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ABSTRACT In smart grids, electricity theft is the most significant challenge. It cannot be identified easily

since existing methods are dependent on specific devices. Also, the methods lack in extracting meaningful

information from high-dimensional electricity consumption data and increase the false positive rate that

limit their performance. Moreover, imbalanced data is a hurdle in accurate electricity theft detection (ETD)

using data driven methods. To address this problem, sampling techniques are used in the literature. However,

the traditional sampling techniques generate insufficient and unrealistic data that degrade the ETD rate.

In this work, two novel ETD models are developed. A hybrid sampling approach, i.e., synthetic minority

oversampling technique with edited nearest neighbor, is introduced in the first model. Furthermore, AlexNet

is used for dimensionality reduction and extracting useful information from electricity consumption data.

Finally, a light gradient boosting model is used for classification purpose. In the second model, conditional

wasserstein generative adversarial network with gradient penalty is used to capture the real distribution of the

electricity consumption data. It is constructed by adding auxiliary provisional information to generate more

realistic data for the minority class. Moreover, GoogLeNet architecture is employed to reduce the dataset’s

dimensionality. Finally, adaptive boosting is used for classification of honest and suspicious consumers.

Both models are trained and tested using real power consumption data provided by state grid corporation of

China. The proposed models’ performance is evaluated using different performance metrics like precision,

recall, accuracy, F1-score, etc. The simulation results prove that the proposed models outperform the existing

techniques, such as support vector machine, extreme gradient boosting, convolution neural network, etc.,

in terms of efficient ETD.

INDEX TERMS Electricity theft detection, generative adversarial network, GoogLeNet, imbalanced data,

Urban planning, SMOTEENN.

NOMENCLATURE

AdaBoost Adaptive boosting

ADASYN Adaptive synthetic

AMI Advanced metering infrastructure
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AUC Area under the curve

ANN Artificial neural network

AI Artificial intelligence

ARIMA Auto regressive integrated moving average

BBHA Binary black hole algorithm

BGRU Bidirectional gated recurrent unit

CatBoost Categorical boosting
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CDCGAN Conditional deep convolutional

generative adversarial network

CNN Convolutional neural network

CGAN Conditional generative adversarial

network

CM Confusion matrix

CWGAN-GP Conditional wasserstein generative

adversarial network gradient penalty

DT Decision tree

DL Deep learning

DERs Distributed energy resources

DR Detection rate

DWPT Discrete wavelet packet transform

ENN Edited nearest neighbor

ETD Electricity theft detection

FMM Finite mixture model

FPR False positive rate

FP False positive

FN False negative

GAN Generative adversarial network

GAN-NETBoost Generative adversarial network

GoogLeNet adaptive boosting

GBTD Gradient boosting theft detector

GP Gradient penalty

ILSVRC ImageNet large-scale visual recognition

challenge

IoT Internet of things

KLD Kullback-Leibler divergence

LGB Light gradient boosting

LC Lipschitz constraint

LSTM Long short-term memory

ML Machine learning

MODWPT Maximal overlap discrete wavelet

packet transform

MCC Matthews correlation coefficient

MLP Multilayer perceptron

NM Near miss

NNs Neural networks

NTL Non-technical loss

PCA Principal component analysis

PR Precision recall

ROC Receiver operating characteristic

ROS Random oversampling

RF Random forest

ReLU Rectified linear unit

RUS Random undersampling

RUSBoost Random undersampling boosting

SG Smart grid

SMs Smart meters

SMOTE Synthetic minority oversampling

technique

SMOTEENN Synthetic minority oversampling

technique and edited nearest neighbor

SMOTE-Link Synthetic minority oversampling

technique and tomek-link

SGCC State grid corporation of China

SVM Support vector machine

SEAI Sustainable energy authority of Ireland

SETS Smart energy theft system

SALM SMOTEENN-AlexNet-LGB model

TL Technical loss

TP True positive

TN True negative

TPR True positive rate

WD-CNN Wide and deep convolutional neural

network

WGAN Wasserstein generative adversarial

network

WGAN-GP Wasserstein generative adversarial

network gradient penalty

XGBoost Extreme gradient boosting

ym Missing value

x Real electricity consumption data

Z A randomly selected input from

σ Standard deviation

µ Mean

s Sample

k Value of K used in KNN

r Radius of circle in KNN

wm Identical weight

cm Weak Classifier

ǫ Error rate

b Bias

w Weight

I. INTRODUCTION

Electricity has become inevitable for human life as almost all

daily activities are dependent on it, such as communication,

transportation, domestic appliances, heating and cooling sys-

tems, etc. It is considered vital for providing convenience,

comfort, and consolation to life [1]. With the increase in

world population and the usage of smart appliances, the elec-

tricity consumption is increasing rapidly. So, there is a need

to optimize electric power usage, improve energy reliability,

increase efficiency and reduce power losses for both users and

utilities [2]. To achieve the aforementioned objectives, exist-

ing grids are transformed into the smart grids (SGs). One of

the fundamental advancements in the power grid is the inclu-

sion of Advanced Metering Infrastructure (AMI) that enables

bi-directional communication between customers and utili-

ties. In reality, smart meters (SMs) are considered a vital

part of the AMI that encourage productive and effective data

trading in power utility systems [3]–[5]. Almost all electric-

ity companies face electrical power losses, which lead to

huge economic losses [6]–[8]. The difference between the

total electric energy generated at the generation side and the

energy distributed to consumers is referred as electrical power

losses. Technical losses (TLs) and commercial loss are two

types of electrical power losses [9]–[11]. Commercial loss is

also known as non-technical losses (NTLs) [9]. In Figure 1,

the losses in electrical power systems are illustrated.
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FIGURE 1. Illustration of power system and electrical power losses.

TLs occur due to energy dissipation in distribution and

transmission lines, transformers, and other electrical equip-

ments [12], [13]. The losses depend on network charac-

teristics, planning, and operations [6]. On the other hand,

NTLs are calculated as the consumed electrical power that

is not billed. The main causes of these losses are faulty

meters, unpaid and erroneous bills, and electricity theft [12],

[14]–[17]. For electricity theft, key spoofing and password

cracking are the conventional techniques, which are used

to tamper the meters [12], [13]. The magnets are also used

to manipulate the meter readings. Electricity theft leads to

the increase in electricity demand, significant and massive

revenue loss, heavy load, and lack of safety for both users

and utilities [10], [18], [19]. Electricity theft also affects the

honest consumers. The unpaid electricity bills are splitted

and their burden is put on the honest consumers. So, they

pay extra bills [9]. According to a recent report of the

Northeast Group, utility companies lose $96 billion annually

around the world due to NTLs [20], [21]. Moreover, electrical

power theft has become a critical issue for energy utilities

globally. A considerable amount of research has been done

on electricity theft detection (ETD). Traditional techniques

for identifying electricity theft are based on human efforts.

Inspections are performed by technical staff who compare

the anomalous meter’s electricity consumption pattern with

the normal ones [10]. However, it is difficult and expensive

to conduct multiple on-site inspections for ETD [22]. Such

approaches are labor-intensive, time-consuming, costly, and

ineffective [10], [14], [22]. Therefore, there is a need for a

smart and expert system that can accurately predict electricity

fraudsters.

Recently, energy specialists adopted different approaches

to identify electricity theft in the power systems. Some studies

used the data obtained from the SGs to identify electric-

ity theft [10], [16]. In SGs, bi-directional flow of informa-

tion and electricity establishes a connection between utilities

and customers [23], [24]. Artificial intelligence (AI) [25],

machine learning (ML) [26], deep learning (DL) [4], hybrid

models [10] and game theory based approaches [27] play

major roles in ETD. However, most of these approaches

have some limitations. The ETD in AMI is a special type

of anomaly detection. It involves highly imbalanced data

that influences the theft detection rate (DR) of the models.

