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Towards superlattices: Lateral bipolar multibarriers in graphene
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We report on transport properties of monolayer graphene with a laterally modulated potential profile, employing

striped top gate electrodes with spacings of 100 to 200 nm. Tuning of top and back gate voltages gives rise to

local charge carrier density disparities, enabling the investigation of transport properties either in the unipolar

(nn′) or the bipolar (np′) regime. In the latter, pronounced single- and multibarrier Fabry-Pérot (FP) resonances

occur. We present measurements of different devices with different numbers of top gate stripes and spacings.

The data are highly consistent with a phase coherent ballistic tight-binding calculation and quantum capacitance

model, whereas a superlattice effect and modification of band structure can be excluded.
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I. INTRODUCTION

As one of the most exciting topics in condensed matter

physics [1], monolayer graphene (MLG) provides a unique

combination of striking mechanical, as well as electronic

properties, such as the zero-gap energy spectrum and linear

dispersion of charge carriers (Dirac fermions), leading to the

half-integer quantum Hall effect [2,3] or relativistic phenom-

ena on a mesoscopic scale (Klein tunneling [4–6], electron

lensing [7]). In recent years, there has been a vivid discussion

on the issue of transport through bipolar junctions giving

rise to some thought provoking theoretical approaches [8–11]

and experiments [12–14]. Consequently, different intriguing

situations such as Klein tunneling and collimation at a single

p-n junction or transmission through a bipolar barrier in the

ballistic regime have been covered in scientific publications

and revealed resonant behavior of conductance in analogy to

optical Fabry-Pérot (FP) cavities [15–17].

Taking a step further, efforts have been taken to investigate

the concept of superlattices [18] for graphene, employing

artificial regular inhomogeneities to the monolayer, exper-

imentally attainable either by gating or doping. For one-

dimensional periodic potentials in graphene, theory predicts

conductance oscillations corresponding to the emergence of

additional Dirac points and the appearance of van Hove singu-

larities in the density of states [19–22]. Another experimental

approach towards superlattices are hexagonal boron nitride

(hBN)/graphene heterostructures, where a Moire pattern leads

to an artificial band structure [23].

Here, we focus on the former approach, addressing finite

multibarrier systems [24]. Ballistic transmission over a couple

of periods is essential for the observation of an artificial band

structure. This is why the mean-free-path and phase coherence

length of the charge carriers drastically limit the effect of a

superlattice and samples with high charge carrier mobility

μ are needed. Recent works on high-μ suspended graphene

devices [25–27], implementing a single, tunable p-n junction,

show stunning resonant behavior. With respect to multiple
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lateral barriers, suspended graphene is not a viable approach, as

the large distance between the graphene-layer and the (buried)

gate electrodes causes a significant smoothing of the junction

potential.

In order to overcome the problem of blurred potential steps

and to provide a locally sharp potential profile at the bipolar

junctions, an array of narrow electrode stripes on top of a thin

dielectric, as has been introduced for a single bipolar ballistic

potential barrier [15], is suitable. We focus our research on

locally gated graphene with varying number of bipolar barriers

and different spacing in order to characterize the impact of

changing parameters on the resistance of the monolayer. A

recent publication on a similar lateral multibarrier setup [28]

attributes the occurring resonant behavior of the resistance

in the bipolar regime to a superlattice effect in the low-

diffusive limit, even though the experimental elastic mean

free path does not exceed one lattice period. We reproduce

the reported resonant features and provide extended data for

varying experimental parameters that can be explained within

a consistent Fabry-Pérot resonance model, without resorting

to a superlattice effect.

II. ELECTRONIC TRANSPORT THROUGH

MULTIBARRIERS IN GRAPHENE

A. Device fabrication

Here, we present devices where graphene has been exfo-

liated micromechanically on SiO2 [29] (devices A and R),

or alternatively, transferred on a hBN1/SiO2 substrate (device

B) using a PVA/PMMA based method similar to Ref. [30].

