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We investigate the localization of two incoherent point sources with arbitrary angular and axial

separations in the paraxial approximation. By using quantum metrology techniques, we show that a

simultaneous estimation of the two separations is achievable by a single quantum measurement, with a

precision saturating the ultimate limit stemming from the quantum Cramér-Rao bound. Such a precision is

not degraded in the subwavelength regime, thus overcoming the traditional limitations of classical direct

imaging derived from Rayleigh’s criterion. Our results are qualitatively independent of the point spread

function of the imaging system, and quantitatively illustrated in detail for the Gaussian instance. This

analysis may have relevant applications in three-dimensional surface measurements.

DOI: 10.1103/PhysRevLett.122.140505

Introduction.—High-resolution imaging is a cornerstone

of modern science and engineering, which has enabled

revolutionary advances in astronomy, manufacturing, bio-

chemistry, and medical diagnostics. In traditional direct

imaging based on classical wave optics, two incoherent

point sources with angular separation smaller than the

wavelength of the emitted light cannot be resolved due to

fundamental diffraction effects [1], a phenomenon recently

dubbed “Rayleigh’s curse” [2]. Several techniques, includ-

ing most prominently fluorescence microscopy [3], have

been introduced in recent years to overcome this limitation

and achieve sub-wavelength imaging [4,5]. Nevertheless, to

determine the ultimate limits of optical resolution one

needs to resort to a full quantum mechanical description of

the imaging process [6]. In this respect, a breakthrough has

been reported in a series of works [2,7–18] initiated by

Tsang and collaborators [2], who employed techniques

from quantum metrology [19–22] to prove that the achiev-

able error in estimating the angular separation of two

incoherent point sources, in the paraxial approximation, is

in fact independent of said separation (no matter how

small), provided an optimal detection scheme is performed

on the image plane. These results, which stem from the

fundamental quantum Cramér-Rao bound [19,20] and de

facto banish Rayleigh’s curse [2], have been corroborated

by proof-of-principle experiments [23–26].

The majority of the studies presented so far on quantum

superlocalization, however, were limited to the case of

point sources aligned on the same object plane, thus

neglecting their axial separation. The optical lateral reso-

lution of an imaging system is an important characteristic,

but it is not the only figure of merit relevant for the

measurement of nonflat surfaces [27]. When probing

surface topography, the spacing of the points in an image

must be considered, along with the ability to accurately

determine the heights of features. In other words, the lateral

resolution must be considered in conjunction with the

ability of the system to transfer surface amplitudes [28].

To address this key issue, in this Letter we consider the

simultaneous estimation of both angular and axial separa-

tions, as well as the corresponding centroid coordinates, of

two incoherent point sources aligned in general on different

object planes. These point sources may model, e.g., two

emitters at the edges of a steep section on a rough surface,

as indicated by the red dotted outline in Fig. 1.

We tackle the problem by resorting to the toolbox of

multiparameter quantum metrology, a branch of quantum

technology that is attracting increasing interest thanks to its

prominent role in fundamental science and applications

[19–22,29–51]. We find that Rayleigh’s curse does not

occur even when the sources have a nonzero axial sepa-

ration, and both axial and angular distances can be

FIG. 1. Schematic of the two sources. The four parameters to be

estimated are the angular separation s, the axial separation p, the
angular centroid coordinate x̄, and the axial centroid coordinate z̄.
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estimated simultaneously and with distance-independent

precision by means of a single optimal quantum measure-

ment, meeting the compatibility requirements for saturation

of the multiparameter quantum Cramér-Rao bound [29,32].

These results are obtained analytically and are valid for any

point spread function of the imaging system obeying the

paraxial wave equation. We then specialize to the illus-

trative case of a Gaussian point spread function, and derive

closed formulas for the achievable estimation error and its

scaling with the parameters of interest as determined by the

quantum Fisher information matrix, showing that in the

limit of small angular and axial distances all the parameters,

including the centroid coordinates, become statistically

independent.