Here, the imbalanced data means that the number of samples

are not distributed equally and honest customers are more

than dishonest customers. When ML algorithms are trained

to detect the electricity theft in the power systems, most of

them ignore the data distribution between both classes and

become biased towards the majority class. As a result, these

algorithms provide a high false DR [22].
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In some studies, sampling techniques, such as undersam-

pling, and oversampling are used to overcome the data imbal-

ance problem. Both techniques work differently. Samples

from the larger class are omitted in undersampling to balance

the dataset [22]. However, oversampling techniques promote

data balancing by generating data for the smaller class [28].

Synthetic minority oversampling technique (SMOTE) is a

common technique to solve the balancing problems using the

nearest neighbor approach [29]. Another common technique

is adaptive synthetic (ADASYN) [30]. Both the aforemen-

tioned techniques are oversampling algorithms, which are

used to deal with imbalanced dataset problem. The random

oversampling (ROS) approach leads to overfitting. Whereas,

the random undersampling (RUS) method loses information

that affects the learning process and causes underfitting prob-

lem. Therefore, the mentioned sampling techniques are insuf-

ficient in terms of balancing the data. Another problem with

data drivenmethods is the low theft DR. Besides, a high false-

positive rate (FPR) makes the ETD approaches expensive

and inefficient. Therefore, it is also a challenging part of

ETD. Furthermore, accuracy is not considered a reasonable

performance measure in the case of data imbalance problems.

Hence, ETD models must be evaluated using appropriate

performancemetrics like precision, recall, F1 Score, etc. [22].

In this study, two different models are presented to over-

come the problems identified in existing approaches. In the

first model, we present a combination of two different sam-

pling approaches, such as SMOTE and edited nearest neigh-

bor (ENN), known as SMOTEENN, to balance the dataset.

Moreover, a variant of convolutional neural network (CNN)

architecture, i.e., AlexNet, is also used in the proposed

work for feature extraction, which gained much popular-

ity in the imageNet large scale visual recognition competi-

tion (ILSVRC) over the past few years [31]. Thereafter, a light

gradient boosting (LGB) model is used for classification. The

proposed model is named as SMOTEENN-AlexNet-LGB

(SALM) for ETD. In the second model, a novel approach

is proposed for ETD that consists of a Generative Adver-

sarial Network (GAN), GoogLeNet, and Adaptive Boosting

(AdaBoost), named as GAN-NETBoost. In the model, con-

ditional Wasserstein GAN (CWGAN) with gradient penalty

(CWGAN-GP) is used to balance the data by synthesizing the

fake electricity consumption profiles of the minority class.

GAN has gained much attention for anomaly detection [32].

It is proficient at learning the distribution of provided data

to generate synthesized data close to the real data [33], [34].

CWGAN-GP is trained using the labeled electricity con-

sumption data. Inception module based GoogLeNet is used

for feature extraction while AdaBoost is used for final

classification.

In the proposed work, we consider the publicly avail-

able electricity consumption data taken from the state grid

corporation of China (SGCC). The dataset contains a daily

electricity consumption report of both malicious and honest

customers. However, the data is highly imbalanced (the ratio

of dishonest consumers and honest consumers is 1:10), which

is the biggest hurdle in ETD. The performance of the models

is evaluated using Area under the curve (AUC), recall, pre-

cision, etc., and the comparison is performed with different

traditional sampling and boosting algorithms.

This work is an extension of [35]. The main contributions

of this work are listed below.

• A hybrid sampling technique SMOTEENN is proposed

that prevents the loss of important information and over-

fitting problems caused by undersampling and oversam-

pling techniques, respectively.

• AlexNetmodule of the proposed SALMmodel is used to

extract important features from high dimensional data.

• To improve ETD and to reduce High FPR, LGB module

of the proposed SALM model is used.

• The conventional GAN model stucks in training insta-

bility, vanishing and exploding gradient problems; there-

fore, CWGAN-GP is used in this study to deal with the

issues of conventional GAN and efficiently balance the

data by synthesizing the minority class samples.

• To extract the characteristics of customers’ electricity

consumption behavior, a version of GoogLeNet based

on three inception layers is used in the GAN-NETBoost

model.

• Using the suitable performance measures, the results of

the proposed models are evaluated and compared with

traditional models. The Simulation results shows that the

proposed models outperform the existed models in term

of efficient ETD.

The list of abbreviations used in this article is presented in the

Nomenclature section given at the start of this manuscript.

The remaining paper is organized as follows. Section II

presents the existing studies related to ETD. The problems

highlighted and addressed in this work are discussed in

Section III. Section IV presents the proposed approach in

detail. Furthermore, Section V describes the performance

measures used for the models’ evaluation in this work.

Section VI compares the simulation results of the proposed

methods against existing methods. Finally, Section VII con-

cludes the proposed work.

II. RELATED WORK

In the last few decades, electrical power has become a back-

bone for the development of any country [36]. It has the

potential to either raise or reduce the country’s economy.

Over the past few years, NTL detection has become a major

problem in energy systems across the world. NTL is defined

as the difference between TLs and total losses [37]. Electric-

ity theft is the major reason for NTLs. Different approaches

have been developed for detection and estimation of electrical

power theft. The state-of-the-art techniques to detect electric-

ity theft in AMI system are categorized into three groups:

state based, classification based, and game theory based [38].

In [4], ML algorithms and statistical models are used to

develop smart energy theft system (SETS) for securing Inter-

net of things (IoT) based smart homes [39], [40]. Whereas,

in [6], an artificial neural network (ANN) based scheme is
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presented to detect illegal electricity consumption patterns

using probabilistic ANN and Levenberg-Marquardt algo-

rithm. In NTLs detection, support vector machine (SVM)

is a famous and extensively used model. In [41], authors

tried to balance transmission and distribution level in SGs

by merging decision tree (DT) and SVM in a top down

manner. DT is used to estimate the power consumption rate

and the output is then fed into SVM that classifies malicious

and normal customers. In [27], authors introduced a security

feature in AMI system by using SVM and named the model

as consumption pattern based energy theft detector. It was

evaluated using the dataset released by the sustainable energy

authority of Ireland (SEAI). The proposed work is efficient in

terms of low sampling rate for balancing the data. However,

the dataset contains patterns that are collected manually from

users to train the model, which is tedious and time consuming

task.

Big data is used for the detection of electrical power loss.

The selection of appropriate features is beneficial as it can

enhance the model’s performance. A variety of algorithms

for the selection of an optimal set of features are available

in literature. To improve the DR, authors in [9] used a binary

black hole algorithm (BBHA) for selecting the appropriate

features. Moreover, results are compared with other existing

algorithms used for the selection of useful features from

electricity consumption profiles of customers. A BBHA is

a parameter free algorithm that makes the respective model

less prone to errors than other algorithms. Authors in [10]

proposed a deep network, named as wide and deep CNN

(WD-CNN), for the detection of fraudulent customers in an

electric power system. The model is trained and tested using

electricity theft consumption data provided by the utility of

China. The wide component of CNN is designed to derive

the concept of memorization and generalization. Moreover,

data is converted into two dimensions to achieve better

accuracy.

A hybrid method is proposed, which combines two deep

networks to analyze the electricity theft data [29]. Authors

proposed a model by combining CNN and long short-term

memory (LSTM) named as CNN-LSTM. In the model, CNN

is used to extract the useful features from electricity con-

sumption data and LSTM is used for final classification.