Hallbars were etched with O2/Ar (50:50) plasma at 30 mTorr

and 50 W. Al2O3 was used as a top gate dielectric, built up by a

thin film of electron beam evaporated and oxidized aluminum,

serving as a thin seed layer for the following atomic layer

deposition (ALD). In total, the top gate oxide does not exceed

a height of 15 nm. The contacts and the patterned top gate

electrode were exposed by electron beam lithography and

electron beam evaporation of Pd. Experiments were carried

1We used commercially available hBN powder.
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FIG. 1. (Color online) Device geometry. SEM image (a) of de-

vice B with five and two top gate stripes. The graphene hallbar is

buried under the dielectric, here visualized by the violet contour.

Zoom-in (b) of the locally gated area of three Pd stripes of device A

(region A3) with a pitch of aA3 = 100 nm. (c) Schematic of the sample

geometry of all devices used in this publication employing a MLG

hallbar (blue), contacted by a 40-nm-thick Pd fine wiring (light grey).

The width of the transport channel is 1 μm, as well as the spacing

of the labeled voltage probes. The striped Pd top gate electrode of

15 nm height and the top gate leads (white) are separated from the

graphene by a ∼15-nm-thin Al2O3 dielectric.

out using an ac lock-in four point measurement setup in a
4He cryostat (T = 1.3, . . . ,200 K) and Bmax = 14 T. Figure 1

depicts the device geometry. We focus on data of three samples

that provide regions with different numbers of top gate stripes

and spacing (in the following, A3, A5, B2, B5, R8 labels

corresponding to number of top gate stripes) and compare

them to our ballistic transport simulation.

B. Electronic transport

1. Preliminary considerations

Using both the planar Si++ back gate and the patterned Pd

top gate electrode, the charge carrier density can be tuned both

locally and globally and hence an array of potential barriers

is created. Figure 2(a) shows a schematic of the Fabry-Pérot

cavities in the exemplary multibarrier system of three-striped

sample region A3. For simplicity, we address the graphene

cavity under the top gate stripes as “barrier,” the one between

neighboring top gates as “well.” The region without top gate is

referred to as the “ungated” area, that is the area between the

gated region of barriers and wells and the probe contacts of

the Hall bar. The regions of different charge carrier densities

are depicted by different gray scale in the figure.

In the fully phase coherent bipolar-transport regime, Klein

collimation yields an increase of reflectivity for obliquely

incident charge carriers at the multiple p-n or n-p junctions,

hence, the finesse of the cavities is greatly increased. The

reflections in the barrier cavities are highlighted with a red

arrow, the ones in the wells are marked blue. The possible

reflection traces kept in orange are less relevant due to high

reflectivity of the bipolar junctions in the transmission path

for oblique incidence. The green trace (i.e. the intermediate

regime, see below) is more important to note due to a mismatch

FIG. 2. (Color) Resonances and resistance behavior in a graphene

multibarrier system. (a) Schematic of the Fabry-Pérot cavities in

the multibarrier system of sample A, region A3, in the bipolar and

intermediate regime, respectively. Increased reflectivity for ballistic

charge carriers in the bipolar regime yields resonances (colored

arrows) at the pn junctions. (b) Sketch of the expected resistance

hourglasslike pattern for the samples presented in this paper, where

the different colors stand for the different transport regimes. The

primed letters stand for the charge carriers in the barrier, the unprimed

for those in the well of the lattice. The bold black line depicts the

charge neutrality line (Dirac point) of the area without top gate. The

dark green line stands for the charge neutrality line of the wells and

the dark purple for the one of the barriers. The green area is denoted

as intermediate-bipolar regime in the text. The black star points out

the situation shown in (a). The schematic of according carrier density

is shown in (c), where the three different regimes are plotted with

respect to charge neutrality.

of potential in the gated area and the ungated area, as can be

explicitly seen in the sketched corresponding carrier density

profile in Fig. 2(c). This difference can be attributed to the

impact of the top gate stripes on the well area due to electric

field broadening. The oscillations in this larger cavity will play

a role later on when we come to explain the difference between

measurement and simulation.