Sources and imaging system model.—We address the

problem of estimating both axial and angular separation of

two point sources by following a similar approach to

Ref. [2], which is in turn inspired by Rayleigh’s work

[1]. We assume that the detectable light on the image plane

can be described as an incoherent mixture of two quasimo-

nochromatic scalar paraxial waves, one coming from each

source. As shown in Fig. 1, our two sources are in general

not lying on the same object plane (an “object plane” is a

plane perpendicular to the optical axis z), and they feature an
angular separation s and an axial separation p.
Considering thermal sources at optical frequencies, we

divide the total emission time into short coherence time

intervals τc, so that within each interval the sources can be

assumed weak, i.e., effectively emitting at most one photon.

This is a standard approach for modeling incoherent

thermal sources [52–58], and it allows us to describe the

quantum state ρ of the optical field on the image plane as a

mixture of a zero-photon state ρ0 and a one-photon state ρ1
in each time interval (neglecting contributions from higher

photon numbers) [59],

ρ ¼ ð1 − εÞρ0 þ ερ1 þ oðε2Þ; ð1Þ

where ε ≪ 1 is the average number of photons impinging

on the image plane. In practice, a detectable signal is

obtained by measuring the optical field for a time t ≫ τc, so

that many coherence time intervals are included, resulting

in a non-negligible mean photon number.

We assume in general that the image-plane field ampli-

tude generated by each source takes the form

Ψjðx; yÞ≡ ψðx − xj; y; zjÞ; ð2Þ

where ðx; yÞ are the image-plane coordinates, ðxj; zjÞ are

the unknown coordinates of the sources j ¼ 1, 2, xj being

the coordinate perpendicular to the optical axis, and zj the

axial distance to the image plane (in this Letter we assume

that the other coordinate yj ¼ 0 is known). The amplitude

function ψðx; y; zÞ obeys a paraxial wave equation of

the form

i∂zψ ¼ Gψ ; ð3Þ

where G is a self-adjoint differential operator featuring

only x and y derivatives—for example, in free space

one would have G ¼ 1

2k
ð∂2

x þ ∂2
yÞ þ k, k being the wave

number. Since ½G; ∂x� ¼ 0, it follows that Ψjðx; yÞ ¼
expð−iGzj − xj∂xÞψðx; y; 0Þ.
We shall indicate with aðx; yÞ the field annihilation

operator at position ðx; yÞ on the image plane, satisfying

the bosonic commutation rule ½aðx; yÞ; a†ðx0; y0Þ� ¼
δðx − x0Þδðy − y0Þ.
We can then write the state ρ1 as the incoherent mixture

ρ1 ¼
1

2
ðjΨ1ihΨ1j þ jΨ2ihΨ2jÞ; ð4Þ

where the quantum state of the optical field on the image

plane corresponding to the emission of one photon by the

source r may be expressed as

jΨji ¼ exp ð−iGzj − xj∂xÞjψi; ð5Þ

jψi≡

Z

R
2

ψðx; y; 0Þa†ðx; yÞj0idxdy; ð6Þ

with j0i being the field vacuum state. Finally, we may take

ψðx; y; 0Þ real, which results in some simplifications later

on. This can be assumed without loss of generality, as the

complex phase of ψðx; y; 0Þ may be compensated by a

redefinition of aðx; yÞ that is independent of the source

parameters. However, ψðx; y; zÞ will have in general a

nontrivial phase profile.

Multiparameter estimation and quantum Cramér-Rao

bound.—We work under the assumption that the photon

statistics of our sources is Poissonian, following a similar

approach as in Ref. [2]. We can thus assume that in a single

run of the experiment, which lasts for M coherence time

intervals,M copies of the state ρ in Eq. (1) are prepared and

measured (equivalently, one may consider the input state

ρ⊗M). On average, this yieldsMε photons per run. In order

to apply the standard tools of estimation theory, we further

assume that ν ≫ 1 runs are performed, after which the

measurement data are processed to build estimators for the

unknown parameters.