Also, SMOTE is used to balance the dataset for satisfactory

results. In [42], a hybrid approach of CNN and random

forest (RF) is adopted to analyze the data of 5,000 con-

sumers released by SEAI.Moreover, inspired by [10], authors

reshaped the dimensions of data, which provide generalized

feature extraction by CNN. A data-driven model is proposed

for ETD in [13]. Clustering is performed for the extraction

of similar groups for different types of consumers’ consump-

tion behavior. Moreover, a fuzzy based distance is measured

to check whether the customers belong to a similar group

or not. So, if the customers do not belong to the similar

group, than it is considered as electricity theft. In [14], a data

driven approach is proposed to detect cyber attacks in power

systems by combining both state based and classification

based schemes. Correlation between NTLs and a consumer’s

profile is captured with the help of maximum information

coefficient. In [15], both the auxiliary database and the data of

SMs are exploited to detect electrical power losses. Extreme

gradient boosting (XGBoost) is used, which shows better

performance as compared to other ML algorithms. Authors

in [43] designed a gradient boost theft detector (GBTD)

model that focused on feature engineering. Simulation results

show that LGB performed better than XGBoost and cate-

gorical boosting (CatBoost). Furthermore, GBTD achieved

higher accuracy in terms of ETD and improved time com-

plexity. However, the model’s performance is evaluated using

the synthetic data.

In [12], authors introduced genetic programming algorithm

to detect electricity theft. Finite mixture model (FMM) based

clustering and Pearson’s coefficient are used to detect abnor-

malities in AMI. Themain aim is to achieve sustainability and

efficiency that are considered the key factors in every energy

system [44], [45]. In [20], LSTM and statistics modeling are

used to achieve efficiency. The real electricity consumption

patterns and billing data are fed to the model for training and

testing purposes. However, time series analysis is not consid-

ered. Moreover, the feed forward network is used to identify

cyber attacks in the AMI system [31]. Imbalanced nature of

data is a challenging problem while handling electricity theft.

Different sampling algorithms are used to mitigate this prob-

lem. In [22], random undersampling boosting (RUSBoost)

is used to balance the dataset. Moreover, maximal overlap

discrete wavelet packet transform (MODWPT) is used for

feature extraction. However, for the massive imbalanced data,

RUS is not considered an efficient approach due to loss of

important information during elimination of instances from

majority class. It also results in high FPR that renders it

expensive and inefficient. The deployment of distributed

energy resources (DERs) is increasing day by day. The study

in [46] presented meter fraud detection in DERs and provided

a set of electricity fraud attacks. An assumption is made in

this article that the electricity thief is aware of the ETD

method. The proposed method consisted of auto regressive

integrated moving average (ARIMA) model and Kullback-

Leibler divergence (KLD). Moreover, feature extraction is

performed using principal component analysis (PCA). Data

from five different resources is collected for the detection of

meter fraud in DERs.

In [47], authors combined supervised and unsupervised

learning by applying ANN and text mining to reduce NTLs

in power utilities. ANN is used in data preprocessing step;

whereas, an unsupervised technique is introduced in the sec-

ond module. Authors in [48] proposed a combination of

SMOTE and tomek-link (SMOTE-Link) to balance the

dataset. Bidirectional gated recurrent unit (BGRU) is used

for classification of consumers, which integrated the fea-

ture extraction property of PCA. SGCC dataset is explored

for experimentation. Table 1 provides an overview of the

existing electrical power loss detection approaches, focusing

on the dataset used for testing and training of the model.
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TABLE 1. Related work summary.

Moreover, different performance measures used for the

models’ evaluation are also given along with their

values.

III. PROBLEM ANALYSIS

One of the main issues that affect the economic stability of a

country is the electricity theft [10]. It is reported by Northeast

Group LLC that the world loses $89.3 billion annually due

to electricity theft [49]. Moreover, it also negatively affects

the electricity supply and tariffs. Furthermore, as a result of

electricity theft, revenue loss is divided among all customers,

including the honest (legal) customers at the time of elec-

tricity tariff calculations [9]. Therefore, ETD and prevention

are compulsory for a stable energy system. In order to detect

electricity theft, the significant challenge is the imbalanced

nature of the data. In [10], [15], supervised learning tech-

niques are used for ETD. However, highly imbalanced data

is used, which causes misclassification and low DR. In [43],

ROS technique is used that causes overfitting and leads to

computational complexity. Whereas, in [22], authors used

RUS technique to balance the data. However, false DR is high

and RUS also discards useful information from data while

removing the electricity consumption instances.

Moreover, the performance of ML algorithms can be

enhanced by extracting the most relevant features from raw

data. Authors in [9], [22] usedMODWPT and BBHA for fea-

ture extraction from electricity consumption data. However,

MODWPT leads to computational complexity that requires

more memory and time to extract features from a large

amount of data. On the other hand, BBHA gets stuck in

local optima and fails to provide efficient results for ETD.

In [27] and [42], the ETD models are not evaluated using

reasonable performance metrics for the identification of elec-

tricity fraudsters.
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FIGURE 2. Proposed system model of SALM and GAN-NETBoost.

IV. PROPOSED SYSTEM MODEL

This section presents the proposed solutions for the problems

highlighted in Section III. Two ETD models are proposed,

as shown in Figure 2. The proposed SALM is presented

in Figure 3. It is designed to address the identified limitations

in Section III.We havementioned all the limitations using red

color in the model. Solution for each limitation is explicitly

mentioned with blue color. The flowchart of the proposed

SALM is presented in Figure 4. In contrast, the second

ETD model is represented in Figure 5. The limitation iden-

tified in the existing literature are shown with red color and

their proposed solutions are represented by blue color. The

flowchart of GAN-NETBoost model is presented in Figure 6.

In bothmodels, data preprocessing, balancing the dataset, and

feature extraction are the main steps, which are performed

before final classification of the consumers. The following

are identified limitations from the existing literature, which

are referred as L1-L12:

• L1: presence of imbalanced data,

• L2: overfitting caused by duplicating the minority class

instances,

• L3: loss of information due to the removal of instances

from majority class,

• L4: high FPR due to the inability of model to learn high

dimensional power consumption data,

• L5: generalization (poor performance of the model on

unseen data),

• L6: difficult to extract meaningful information from

large size time-series data,

• L7: inaccuracy in ETD,

• L8: optimization problem or being stuck in local optima,

• L9: improper validation of the proposedmodel or lack of

performance measures regarding binary classification,

• L10: overfitting in deep learning models,

• L11: gradient vanishing problem, and

• L12: authenticity of data.

In the following subsections, the models are discussed in

detail.

A. DATA AVAILABILITY

Real and verified electricity consumption patterns acquired

from SGCC are used for training and testing of the proposed

models. The dataset contains daily electricity consumption

reports of both dishonest and honest consumers. The time

duration of data is from Jan 2014 to Oct 2016. In this study,

electricity consumption data of approximately 42,372 cus-

tomers is presented of which 3,615 consumers are dishonest

and 38,757 are honest. So, the ratio is 1:10, which proves

that the data set is highly imbalanced. The dataset cannot be

used without preprocessing as imbalanced dataset negatively

affects the performance of a classifier [35].

B. DATA PREPROCESSING

The dataset consists of labeled real electricity consumption

patterns. The presence of noise and missing values in the data

along with data diversity degrade the model’s performance.

Therefore, data preprocessing is performed before training

both models on the data. Figure 7 shows the techniques

that are exploited to reduce the complexity of data. These

techniques are discussed as follows.