Plotting the resistance with respect to top- and back

gate voltage yields four quadrants, depending on different

combinations of charge carrier concentration of barriers, wells

and ungated area [Fig. 2(b)]. The schematic color map features

an hourglass-shaped pattern of high resistance, that in general

can be attributed to high resistivity of the bipolar p-n′ or n-p′

junctions of the gated area, where the primed charge carrier

concentrations stand for the area under the top gate stripes,

the unprimed ones for the well areas, respectively. This region

of bipolar transport is coarsely depicted by purple and will be

analyzed for the case of ballistic transmission later on in more

detail. The white areas of the color map stand for the unipolar

p-p′ or n-n′ low-resistance transport regime, where the barrier

and well charge carrier concentrations are of the same sign.

The narrow green area of higher resistance is an intermediate-

bipolar regime, where the gated area is still unipolar, but al-

ready enclosed by the ungated area of different charge polarity.

In Fig. 2(c), we address the different situations of the color

map and plot schematics of the carrier density profiles n(x)
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FIG. 3. (Color) Resonance pattern in the bipolar regime. Color-coded plot of (a) the four point resistance for region A3 with

w ≈ 25 nm stripe width and aA3 ≈ 100 nm periodicity, and (b) the inverse of the calculated transmission function in fully phase coherent limit.

A pronounced resistance pattern occurs in the bipolar regime, arising from superposition of barrier and well resonance. (c) Electrostatic

simulation for the top gate contribution to the carrier density in graphene, which locates at z = 0, at VTG = −3 V as an example. Together with

the uniform contribution from the back gate set to be VBG = 40 V as an example [(VBG,VTG) = (40,−3) V point is marked by the white star

in (b)], the carrier density profile and the corresponding local energy band offset profile are sketched in (d) and (e), respectively. The white

dashed lines sketched in (a) are resonant voltage contours V
res,j

TG (VBG) and V
res,j

BG (VTG) obtained by numerically solving Eq. (3) for cavity c1 and

c2 [marked in (d)], respectively; see text.

with respect to charge neutrality. The black curve stands for

the unipolar regime, where a negative top gate voltage creates

a modulation of the potential profile. Note the exaggerated

mismatch of carrier density heights in the gated and ungated

area. Now following the black dotted cut in the color map

of Fig. 2(b) by increasing the global back gate voltage from

negative values towards positive ones, the carrier density is

moved upward until it fulfills the charge neutrality condition

for the ungated area. That is the bold black vertical line in

the color map, separating the unipolar and bipolar regime. For

pristine or homogeneously doped MLG, this line of neutral

charge should intersect with the Dirac point of the locally

gated area, that is, the center of the hourglass pattern where

the dark green and dark purple border lines intersect.

Further increase of voltage induces electrons as charge

carriers in the ungated area and one enters the narrow

intermediate regime [green curve in Fig. 2(c) and green area

of Fig. 2(b), respectively], followed by another crossing (dark

green diagonal line of the color plot). This is the charge

neutrality line of the wells, separating the intermediate and

bipolar regime. Another increase lifts the modulated potential

into the bipolar regime, where the charge carriers in the barriers

and in the wells are of different sign [light purple curve and

area respectively, same situation as in Fig. 2(a)]. A raise of

back gate voltage finally leads to the crossing of the barrier

charge neutrality line, that is the dark purple line of the color

map, where the back- and top gate induced displacement fields

cancel each other and the charge carrier density is minimal

under the stripes. Concluding the trip following the dotted line,

one ends up in the unipolar n-n′ situation, where the overall

charge carrier density modulation is still unchanged, whereas

the charges in barrier and well are of the same sign again.

2. Transport measurement on device A

The mobility of sample A is approximately

7000 cm2 V−1 s−1, following a standard capacitor model. This

implies a mean free path for charge carriers lm, exceeding

the effective bipolar barrier width, as well as the effective

well width (e.g., lm ≈ 100 nm at VBG = 20 V), so that

transport is ballistic over one stripe, but not over the entire

lattice.

