Spectra, NT-MDT) in scanning tunnelling microscopy
(STM) mode. A long working distance objective (×100, NA 0.7) was used for both
excitation and collection of the backscattered light from the sample. The exciting
wavelength was 632.8 nm and the laser power on the sample was less than 0.5 mW
to avoid sample degradation. All the TERS spectra were collected with an acqui-
sition time of 1 s.

ToF-SIMS measurement. Annealing experiments were performed in the chamber
of the ToF-SIMS spectrometer (ToF-SIMS V, ION-TOF GmbH, Munster, Ger-
many) before characterisation. The samples were analysed at 25 °C and after
annealing at 100 °C for 1 h. ToF-SIMS spectra were acquired at the annealing
temperature using a Bi3+ beam operating at 25 keV. The scanning area was
200 μm× 200 μm with an acquisition time of 40 s. Negative ion spectra were col-
lected for each sample. The software used for peak analysis was SurfaceLab 6.0
from ION-ToF.

Graphene characterisation. Raman spectra were obtained with LabRAM HR-800
with 514nm laser and ×100 objective. Optical microscopy images were obtained
with an Olympus BX51 microscopy. Optical transmittance spectra were collected
by a Perkin-Elmer Lambda 950 UV-vis spectrophotometer.

SEM images were obtained with SEM (Hitachi S-4800, acceleration voltage
5–30 kV). The graphene on TEM grids was characterised by TEM (FEI Tecnai F30,
acceleration voltage 300 kV). HRTEM imaging was performed on an aberration-
corrected and monochromated G2 cubed Titan 60–300 electron microscope under
80 kV. Energy-dispersive X-ray (EDX) spectra, bright-field (BF) and high-angle
annular dark-field (HAADF) images were acquired using scanning TEM (STEM)
mode at 60 kV in a double corrected FEI Titan Themis G2 electron microscope.

The graphene samples were transferred onto SiO2/Si substrates with marks for
alignments and then subjected to AFM (Veeco dimension 3100) imaging to
determine whether they were flat without wrinkle. Next, each graphene sample was
etched into a Hall bar geometry or graphene transistor array using a PMMA
etching mask (PMMA 950 K A2 @ 4000 rpm) designed by electron-beam
lithography (EBL) (Raith 150 2nd) and reactive-ion etching (RIE) with O2 (Trion
Technology Minilock III). Finally, after using EBL to design a PMMA mask
(PMMA 950 K A4 @ 4000 rpm), 10-nm Pd and 80-nm Au were deposited on the
samples using an electron-beam evaporator (Kurte J. Lesker AXXIS) and then a
standard metal lift-off technique. Electrical characterisation at room temperature
was performed in a vacuum probe station (Lakeshore TTP-4) using a Keithly
Semiconductor Characterisation System (Model 4200-SCS). Electrical-transport
and magneto-transport measurements at low temperatures were performed using a
lock-in amplifier (Stanford Research 830) at 17 Hz with a source current of 10–100
nA.

The element analysis was performed by XPS (Kratos Analytical AXIS-Ultra
with monochromatic Al Kα X-ray). AFM characterisation of graphene on Cu was
carried out on Bruker dimension icon microscopy using the Scanasystg mode. The
water contact angles were measured on a Dataphysics OCA 20 contact-angle
system at room temperature.

Data availability
The authors declare that the data supporting this study are available within the article

and its Supplementary Information files. Further information is also available from the

corresponding authors upon reasonable request.
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