• Missing Values: interpolation is used to fill data values

that are lost or missing. In this work, linear interpolation

is used to recover the data using the formula given in

equation 1, modified from [10].

ym = y1m +
y2m − y1m

x2m − x1m
∗ (xm − x1m). (1)

where, ym is themissing value in electricity consumption

data over period xm. y2m is prior value to ym and y1m is

the value that proceeds ym. Moreover, xm, x1m, and x2m
show the time of data for ym, y1m, and y2m, respectively.
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FIGURE 3. The proposed SALM model.

• Noisy Data: erroneous values that are also called noise

and sometimes outliers may lead the classifier towards

poor accuracy. Z-score is a simple and powerful method

that deals with this issue and it is calculated using

equation 2 [50].

z =
xm − µ

σ
. (2)

where, µ is mean and σ is standard deviation.

• Data Scaling: min-max scaler method is used for scal-

ing the data between 0 and 1. Equation 3 is used for

scaling, taken from [10].

c =
xi − xmin

xmax − xmin
. (3)

where, xmin and xmax represent minimum and maximum

values of x, respectively. In xi, x belongs to the electricity

VOLUME 9, 2021 25043



A. Aldegheishem et al.: Towards Sustainable Energy Efficiency With Intelligent ETD in SGs Emphasising Enhanced NNs

FIGURE 4. Flowchart of the proposed SALM model.

consumption of single user and i represents the specific

interval.

C. DATA SAMPLING

In this section, the sampling techniques used in both models

are discussed in detail. In ML, balancing the dataset is con-

sidered as an important step for better classification results.

Different sampling techniques are used in the literature to

balance the data. These sampling techniques create a bal-

anced version of the dataset. ML algorithms are designed to

maximize the accuracy and to reduce the error rate. However,

imbalance nature of the data makes a classifier biased towards

majority class. The classifier always has the tendency to

predict the dominant class while ignoring the minority class.

Algorithms perform well when there are equal number of

samples in each class. The following are the commonly used

techniques to balance the dataset.
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FIGURE 5. The proposed GAN-NETBoost model.

• Oversample Minority Class: in this approach, minor-

ity class is duplicated randomly to balance the major-

ity class. The duplicated data are generated using the

existing data. ROS is used for the duplication of the

samples of minority class. Therefore, duplication of

data causes overfitting and also increases computational

complexity.

• Undersample Majority Class: RUS refers to the ran-

dom selection of the samples of majority class without

considering the usefulness of the samples. The selected

samples are discarded to balance the number of samples

in both classes. The major drawback of undersampling

is the loss of important information. Thus, it makes the

dataset small and leads to underfitting.

• Hybrid Sampling: it combines oversampling and

undersampling to generate a balanced dataset. In this

technique, partial sampling is performed in which

minority class is oversampled and majority class is

undersampled. In this way, negative impacts of both

techniques are minimized. However, it may lead to poor

generalization due to ignorance of distribution of sam-

ples in both classes.

1) SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

EDITED NEAREST NEIGHBOR

In SALM, a combination of both oversampling and under-

sampling techniques is utilized to balance the class distribu-

tion uniformly as well as to overcome the drawbacks of both

sampling algorithms. It is known as SMOTEENN. It is hybrid

of the following algorithms.

Synthetic minority oversampling technique: it is used

to balance the data by using the data of minority class. The

working of SMOTE is described as follows.
• Step 1: minority class is selected as vector V .

• Step 2: for each sample s, s ∈ V , find the nearest

neighbor.

• Step 3: sampling rate R is a set that constructs N

by selecting the nearest neighbors (i.e., s1, s2, . . . , sn)

randomly.

• Step 4: equation 4 is used to generate the samples

x ′ = x + rand(0, 1) ∗ |x − xk |. (4)

where, x ′, represents the generated samples and

xk represents the nearest value.

• Step 5: steps are repeated until data is balanced.
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FIGURE 6. Flowchart of the GAN-NETBoost model.

FIGURE 7. Overview of data preprocessing.

Edited nearest neighbors: it removes samples from

the majority class to balance the dataset. The borderline

and noisy samples are removed from the majority class

in order to get a balanced class. ENN is based on KNN

that removes those samples that act differently. If a sam-

ple has more nearest neighbors from different class, then it

will be discarded. ENN works according to the steps given

below.

25046 VOLUME 9, 2021



A. Aldegheishem et al.: Towards Sustainable Energy Efficiency With Intelligent ETD in SGs Emphasising Enhanced NNs

FIGURE 8. General view of GAN.

• Step 1: select the majority class as N .

• Step 2: for all given samples v from N , find the nearest

neighbors.

• Step 3: if the more number of nearest neighbors of a

sample belong to the majority class, then discard it.

• Step 4: repeat the steps for each sample from the major-

ity class.

2) CONDITIONAL WASSERSTEIN GENERATIVE ADVERSARIAL

NETWORK-GRADIENT PENALTY

To compensate for an imbalanced dataset in GAN-

NETBoost, CWGAN-GP is used. It is a modified version of

GAN, which is capable of learning the distribution of the

provided data that helps in data generation. GAN belongs

to the class of neural networks (NNs) and has the ability

to generate new data from the existing data [51]. Good-

fellow proposed GAN in 2014, which comprises of two

NNs: generator and discriminator. Figure 8 illustrates a

simple structure of GAN. CWGAN-GP is the combination

of conditional generative adversarial network (CGAN) and

wasserstein generative adversarial network gradient penalty

(WGAN-GP). The results prove that CWGAN-GP achieves

enhanced performance as compared to conventional data

sampling techniques.

• Generator: the generator network learns the data dis-

tribution and generates the data, which is close to the

real data. It tries to confuse the discriminator, which is

used to distinguish fake samples from real data samples.

Random noise z is fed to the generator as an input

that is either Gaussian noise or an arbitrary point in

latent space. The cost function for the generator model

is measured using the following equation 5. It was used

by Goodfellow in [51].

minV (G)
G

= Ex∼px(x)[log(1 − D(G(z)))], (5)

where G(z) is the value generated using noise z, D(G(z))

shows the discriminator’s prediction whetherG(z) is real

or fake and Ex is the expected value over all real data

instances. x belongs to real data and px(x) represents the

distribution of real data.

• Discriminator: it is used to discriminate between real

and the samples generated by GAN. G(z) represents the

instances produced by a generator and x represents the

instances that belong to actual dataset. The instances are

fed into discriminator as input of the network. The loss

function used for training the discriminator is given in

equation 6, taken from [51].

maxV (D)
D

= Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1 − D(G(z)))], (6)

where D(x) depicts the discriminator’s estimated proba-

bility, x represents real data instances and Ez shows the

expected value for overall generated fake instancesG(z).

pz(z) represents the distribution of input noise z.

Both generator and discriminator fight to achieve the

desired equilibrium, which is achieved in a game theory con-

text using a minimax game. Moreover, simultaneous training

of both generator and discriminator is done in an adver-

sarial manner. The objective function of GAN is given in

equation 7 [51].

min
G
max
D
V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1 − D(G(z)))]. (7)

a: CONDITIONAL GENERATIVE ADVERSARIAL NETWORK

It compiles generator and discriminator under some condi-

tions discussed later in this section. It is an advanced design

of GAN. Data is generated in a supervised manner by using

a condition that is in the form of some additional informa-

tion [52]. In our case, the condition is referred to as labels
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FIGURE 9. General overview of WGAN.

and is represented by y. These labels control the mode of the

data to be generated. The additional information is fed to G

as input along with noise z and can be presented as G(z, y).