Figure 3(a) shows one of the main results of this work,

the color-coded resistance map of region A3 with respect

to the two gate voltages. The four-point resistance RA3 is

taken from the voltage drop across the multibarrier region A3

with a pitch of aA3 = 100 nm. The relatively large free space

between the locally gated area and the probe contacts yields

an intense, vertical, top gate-independent resistance maximum

(R ≈ 10 k� at VBG = 3 V), that is the Dirac point of the

ungated area. In the bipolar-transport regime, pronounced

resistance oscillations, coming from barrier and well reso-

nance, form the aforementioned hourglasslike pattern. The

white dashed lines in the lower right quadrant refer to

oscillations originating in these two different cavities and will

be addressed in Sec. II B 4 in more detail. The dark diagonal

charge neutrality line of the well area is clearly observable

and separates the oscillating bipolar region from the narrow

intermediate-bipolar region [cf. green area of Fig. 2(b)]. Unlike

the ungated area around the leads, where the charge carrier

density is solely controlled by the back gate voltage, the top

gate additionally influences the potential of the well area due to

effective electric field broadening, coming from electrostatic

edge effects at the Pd electrode stripes. This leads to the

intermediate situation, where the polarity of barrier and well

is similar, but the one of the ungated area is already different.

115421-3
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Note also that the capacitive coupling of the top gate

compared to the back gate for both locally gated areas A3

and A5 of device A is 26 times higher, which can be attributed

to high ratio of dielectrics thickness and disparity in dielectric

constant of the two oxides.

3. Transport simulation

To identify the source of the Fabry-Pérot interference

patterns observed in Fig. 3(a), ballistic transport calculations

were performed using the Green’s function formalism in the

phase coherent, clean limit. Following the SEM image of the

region A3 shown in Fig. 1, we consider a tight-binding model

Hamiltonian (with hopping strength t),

H0 = −t
∑

〈m,n〉

c†mcn (1)

for a 1-μm-wide and 600-nm-long armchair graphene ribbon.

The summation in Eq. (1) runs over all the lattice site

indices that are nearest neighbors to each other, 〈m,n〉. The

diagonal elements of the model Hamiltonian are modulated by

a realistic local energy band offset profile that is linked to the

experimental parameters of gate voltages. For simplicity, we

assume such a band offset profile to vary only with coordinate

x along the transport direction, and perform two-dimensional

(x-z) electrostatic simulation to obtain the carrier density pro-

file n(x), from which, combined with the quantum capacitance

model [31,32], the gate-dependent energy band offset profile

V (x) can then be deduced.

Instead of fully taking into account the Hall bar structure

used in the four-point measurement, we simplify the transport

problem to a two-terminal structure, which is proved to be

enough to capture the main experimentally observed features.

Hence together with the self-energies �L and �R due to the

coupling to the left and right leads, the full model Hamiltonian

reads

H = H0 +
∑

n

V (xn)c†ncn + �L + �R, (2)

where the summation runs over all the lattice site indices and

xn is the x coordinate of the nth lattice site.

With the model Hamiltonian (2), the transmission function

T is computed by the recursive Green’s function method [33].

Figure 3(b) shows the inverse of the calculated transmission

function, which agrees qualitatively well with the measured

resistance map shown in Fig. 3(a). Such a good agreement

relies closely on the optimal electrostatic model that generates

the correct gate voltage dependence of the local energy

band offset applied to the diagonal elements of the model

Hamiltonian. The geometry of the adopted electrostatic model

is sketched in Fig. 3(c).

To obtain a close match between the experimental results

and the numerical simulations, the oxide thickness and Pd

stripe width (fabrication design values 15 and 25 nm, respec-

tively) were slightly modified to 18 and 40 nm, respectively.

Note also that the back gate contribution is assumed to be

uniform, so that the standard capacitor model can be used.

Furthermore, a uniform p-type chemical doping concentration

of n0 = −2 × 1011 cm−2 is considered, which is deduced

from the slightly shifted Dirac point in the ungated region

[vertical thick line in Fig. 3(a)].