In our case, the parameters of interest are the angular and

axial relative coordinates and the centroid coordinates of

the sources, indicated as s; x̄; p; z̄, see Fig. 1. We thus write

the state ρ as a function of four parameters fλμgμ¼1;…;4,

where

λ1 ≡ s ¼ x2 − x1; λ2 ≡ x̄ ¼
x2 þ x1

2
;

λ3 ≡ p ¼ z2 − z1; λ4 ≡ z̄ ¼
z2 þ z1

2
: ð7Þ

PHYSICAL REVIEW LETTERS 122, 140505 (2019)

140505-2



The statistical error (variance) Δλ2μ of any unbiased

estimator of the unknown parameter λμ is lower bounded

via the quantum Cramér-Rao bound (qCRb) [19,20]

X

4

μ¼1

Δλ2μ ≥
1

νMε
Tr½H−1�; ð8Þ

where H is the quantum Fisher information matrix (qFim)

of the single-photon state ρ1 (equivalently, this can be

seen as the qFim per coherence time interval per photon).

The prefactor on the right-hand side of Eq. (8) is obtained

by exploiting the additivity property qFimðρ⊗MÞ ¼
M × qFimðρÞ, and by approximating that qFimðρÞ ≃ ε ×

qFimðρ1Þ at leading order in ε (since the field vacuum state

ρ0 is independent of all source parameters and is always

orthogonal to ρ1—see also the discussion in the Appendix

of Ref. [2]). The resulting linear dependence on the total

photon number νMε is characteristic of classical light

sources [22,60].

The qCRb suggests that, the higher the qFIm element

Hμμ, the more precisely (i.e., with lower statistical error)

one may be able to estimate the parameter λμ, by perform-

ing a suitable measurement. While for a single parameter

the qCRb can always be saturated asymptotically by means

of an adaptive procedure [21], this is no longer the case for

multiparameter estimation, as the parameters may not

always be compatible [32]; we will discuss this issue in

detail later in the Letter.

Results.—We recall that the qFim elements are given by

Hμν ¼ Re½Trðρ1LμLνÞ�; ð9Þ

where Lμ is the symmetric logarithmic derivative (SLD) for

the parameter λμ, defined implicitly by the equation

2
∂ρ1

∂λμ
¼ Lμρ1 þ ρ1Lμ: ð10Þ

The following matrix (proportional to the averaged SLD

commutators) will also be of interest for our discussion,

Γμν ≡ Im½Trðρ1LμLνÞ�: ð11Þ

For the problem under investigation, we have derived

general analytical expressions for both matricesH and Γ, as

presented in detail in Appendix A [61]. Our derivation

relies on the expansion of ρ1 in the generally nonorthog-

onal basis

fjΨ1i; jΨ2i; ∂x1
jΨ1i; ∂z1

jΨ1i; ∂x2
jΨ2i; ∂z2

jΨ2ig; ð12Þ

followed by standard linear algebraic manipulations. This

method results in significant simplifications over previous

studies of quantum superlocalization (typically relying on

the explicit construction of an orthogonal basis to span the

support of ρ1 and its derivatives, as, e.g., in Ref. [2]), and

may be of independent interest in its own right for the field

of multiparameter quantum metrology. Thanks to the

representation of jΨji given in Eq. (5), it is easy to check

that all the scalar products between the above basis vectors

only depend on s ¼ x2 − x1 and p ¼ z2 − z1, which in turn
implies that the qFim is independent of the centroid

coordinates x̄ and z̄. The corresponding physical interpre-

tation is that the information content of the emitted light is

not affected by propagation along the optical axis, or by a

redefinition of the image plane origin. Additional simpli-

fications follow from our assumption ψðx; y; 0Þ ∈ R, which
implies hψ j∂xψi ¼ 0. We then find that the qFim is