Equation 8 gives the cost function for CGAN [52].

min
G
max
D
V (D,G) = Ex∼Pdata(x)[logD(x|y)]

+Ez∼Pz(z)[log(1 − D(G(z|y)))]. (8)

where, y shows the auxiliary condition (information about the

labels), G(z, y) is the generated value and label, and D(x, y)

is the discriminator’s estimate along with label. Training

instability and failure to converge are two big challenges that

occur while training a GAN model. The following are some

limitations of GAN that are tackled by CGAN.

• Mode Collapse: during data generation, a stage comes

where almost the same data is generated. The generated

data can fool the discriminator. However, it is unable to

fulfill the requirements of the real world data distribu-

tion. Therefore, it is considered as a failure of the GAN

model.

• Vanishing Gradient: if a discriminator is not trained

well and during the training process the loss becomes

zero. It means that no gradient is left for further iter-

ations, which leads to the vanishing gradient problem.

On the other hand, if the discriminator is not trained

properly, then the generator would not generate a real

sample due to the lack of appropriate feedback from the

discriminator.

• Nash Equilibrium: GAN is based on minimax, which

means gradient descent is used for training both dis-

criminator and generator networks. Both networks are

trained together to achieve a Nash equilibrium. These

networks update their loss functions, simultaneously.

Thus, creating difficulty in the model’s convergence.

b: WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

It is proposed by Martin Arjovsky, as shown in Figure 9.

In WGAN, discriminator is replaced by critics; whereas,

minimax loss is replaced by Wasserstein’s loss, also known

as earth-mover. During the training of WGAN, Wasserstein’s

loss helps to learn the data distribution and improve the sta-

bility of both generator and discriminator by calculating the

probability distribution. Wasserstein’s loss function is taken

from [53], and is given in equation 9.

W (pr , pg) = inf
γ ǫ5(pr ,pg)

E(x,y)∼γ [‖x − y‖]. (9)

where, 5(pr , pg) is the set of joint distributions γ (x, y). pr
and pg denote the starting and ending marginals, respectively.

5 contains all the possible transport plans, γ and (x, y)

indicates the transported mass from x to y. In the output layer

of the critic model, a linear function is used to activate the

model. The objective of replacing the sigmoid function with a

linear function is to use the Lipschitz function. Furthermore,

(1,0) labels are replaced with (-1,1) for real and generated

data, respectively. Equation 10 gives the Lipschitz function,

which is taken and modified from [53].

|f (x1) − f (x2)| ≤ |x1 − x2|, (10)

where x1 and x2 are the real values of x. f () is the function

that bounds the real values. The main challenge in WGAN

is the implementation of the Lipschitz restriction. Clipping

enforces the Lipschitz constraint (LC) on the critic’s model

meanwhile introducing some additional problems. Poor qual-

ity samples and weak convergence of the model make its

performance questionable.

c: WASSERSTEIN GENERATIVE ADVERSARIAL

NETWORK-GRADIENT PENALTY

It is used in this work. The LC given in equation 11 was

introduced in [54]. The below equation is used in this work
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after modification.

|f (x1) − f (x2)|≤k|x1 − x2|, (11)

where k is an independent constant that shows the maximum

gradient norm. In [54], gradient penalty (GP) is also used in

WGAN instead of theweight clipping that helps to implement

the above mentioned LC. The objective of WGAN-GP is

mentioned in equation 12 [54].

L = E
∼
x∼Pg

[D(
∼
x )] − E

x∼Pr
[D(x)]

︸ ︷︷ ︸

+ λ E
∧
x∼P∧

x

[(‖
h

∧
x

D(
∧
x)‖2 − 1)2]

︸ ︷︷ ︸

. (12)

where, Pg is generator distribution and Pr is data distribution.
∧
x is the random sample, x is real sample,

∼
x defines model

distribution, and λ denotes GP coefficient, which is set to 10.

First part of equation 12 shows original critical loss while

the second part shows GP. The following are the modifica-

tions made in the construction of the CWGAN-GP model.

• Leaky ReLU: to deal with the vanishing gradient prob-

lem of ReLU, leaky ReLU is used in the proposed model

as an activation function.

• Batch Normalization: it is used to enhance the stability

of the model and also to normalize the input within the

network. The intention behind using batch normaliza-

tion is to avoid vanishing and exploding gradients aswell

as mode collapsing to optimize the model’s training. It is

applied after the convolutional layer.

• Adam Optimizer: it is the most widely used optimizer

due to its speed as it achieves optimal results quickly

and minimizes the loss function as well. It offers the

advantages of an adaptive gradient algorithm. Therefore,

Adam optimizer is used in this model.

• Gaussian Weight Initialization: in NNs, weight ini-

tialization is considered an essential task because large

weight values can lead to convergence problem. Also,

the use of larger weight values in the network forces

the activation layer to produce vanishing and exploding

outputs, which result in very small or very large gradient

update. To mitigate this issue, a Gaussian distribution

function is used having values 0 and 1 for mean and stan-

dard deviation, respectively. It is considered a reasonable

approach for weight initialization. In our model, we are

using the Xavier approach to ensure the distribution of

the inputs to each activation function with zero mean.

D. FEATURE EXTRACTION

In this section the feature extraction techniques used in both

models are discussed in detail. In the models, the feature

selection is not considered because the dataset contains only

electricity consumption data.

1) AlexNet

The launch of ILSVRC has brought revolutionary changes in

the field of DL. The ILSVRC is an annual software contest

where different models are presented as detectors and classi-

fiers. In 2012, AlexNet won the ILSVRC andwas named after

the developer, Alex Krizhevsky [30]. In SALM,AlexNet with

five convolutional layers, three maxpooling layers, two fully

connected layers and a dropout layer is exploited. AlexNet

learns the features from massive daily electricity consump-

tion data. Moreover, Adam optimizer is used to update the

weights of the network.

2) INCEPTION MODULE BASED GoogLeNet

Inception module is a deep CNN architecture that was intro-

duced in ILSVRC, held in 2014 (ILSVRC14) [55]. In GAN-

NETBoost, it is used for feature extraction. The breakthrough

performance of this model in ILSVRC14 made it popular in

the creation and innovation of deep architectures to achieve

high accuracy. In the development of the inception module,

we focus on the kernel size. Basically, the inception module

uses three types of kernels at once, as depicted in the Fig-

ure 10. It also represents the basic concept of the inception

module with dimensionality reduction [55].

In the inception layer, the purpose of 1 × 1 convolu-

tion is the reduction of data instances. Besides, the use

of rectified linear activation function improves the perfor-

mance of the model. Higher computational requirements

are decreased by using low dimensional embedding. It also

extracts information at earlier level. Usually, it becomes dif-

ficult to extract information from dense layer where infor-

mation gets compressed. The presented GoogLeNet module

consists of 27 layers. The addition of inception module in

GoogLeNet enhance its performance, as shown in Figure 10.

In the proposed work, a streamlined version of GoogLeNet

with inception module is used for the sake of feature extrac-

tion. The proposed architecture consists of 3 inception layers.

Figure 5 illustrates the proposed architecture of GoogLeNet

used for dimensionality reduction.

E. CLASSIFIERS

The classifiers of SALM and GAN-NETBoost models are

discussed in this section.

1) LIGHT GRADIENT BOOSTING MODEL

In SALM, LGB model is used for classification. It uses his-

togram based algorithms that pace up its learning. Extracted

features are fed to the model as input for training purpose.

Boosting algorithms split the tree depth wise, whereas LGB

model splits the tree leaf wise that makes it different from

others and improves its accuracy. LGB performs well on

large data, requires low memory for execution and has good

accuracy.