For details about simulating the gate-induced carrier density

in graphene, see, for example, Ref. [34] for a tutorial introduc-

tion using the PDETOOL [35] of MATLAB. Alternatively, one can

as well choose the free automated finite element simulator—

the FEniCS project [36], which is adopted, combined

with the free mesh generator—GMSH [37], in the present

work.

4. Analysis on the Fabry-Pérot interference patterns

Figures 3(d) and 3(e) illustrate as an example the carrier

density profile n(x) and the corresponding energy band

offset profile V (x), respectively, at gate voltages (VBG,VTG) =
(40,−3) V, as marked by the white star in Fig. 3(b). We

next attribute the different set of Fabry-Pérot interference

patterns to the resonance in specific cavity regions. For this,

we first label the cavity under the top gate (barrier) c1,

and the region between two neighboring top gates (well)

c2. Taking the n(x) sketched in Fig. 3(d) for example, we

may regard c1 as the region −30 nm � x � 30 nm and c2

as −70 nm � x � −30 nm. Within cavity ci , the resonance

condition can be qualitatively written as

2

∫

ci

√

π |n(x)|dx = 2jπ, j = 1,2, . . . , (3)

where
√

π |n(x)| = kF (x) is the position-dependent wave

number. The left-hand side of Eq. (3) can be understood

as the phase difference between directly transmitted and

twice reflected electron waves. When such a phase difference

is an integer multiple of 2π , constructive interference is

expected.

Since n(x), and hence the cavity size, vary with the gate

voltages, Eq. (3) has to be solved numerically. At a fixed back

gate voltage, there exists a discrete number of top gate voltages

that satisfy the resonance condition (3) when solving for the

cavity c1. Sweeping the back gate voltage in the bipolar range,

one obtains the resonant top gate voltage contours as a function

of back gate voltage, V
res,j

TG (VBG), which form a group of lines

that are roughly parallel to the diagonal charge neutrality line

of the barriers, that is the dark purple boundary discussed in

Fig. 2(b). Likewise, one can solve Eq. (3) for the cavity c2

to obtain V
res,j

BG (VTG) contours, which form a group of lines

roughly parallel to the steep, dark diagonal charge neutrality

line of the wells, shown in Figs. 3(a) or 3(b), also schematically

depicted by the dark green border in Fig. 2(b).

Sketching the V
res,j

TG (VBG) and V
res,j

BG (VTG) contours on the

resistance map of Fig. 3(a) (inset of dashed white lines), we find

a very good agreement of the periodicity of the interference

patterns. This enables us to correctly attribute the different

origins of the different sets of interference patterns to the

resonance in different cavities c1 (barrier) and c2 (well).

5. Discussion

Despite the good agreement between the measurement

[Fig. 3(a)] and simulation [Fig. 3(b)], a closer look at the latter

indicates that the interference patterns in the ideal calculation

are more complicated and more pronounced than the former
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in the bipolar regime due to phase coherence assumed over

the whole area. Addressing the cavity picture of Fig. 2(a),

the fringes result primarily from superposition of barrier (red)

and well resonance (blue). Moreover, the simulated map of

Fig. 3(b) shows fringes with a shorter oscillation period,

arising in the intermediate region. These can be traced back

to resonances in a larger cavity [cf. green trace in Fig. 2(a)].

In the experiment, we are not able to see the short period

oscillations in this particular region due to the fact that the

length of the intermediate cavity exceeds the mean free path

of the sample. Instead, a blurred area of higher resistance is

observed and can be attributed to diffusive transmission in the

intermediate-bipolar regime.

In order to get an insight into the role of a finite

mean-free-path and phase coherence length, we successively

reduced the number of barriers in the simulation, while

retaining the mismatch of inner and outer well potential (not

shown). Comparing the measured and simulated resistance

plot qualitatively, we estimate the ballistic length to 1.5 times

the effective barrier width, as only the oscillations coming from

barrier resonance are clearly pronounced [Fig. 3(a)]. Evidently,

ballistic transmission in the range of the barrier width is

essential to evoke resistance oscillations, on the other hand,

phase coherence over the whole top gated area is not required to

reproduce the general behavior. Hence the multibarrier system

can be understood as independent FP cavities stringed together,

giving rise to a single barrier pattern in the locally ballistic

limit.