composed of the diagonal elements

Hss ¼ h∂xψ j∂xψi; Hpp ¼ ΔG2; ð13Þ

Hx̄ x̄ ¼ 4h∂xψ j∂xψi − 4ð∂sjγjÞ
2 − 4

jγj2ð∂sφÞ
2

1 − jγj2
; ð14Þ

Hz̄ z̄ ¼
4

1 − jγj2
fΔG2 − ð∂pjγjÞ

2 − jγj2½hG2i − ð∂pjγjÞ
2

þ 2hGi∂pφþ ð∂pφÞ
2�g; ð15Þ

while the off-diagonal elements are all zero except

Hx̄ z̄ ¼ −
4jγj2ð∂sφÞðhGi þ ∂pφÞ

1 − jγj2
− 4ð∂sjγjÞð∂pjγjÞ: ð16Þ

At the same time, the only nonzero matrix elements of Γ are

Γsx̄ ¼ −
2jγj3ð∂sjγjÞð∂sφÞ

1 − jγj2
; ð17Þ

Γpz̄ ¼ −
2jγj3ð∂pjγjÞðhGi þ ∂pφÞÞ

1 − jγj2
; ð18Þ

Γsz̄ ¼ 2jγj

�

ð∂pjγjÞð∂sφÞ −
∂sjγjð∂sφþ hGiÞ

1 − jγj2

�

; ð19Þ

Γx̄p¼2jγj

�

−ð∂sjγjÞðhGiþ∂pφÞþ
ð∂pjγjÞð∂sφÞ

1− jγj2

�

: ð20Þ

The following short-hand notations have been used:

γ ≡ hΨ1jΨ2i; φ≡ arg γ; ð21Þ

hOi≡ hψ jOjψi; ΔG2 ≡ hG2i − hGi2; ð22Þ

where we emphasize that γ ¼ γðs; pÞ is the only quantity

depending on the source coordinates. A fundamental result

can be immediately inferred from Eq. (13) and below: for

any point spread function that satisfies the paraxial wave
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equation, Hss and Hpp are constant. This statement

exemplifies how our results provide new insights on the

problem of subwavelength imaging, while correctly repro-

ducing what is known for p ¼ 0 [2]. We note in particular

that Rayleigh’s curse does not affect the estimation of the

angular separation s nor that of the axial separation p.
Taking one step further, we can now investigate how

close one can get to the limits imposed by the qCRb in

practical experiments. In quantum estimation theory, multi-

parameter problems embody a nontrivial generalization of

the single-parameter case [21,29,31,32]: if an estimation

scheme is optimized for a particular parameter, it typically

results into an increased error in estimating the others.

However, in the best case scenario, such a trade-off does

not apply, and one can identify an optimal protocol for

the estimation of all the parameters simultaneously. This

happens if and only if the parameters are compatible; i.e.,

they satisfy the following conditions [32]: (i) There is a

single probe state yielding the maximal qFim element for

each of the parameters; (ii) there is a single measurement

which is jointly optimal for extracting information on all

the parameters from the output state, ensuring the asymp-

totic saturability of the qCRb; (iii) the parameters are

statistically independent, meaning that the indeterminacy

of one of them does not affect the error on estimating the

others. We recall also that (ii) holds if and only if

Γμν ¼ 0 ∀ μ ≠ ν, while (iii) is equivalent to the condition

Hμν ¼ 0 ∀ μ ≠ ν.

In this Letter we do not focus on the first condition, since

our theory is built around a realistic imaging scenario in

which the emission properties of the sources are fixed in

advance. Yet, it is worth investigating conditions (ii) and

(iii), since they have crucial implications for the actual

achievability of the statistical errors given by the qCRb.

Remarkably, we find that conditions (ii) and (iii) are always

satisfied for the pair of parameters ðs; pÞ—independently

of the specifics of the point spread function. In the

simplified scenario where ðx̄; z̄Þ are estimated independ-

ently or known in advance, it is thus possible to construct a

physical measurement and estimation strategy for s and p
saturating Eq. (8) asymptotically [29,32]. On the other

hand, we can see that conditions (ii) and (iii) do not hold in

general for the full set of parameters ðs; p; x̄; z̄Þ. Yet, we
shall see in the example below that there is at least one

relevant type of point spread function for which conditions

(ii) and (iii) are satisfied for all parameters in the

limit s → 0; p → 0.

We consider in what follows a Gaussian beam in free

space,

ψðx; y; zÞ ¼

ffiffiffiffiffiffiffi

kzR

π

r

i

zþ izR
exp

�

−ikðx2 þ y2Þ

2ðzþ izRÞ
− ikz

�

;