2) ADAPTIVE BOOSTING MODEL

In GAN-NETBoost, AdaBoost is used for classifica-

tion, which is a famous ML based boosting approach.
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FIGURE 10. Inception module with dimensionality reduction.

AdaBoost combines multiple weak classifiers to make an

efficient and robust classifier. It works by assigning higher

weight to those instances that aremiss classified and are lower

to those who are already handled well. The basic idea behind

AdaBoost’s working is the training of variousweak classifiers

using the same training set and then combining them to build a

stronger classifier.Weights are assigned to each sample on the

basis of correct classification and the updated dataset having

newweighted instances is fed to the next classifier for training

and classification. Moreover, the continuous training process

in AdaBoost improves data classification ability by reducing

both bias and variance. It is used for both classification and

regression problems [56]. The working of AdaBoost is given

below.

• Step 1: AdaBoost selects the training samples (xn) with

labels.

• Step 2: identical weights (wmI ) are assigned to all

samples.

• Step 3: a weak classifier (cm) is build to classify the data

samples.

• Step 4: the error rate (ǫm) is evaluated using equation 13

and tn in equation 13 depicts the true class label.

ǫm =

N
∑

n=1

wmn I (cm(xn) 6= tn). (13)

• Step 5: the weight (αm) is updated using equation 14

according to (ǫm) for next iteration.

αm =
1

2
ln

1 − ǫm

ǫm
. (14)

• Step 6: steps 1-5 are repeated to assemble a strong

classifier (CM ).

CM (x) = sign(

M
∑

m

= (αmcm(x)). (15)

Extracted features are used as inputs of AdaBoost to

distinguish innocent consumers from fraudulent consumers.

As AdaBoost is sensitive to erroneous data and missing val-

ues, therefore, data is cleaned and normalized in the proposed

work. In this article, AdaBoost is trained using different base

learners using the same dataset to achieve the optimal base

classifier. RF, DT and SVM are the weak learners that are

tested as base classifiers in AdaBoost and referred as ABRF,

ABDT, and ABSVM, respectively. The performance of these

base learners is evaluated using accuracy and AUC. The

purpose behind using different base classifiers is to experi-

mentally verify the impact of these models on the accuracy

of binary classification using electricity theft data.

• Adaptive Boosting with RandomForest:RF is used as

a base classifier in AdaBoost to build a predictionmodel.

RF is one of the most widely used ensemble learning

techniques and is considered as a successful technique

for high dimensional classification.

• Adaptive Boosting with Decision Tree: DT is a simple

algorithm used for classification problems and pattern

recognition. ABDT is a combination of AdaBoost and

DT as a base classifier. A tree is structured using simple

and understandable rules. The learning process of DT

is based on the practical method of inductive inference.

Classification is performed from roots to leaves and the

nodes are tested by variables. Branches are extended to

assign appropriate nodes to the variables.

• Adaptive Boosting with Support Vector Machine:

it is a combination of AdaBoost and SVM as a base clas-

sifier, named as ABSVM. SVM has gained tremendous

popularity due to its good performance. It is flexible

and used for both classification and regression problems.

Structural risk minimization was the motivation behind

the development of SVM. The decision function is given

in equation 16.

f (s) = (w, 8(s)) + b, (16)

wherew is the weight factor, b represents bias and8(s) shows

the mapping of samples.

V. MODEL EVALUATION

In this section different performance measures used for the

evaluation of the proposed model are discussed. ETD is the

binary classification task to differentiate between honest and

dishonest consumers. The results are presented in the form of

a confusionmatrix (CM), which is a combination of predicted

and actual values that involves: true positive (TP), true nega-

tive (TN), false positive (FP), and false negative (FN). These

terms are defined below.

• TP:when a classifier predicts fraud and the actual value

is also fraud.

• TN: when a classifier predicts no-fraud and the actual

value is also no-fraud.

• FP:when a classifier predicts fraud, but the actual value

is no-fraud.
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• FN: when a classifier predicts no-fraud, but the actual

value is fraud.

TP and TN are the correct values while FP and FN indicate

error or misclassification of the classifier. The basic aim of

ETD is to detect maximum fraud cases and to avoid costly

on-site inspections [26]. The performance metrics used for

model’s evaluation are discussed below.

A. PRECISION

Precision describes the ratio of consumers that are correctly

predicted as fraudulent and are fraudulent. It refers to the

measure of a classifier’s exactness. Precision gives the infor-

mation about how many theft cases are identified. It is cal-

culated using equation 17 [22]. Low precision means a high

ratio of FP, which is to be avoided.

Precision =
TP

TP+ FP
. (17)

B. RECALL

Recall is also known as sensitivity. It shows the proportion

of thieve consumers predicted as thieve by the classifier [33].

It is defined as the measure of how much a classifier detects

TP correctly. TP and FN collectively show the total num-

ber of thieves while TP is the predicted number of thieves.

Recall indicates a classifier’s performance concerning FN.

It gives information about how many theft cases are missed.

Equation 18 is used for calculating recall [22]. Low recall

means a high number of FN.

Recall =
TP

TP+ FN
. (18)

C. FALSE POSITIVE RATE

FPR is an important performance measure. A model with low

FPR performs better in terms of ETD. Because once a user

is detected as thief, on-site inspection is performed to catch

him. False detection is harmful in terms of both cost and time.

Equation 19 is used to calculate FPR.

FPR =
FP

FP+ TN
. (19)

D. ACCURACY

Accuracy is not considered a good performance metric when

the dataset is imbalanced. Suppose the dataset contains

records of 100 customers where 95 are honest and 5 are fraud-

ulent. The algorithm predicts every case as honest, including

fraudulent as well. The algorithm shows brassiness towards

majority class in case of imbalanced dataset. Although the

algorithm’s performance in terms of anomaly detection is

poor, still the accuracy will be 95%. Equation 20 is used to

calculate accuracy of a model [22].

Accuracy =
TP+ TN

TP+ FP+ FN + TN
. (20)

FIGURE 11. AU-ROC of SALM and GAN-NETBoost models using different
data sizes.

E. AREA UNDER THE RECEIVER OPERATING

CHARACTERISTICS

It is considered as the most important measure for any clas-

sification model mostly in the case of data imbalance prob-

lem. Receiver operating characteristic (ROC) is known as the

probability curve. Moreover, AUC is also a famous measure

of separability and used as a summary of the ROC curve.

It plots the FPR and true positive rate (TPR) on x and y axis,

respectively. Higher AUC refers to high TPR and leads to

better prediction of the model.

F. F1-SCORE

It is the combination of precision and recall. If F1-score is

high, it means that the model is perfectly predicting the con-

sumers as honest or thieve. Equation 21 is used to calculate

F1-score.

F1 − score = 2 ∗
Precision ∗ Recall

Precision+ Recall
. (21)

G. MATTHEWS CORRELATION COEFFICIENT

B.W. Matthews introduced Matthews correlation coefficient

(MCC) [57], which is used as a quality measure in ML. It is

considered as a more reliable statistical rate. It only produces

a high score if TP, TN, FP, and FN obtain good results.

Equation 22 is taken from [57] and is modified for calculating

MCC in this work.

MCC =
TP ∗ TN − FP ∗ FN

Precision+ Recall
. (22)

VI. SIMULATION RESULTS

Simulations are performed using a machine having 2.3 GHz

Intel Core i5 CPU and Python programming language in

Google Colaboratory. Experiments are conducted using four

different ratios of training and testing datasets, such as

60:40, 65:35, 75:25, and 80:20. The selection of suitable

hyperparameters is important for efficient performance of

ETD model. The models are trained using Adam opti-

mizer. Figure 11 shows the performance of the proposed
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models, i.e., SALM and GAN-NETBoost, for different

training datasets. The obtained results imply that both mod-

els offer higher accuracy when the training ratio is 80%.