C. Devices B and R

Next, we discuss device B, that shows similar behavior

to device A with respect to mobility (μB ∼ 6300–8300 cm2

V−1 s−1) and resonance pattern (Fig. 4). The top gate

voltage-independent charge neutrality line of the ungated area

though does not coincide with the ones of the hourglasslike

pattern of B5 [Fig. 4(a)]. The ungated region appears to

be n-doped (DP at VBG = −20 V, whereas the top gated

zone B5 shows a lower dopant level (DP for VTG = 0 V at

VBG = −4 V). Interestingly, this inhomogeneity is consistent

for both top gate areas, B2 and B5, that are spatially separated

and thus the inhomogeneity can only be attributed to some

preparation step of the top gate oxide and electrodes that

changed the intrinsic doping at the different sites. Keep in mind

that the spacing between the top gate stripes of the regions B2

and B5 is different, aB2 = 200 nm and aB5 = 100 nm, whereas

the width of the top gated area (barrier) is similar ≈25 nm

[cf. SEM picture in Fig. 1(a)].

The impact of the top gates on the charge carrier density

in the region between two stripes is lower for region B2

and therefore the potential mismatch of the well and ungated

region is smaller. This results in different slopes of the well

charge neutrality lines in the resistance maps [dashed slopes

in Figs. 4(c) and 4(f)]. One can assume, that for the larger

well cavity of B2 (where aB2 > lm), ballistic interference is

suppressed. On the other hand, one can expect a superposed

resonance pattern of barrier and well cavities for B5, as

aB5 � lm, similar to sample A3. Figure 4(b) shows the

FIG. 4. (Color online) Resistance oscillations of sample B. (a) Color map of resistance in region B5 (five stripes) and its derivative with

respect to the top gate voltage (b). A pattern with barrier and well resonance contribution is observable, but the vertical charge neutrality line

of the ungated area is filtered. (c) At T = 50 K, the superposition fades out and one obtains a softened single barrier resonance pattern. Similar

data for region B2 are plotted in (d)–(f).

115421-5



MARTIN DRIENOVSKY et al. PHYSICAL REVIEW B 89, 115421 (2014)

FIG. 5. (Color) Temperature dependence and resistance oscilla-

tion period of sample B, (a) Temperature development of a top gate

sweep. Sweep performed at a back gate voltage VBG = −40 V in

region B5. The curves are offset by 500 � for clarity. (b) Comparison

of the oscillation periods �nTG for sample regions B5 and B2 for top

gate voltage sweeps at different back gate voltages at 20 K. �nTG

is the average spacing between two resistance peaks of a single top

gate sweep as depicted in (a), with respect to change in charge carrier

density.

numerical derivative of the resistance pattern of B5 with

respect to the top gate voltage. In this plot, superposition of

resonances can be resolved, but the bright charge neutrality

line of the ungated region is filtered. The derivative of the

resistance in region B2 [Fig. 4(e)] only features the pro-

nounced parallel resonance peaks coming from single barrier

resonance.

We performed temperature-dependent measurements on

device B and find that the FP oscillation amplitude is decreas-

ing with higher temperatures T [cf. Fig. 5(a)]. As expected, the

period of resistance oscillation with respect to charge carrier

density remains unchanged. The features originating from

superposition of barrier and well resonance at 1.5 K are succes-

sively suppressed at higher T that is due to temperature acti-

vated dephasing and loss of ballistic transmission. As the phase

coherence length decreases with T , only the single barrier

resonance survives, resulting in a softening of the resistance

pattern.