ð23Þ

where zR is a length parameter characterizing the beam,

typically assumed of the same order as the wavelength, i.e.,

∼1=k. Equation (23) can be obtained, e.g., if the fields

generated by the two sources are well approximated by

Gaussian beams in the vicinity of the image plane [62]. We

thus obtain

γ ¼
2izR

pþ 2izR
exp

�

−ikp −
i

2

ks2

pþ 2izR

�

;

h∂xψ j∂xψi ¼
k

2zR
;

hGi ¼ k −
1

2zR
;

hG2i ¼ k2 −
k

zR
þ

1

2z2R
: ð24Þ

By substituting the above expressions in the qFim elements

calculated previously, we find fully analytical closed

formulas (as reported in Appendix B [61]) that allow us

to perform a comprehensive analysis of the multiparameter

estimation problem under investigation. Furthermore, the

Gaussian case bears the advantage that it can be easily

compared with the existing literature that tackled the

estimation of s alone (typically fixing p ¼ 0). To support

the solidity of our results, we have indeed checked that, in

the limit p→ 0, our expressions forHss andHx̄ x̄ match the

appropriate quantities in Refs. [2,60].

Our results become particularly interesting in the regime

ks; kp ≪ 1, which is precisely the one of relevance to

subwavelength imaging. In this limit we have

lim
ðs;pÞ→ð0;0Þ

H ¼ diag

�

k

2zR
;
2k

zR
;
1

4z2R
;
1

z2R

�

; ð25Þ

lim
ðs;pÞ→ð0;0Þ

Γ ¼ diagf0; 0; 0; 0g; ð26Þ

meaning that the (optimal) estimators of the four param-

eters s; x̄; p; z̄ are approximately statistically independent;

i.e., they have vanishingly small statistical correlations,

when the two sources have infinitesimal angular and axial

separations.

The behavior of the four diagonal qFim elements Hμμ as

a function of the separations s and p is illustrated in Fig. 2;

the top panel can be compared directly with Fig. 2 of

Ref. [2]. From the plots and from Eq. (25), we see that the

qFIm diagonal elements tend to a nonzero value when

s; p→ 0. Hence the fundamental lower bound on the total

estimation error, ∝ Tr½H−1�, stays finite even when the two

sources are infinitesimally close, instead of diverging as in

direct imaging [1,2]. Equation (26) further suggests that

it should be possible to construct a single measurement that

is approximately optimal for the estimation of all four

parameters when ks; kp ≪ 1. Note that this may require

PHYSICAL REVIEW LETTERS 122, 140505 (2019)

140505-4



collective measurements over many copies, i.e., many time

intervals. Exploring more practical suboptimal strategies

and determining how close one can get to the optimal

measurement by using only single-copy measurements will

be the subject of future work.

Conclusions.—We determined the ultimate quantum lim-

its to the simultaneous estimation of both angular and axial

separations and centroid coordinates of two incoherent point

sources on different object planes in the paraxial approxi-

mation. Our results indicate that there exists a jointly optimal

detection scheme that enables resolving the sources even

when arbitrarily close, reasserting that Rayleigh’s curse is

merely an artifact of classical detection strategies based on

direct imaging. In practice, a measurement apparatus

approaching the optimal precision can be designed by

adapting the methods of Refs. [15,16,46,47,63], in particular

extending the “spatial-mode demultiplexing” or “superloc-

alization by image inversion interferometry” techniques [2,7]

to the axially separated setting considered here.

While some of our findings were illustrated explicitly for

Gaussian beams, our framework is general and can be

applied to any point spread function that satisfies the

paraxial wave equation, thanks to the exact expressions

in Eqs. (13)–(20). This leads to qualitatively similar results

as those presented here. In particular, the two most

important conclusions, namely, that the qFim elements

for the angular distance s and for the axial distance p are

both independent of s and p, and that the joint estimation of

s and p fulfils the measurement compatibility condition

leading to the saturation of the quantum Cramér-Rao bound

in Eq. (8), are in fact valid for any point spread function.

This Letter constitutes an important application of multi-

parameter quantum estimation theory to a realistic imaging

setting, extending the seminal work of Ref. [2]. Our

analysis, combined with the one in Ref. [12], yields a

quantum enhanced toolbox for full 3D subwavelength

localization. This paves the way to further experimental

demonstrations and innovative metrology solutions in

scientific, industrial, and biomedical domains, such as

subnanometer depth mapping in rough surfaces, and

dynamical interaction analysis of heterogeneous molecules

in a cellular environment [4,5,27,64].
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Note added.—Shortly after the initial submission of this

Letter, quantum superresolution of two incoherent point

sources in three dimensions was studied independently in

Ref. [65], reporting explicit results for the case of a clear

circular aperture.
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