Moreover, the performance of GAN-NETBoost is better than

SALM for all data ratios. The figure depicts that SALM has

achieved AUC of 90.6% and the GAN-NETBoost model has

achieved 96% AUC at 80:20 ratio of training and testing

dataset. The tag of V6 in Figure 11 indicates the validation of

the solution proposed against limitation L6. A large amount

of power consumption patterns are analyzed correctly by

AlexNet and GoogLeNet. AUC increases with the increase in

training dataset’s size, which means that models can correctly

detect abnormality in power consumption data.

FIGURE 12. Accuracy of SALM.

FIGURE 13. Loss of SALM.

Overfitting problem is defined as the inability of a model

to perform well on unseen data; whereas, the model per-

forms exceptional on training dataset. This limitation makes

the model inefficient. Figure 12 shows the accuracy of

SALM; whereas, loss is presented in Figure 13. These fig-

ures depict better convergence of the training process. The

closeness of training and validation scores show that the

model learns properly, which means SALM is generalized

and there is no overfitting problem. The tags V5 and V10 in

Figures 12 and 13 demonstrate the validation of solutions

proposed against the limitations L5 and L10, respectively.

FIGURE 14. Results of different sampling techniques.

TABLE 2. V1: Comparison of GAN-NETBoost model with and without
balancing technique CWGAN-GP.

TABLE 3. V1: Comparison of SALM With and without balancing technique
SMOTEENN.

Figure 14 represents the original distribution of com-

plete dataset. Moreover, it also shows the obtained results

after applying SMOTEENN, SMOTE, and ENN on training

dataset. The number of nearest neighbors, i.e., k is selected as

5 for both SMOTE and ENN. L1 tag is assigned to an imbal-

anced dataset problem, which is considered the most impor-

tant limitation related to the dataset for binary classification.

In binary classification problems, the imbalanced nature of

data affects the performance of the model and it becomes

biased towards the majority class by ignoring the minor-

ity class. Tables 2 and 3 show the importance of balanced

dataset for ETD. Table 2 shows the values against different

performance measures for the GAN-NETBoost model with

CWGAN-GP (balanced dataset) and without CWGAN-GP

(imbalanced dataset). It can be observed that CWGAN-GP

enhanced the performance of the model. Table 3 shows

the improved performance of SALM using SMOTEENN.

Tables 2 and 3 validate the results of solutions proposed

for L1. Hence, these tables are tagged as V1.
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FIGURE 15. PR-AUC of both models using SGCC dataset.

Figure 15 shows the trade-off between TPR and the pos-

itive prediction rate in the form of a precision-recall (PR)

curve. More area under the PR curve means that the clas-

sifier efficiently distinguishes regular and irregular samples.

In Figure 15a, it is clearly shown that the SALM is capable of

explicitly detecting electricity theft. In Figure 15b, PR curves

for balanced and imbalanced datasets are presented. A bal-

anced dataset improves the performance of GAN-NETBoost

and helps to classify the instances efficiently and accurately.

To demonstrate how the proposed methods efficiently per-

form in terms of ETD, Figure 16 presents the AUC-ROC

curve. The classifier with AUC value closer to 1 achieves

superior performance than other classifiers. The 0.90 value

of AUC proves better performance of the proposed SALM

model, as shown in Figure 16a. Figures 16b and 16c show

the simulation results for GAN-NETBoost. In Figure 16b,

the performance of AdaBoost is tested by using differ-

ent base classifiers, such as ABDT, ABRF, and ABSVM.

These models are trained and tested using the SGCC dataset.

Performance of all models is evaluated using AUC and accu-

racy. All results are generated using 10-fold cross-validation

mechanism. The comparative analysis shows that ABSVM

achieved better performance than ABRF and ABDT. The

AUC value of ABSVM is 0.96, which is closer to 1. It val-

idates better performance of AdaBoost with SVM as a base

classifier. ABRF andABDT achievedAUCvalues of 0.92 and

0.89, respectively. Moreover, Figure 16c shows the AUC

score achieved by the proposed model using CWGAN-GP

against imbalanced data. In contrast, the PR curve for the pro-

posed model with balanced and imbalanced dataset is shown

in Figure 15b. AUC shows better performance of ABRF than

ABDT using electricity consumption data. ABSVM outper-

forms both ABDT and ABRF by achieving high accuracy.

So, ABSVM is considered as a final base classifier. The

remaining results are obtained using ABSVM. Figure 16d

shows the AUC obtained after applying different sam-

pling techniques and compares their performance with

SMOTEENN. Figure 17 represents the accuracy score

for base models of AdaBoost. ABSVM achieved accu-

racy of 0.95; whereas, accuracy of ABRF and ABDT is

0.93 and 0.90, respectively. It proves that SVM performs

better than RF and DT as a base classifier in the present

scenario.

A. PERFORMANCE COMPARISON WITH

SAMPLING TECHNIQUES

In this section, different sampling techniques are explored to

balance the data distribution in both majority and minority

classes. A comparison of undersampling, oversampling and

hybrid techniques is performed for fair validation. Moreover,

performance of the proposed techniques is evaluated without

using any sampling technique. Undersampling and oversam-

pling techniques help to balance the dataset. The under-

sampling techniques decrease the size of the majority class.

Conversely, the oversampling approaches work to expand

minority class to balance the dataset. Different techniques

and algorithms are used to generate data, including repetition,

bootstrapping or SMOTE, etc. The proposed methods works

well when the quantity of data is adequate. The outstanding

performance of CWGAN-GP and SMOTEENN is shown by

comparing them with existing sampling algorithms discussed

below.

1) UNDERSAMPLING TECHNIQUES

The following undersampling techniques are used for

comparison.
• Edited Nearest Neighbor: it belongs to the class of

undersampling techniques. The working of ENN tech-

nique is mentioned in Section IV-C1.

• Near-Miss: it performs undersampling by calculating

distance between samples. NM-1, NM-2 and NM-3 are

the variants of NM. We used final variant NM-3 with

k = 3 in this study. NM is the most commonly used

undersampling technique that shrinks the larger class

to balance the dataset. In NM, near-neighbor method

is used to prevent information loss. Initially, the dis-

tance between all instances of both classes, i.e., majority

and minority, is measured. Then instances from major-

ity class with small distance to the minority class are

selected.
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FIGURE 16. ROC-AUC of both models using SGCC dataset.

2) OVERSAMPLING TECHNIQUES

The following are the oversampling techniques that are

explored for balancing the data.
• Synthetic Minority Over Sampling Technique: it is

the most common and widely used oversampling

approach. The working of this technique is mentioned

in section IV-C1.

• Adaptive Synthetic: it is used to balance the dataset

by generating synthetic samples for the minority class.

In oversampling, data from the minority class is copied

to balance it with data of the majority class that causes

overfitting. ADASYN was proposed to overcome this

problem. It is considered as an extension of SMOTE.

It creates synthetic examples where the instances

of minority class are less. The great advantage of

ADASYN is that it does not copy the same minority

data [58].

3) HYBRID TECHNIQUE

The combination of different sampling techniques is also

useful for balancing the dataset. In this study, a hybrid

approach is used to balance the data. The performance of

the proposed technique is compared with existing hybrid

techniques.