Comparison of different top gate voltage sweeps at 20 K

for regions B5 and B2 [Fig. 5(b)] yields that the oscillation

period of the remaining pronounced resonance fringes with

respect to the charge carrier density is pretty similar for both

regions. This, together with the fact that the resonance pattern

remains observable at higher temperatures, clearly proves

local ballistic Fabry-Pérot interference originating in the

barriers.

Finally, we briefly discuss our last sample R. Again, the

electronic properties are very similar to the other two devices

A and B, however, it has been fully covered by a lateral top

gate electrode array of 200-nm lattice constant. In Fig. 6(a),

we observe pronounced FP oscillations at T = 1.5 K for a

sample region of eight stripes (R8). While the large steps in

VBG do not allow resolving the fine structure of this pattern,

we once again recognize the characteristic hourglass shape in

Fig. 6(b), but do not encounter the intermediate-bipolar regime

[green area in Fig. 2(b)], as it is exclusive to devices A and B

with local gating. Here, the top gate electrode lattice covers the

whole transport channel. Hence there is no area without top

gate stripes and the potential shows no mismatch in this case.

FIG. 6. (Color) Resistance oscillations of sample R8. R8 has been

fully covered by top gate stripes (aR8 = 200 nm) and shows for a

sample area of eight stripes similar behavior to devices A and B. (a)

The resistance of single top gate sweeps at different back gate voltage

and at T = 1.5 K feature clear oscillations. (b) The resistance map

shows the general hourglasslike pattern, separating the map into four

quadrants.

D. Towards superlattices

The analysis of our data lets us finally conclude that there

is no evidence of an artificial band structure and thus a

superlattice effect in our multibarrier system. This stands in

contrast to the argumentation of Ref. [28], where a similar

device with an even higher number of top gate stripes was

investigated. Our calculations for a fully phase coherent system

of NTG top gate stripes yield growing of resistance peaks

due to the formation of new touching points of valence and

conductance band as the band structure gets folded, giving rise

to the opening of small energy band gaps. In the FP picture,

in the case of only a few periods, the destructive interference

gives rise to these resistance peaks and these peaks do not

exceed the one at the usual Dirac point. This is consistent with

all data extracted from our samples. In Figs. 7(a)–7(d), we

plot the calculated inverted phase coherent transmission of a

back gate sweep at VTG = 3 V for various numbers of top gate

stripes, showing a global Dirac point at VBG ≅ −2 V. When

NTG exceeds ∼ 10, the heights of the resonance peaks start to

be of the same order or even higher than that of the usual Dirac
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FIG. 7. (Color online) Impact of superlattice on a fully phase

coherent graphene system. (a)–(d) Calculated inverted transmission

for a single back gate sweep for different numbers of barriers NTG.

The peak of the original Dirac point occurs at VBG ≅ −2 V and,

with increasing NTG, gets surpassed by resistance peaks originating

in destructive interference.

115421-6



TOWARDS SUPERLATTICES: LATERAL BIPOLAR . . . PHYSICAL REVIEW B 89, 115421 (2014)

point. One should see the resistance at those anticrossings

as diverging in comparison to that at the usual Dirac point,

however, the miniband structure should be extremely sensitive

to inhomogeneity. This is why the mean-free-path and phase

coherence length appear to be a limiting factor for the

emergence of mini band gaps and diverging resistance peaks.

Hence a combination of high-mobility graphene on a substrate

(i.e., hBN/graphene heterostructures) and small top gate lattice

periods seems to be the most obvious option in order to pave

the way to sizable superlattice effects in graphene.

III. CONCLUSION

In summary, we fabricated top gated graphene multibarrier

systems with different number of bipolar potential barriers and

spacing. We observe highly pronounced resistance oscillations

in the bipolar-transport regime in each of our devices, which

can be attributed to Fabry-Pérot resonance in the ballistic limit

of one barrier or well length. In the locally gated samples,

we encounter three charge neutrality lines that come from

different potentials in the gated and ungated areas. Moreover,

we consistently reproduced our measurements in a transport

simulation, employing a realistic potential profile, extracted

from electrostatics and a quantum capacitance model.
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