• SMOTE+Tomek-link: it is a combination of SMOTE

and tomek-link.
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TABLE 4. V2, V3: Performance comparison of SALM with different sampling algorithms.

FIGURE 17. Accuracy of base models.

4) CONDITIONAL DEEP CONVOLUTIONAL GENERATIVE

ADVERSARIAL NETWORK

Figure 18 represents an overview of the conditional deep

convolutional GAN (CDCGAN) that is designed for data

generation and results’ comparison.

5) CONDITIONAL WASSERSTEIN GENERATIVE

ADVERSARIAL NETWORK

CWGAN is designed for data generation to balance the data.

Theworking of CWGAN is discussed in section IV-C2 and its

architecture is presented in Figure 9. Additional information

is fed into CWGAN for generating the data for the minority

class.

Table 4 shows the results obtained after applying different

sampling techniques. Moreover, the score achieved by the

SALM model shows superior performance as compared to

existing schemes. FPR is considered as an important perfor-

mance measure in terms of ETD because it has a potential

to increase and decrease the cost of ETD process. There-

after, considering the importance of FPR, impact of different

sampling techniques on FPR is presented in Figure 19. The

figure depicts that the value of FPR for SALM is lowest,

which proves that it is better than other sampling techniques.

In GAN-NETBoost, CWGAN-GP is used to cope with the

imbalanced nature of the dataset. The evaluation of the

CWGAN-GP model is presented using reasonable perfor-

mance metrics. Its comparison with existing data sampling

techniques is performed that are extensively used in the litera-

ture. Figure 20 shows the AU-ROC and PR scores of the sam-

pling algorithms. It is clear that CWGAN-GP has the highest

score as compared to other sampling algorithms. Table 5

shows the values of F1-score, precision, recall, and accuracy

for different sampling techniques. These values show that

CWGAN-GP generates more realistic and accurate samples

for the minority class, which help to boost the performance of

the classifier. For a fair comparison, CWGAN-GP is used to

balance the instances in both classes, and then classification

is performed.

B. COMPARISON WITH EXISTING CLASSIFIERS

In this section, the comparison of SALM and GAN-

NETBoost models is performed with existing classifiers

using SGCC dataset with the same training ratio of 80:20 for

training and testing samples. For a fair comparison, all experi-

ments are performed on balanced dataset using SMOTEENN

in SLAM and CWGAN-GP in GAN-NETBoost. Following

models are used for comparison using aforementioned per-

formance measures, as discussed in Section V.

• Support Vector Machine: it is famous for both regres-

sion and classification problems as it is a flexible and

a powerful supervised algorithm [35], [59]. Table 6

shows the values of parameters used for simulations

of SVM.

• Extreme Gradient Boosting: it is a boosting algorithm

that supports both regression and classification. It has

already proved its superior performance in the context

of ETD [37]. The model is tested on publicly available

SGCC dataset. Table 7 shows the parameters used for

experiment of XGBoost.

• Categorical Boosting: it is based on gradient boost-

ing over DT. The vectorized form of DT is the core

idea behind CatBoost [37]. Table 8 shows the different

parameters for CatBoost.

• Bidirectional Gated Recurrent Unit: it is an advanced

version of GRU that was proposed by enhancing RNN

to solve gradient problem. It is also used for ETD and

we used same parameters that were used in [48].

• Hybrid of Convolutional Neural Network and Ran-

dom Forest: a hybrid of CNN and RF is designed

using the same architecture and parameters used in [42].
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FIGURE 18. Overview of CDCGAN.

TABLE 5. V2,V3: Performance comparison of CWGAN-GP with different data sampling techniques.

FIGURE 19. FPR of sampling techniques.

TABLE 6. Parameters for SVM.

CNN captures high level features while RF performs

final classification.

• Hybrid of Multilayer Perceptron and Long Short-

Term Memory: both MLP and LSTM are extensively

TABLE 7. Parameters for XGBoost.

TABLE 8. Parameters for CatBoost.

used for ETD [16]. A hybrid approach of these algo-

rithms is used for ETD.

• Wide and Deep Convolutional Neural Network:MLP

is used as a wide component for capturing periodic-

ity of the data. The global features are also extracted

from one-dimensional data. Furthermore, a deep com-

ponent captures periodicity and non-periodicity from

two-dimensional data. The WD-CNNmodel [10] is also

used for the comparison.
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TABLE 9. V6, V8: Performance comparison of SALM with existing methods.

FIGURE 20. Comparison of the ROC-AUC and PR-AUC score against other
sampling techniques.

• Hybrid of Convolutional Neural Network and Long

Short-Term Memory: the former is used for fea-

ture extraction; whereas, the latter is used for learning

data distribution between fraudulent and honest cus-

tomers. LSTM is an extensively used technique in ETD.

CNN automates feature extraction while LSTM per-

forms final classification. The model is built using the

parameters in [29].

Table 9 shows the results of the comparison performed

between above mentioned algorithms. In the table, the values

for precision, recall, F1-score, precision recall area under

the curve (PR-AUC), and MCC of existing algorithms and

the proposed SALM are given. Figure 16e shows the ROC

of all algorithms. SALM has obtained ROC of 0.90 which

is highest as compared to the existing methods. Moreover,

Figure 21 shows that its learning time is less than other

DL models.

To validate the performance of GAN-NetBoost model, its

comparison is performed with some existing classification

techniques to identify electricity thieves using real electricity

consumption dataset. The techniques include some simple

and efficient ML algorithms, DL networks, and hybrid meth-

ods that are extensively used in literature. The imbalanced

nature of the dataset makes ETD a difficult and a chal-

lenging task. It is considered unfavorable for the classifier’s

performance.

The comparison is given in Table 10. The table shows that

the values for Recall, F1-score and accuracy of the GAN-

NETBoost are highest, whereas the precision values of both

CNN-RF and GAN-NETBoost are the same. The results

FIGURE 21. Execution time of DL models.

TABLE 10. V6, V8: Comparison of GAN-NETBoost against existing ETD
techniques.

prove that the GAN-NETBoost outperforms existing mod-

els for ETD. Labels V6 and V8 show the validation of the

proposed solutions against L6 and L8. Different limitations

are addressed in this article. Table 11 shows the mapping

of limitations with their proposed solutions along with their

validations. Some validations are presented in the form of

tables, and some are shown with the help of figures. Labels

for the respective validations are mentioned both in fig-

ures and tables. A brief description of this mapping is given

in Table 11. The proposed approach is scalable as it takes

only a few minutes for ETD on a large dataset (i.e., electricity

consumption record of 42,372 consumers). Besides, ETD is

not a time critical problem, so even if it is applied on a larger

dataset, its executional time will be acceptable.
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TABLE 11. Mapping of limitations with solutions and results.
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VII. CONCLUSION AND FUTURE WORK

ETD in an electric power system is a challenging task. It is

highly crucial to avoid different issues like increased elec-

tricity cost, imbalanced supply and demand, etc. In this work,

two novel models, SALM andGAN-NETBoost, are proposed

for ETD using real electricity consumption data. In the first

model, SMOTEENN is used to balance the dataset that pre-

vents a classifier from misclassification. Moreover, AlexNet

is used for feature extraction, and LGB is used to differentiate

legal consumers from illegal consumers. The proposed model

is efficient in classifying fraudulent and non-fraudulent cus-

tomers. In the second model, CWGAN-GP is used to balance

the data. It significantly improves the model’s performance.

Besides, GoogLeNet based architecture is designed to use

inception modules for dimensionality reduction. Important

features are extracted from the dataset and AdaBoost is used

to classify the customers. The performance of AdaBoost is

evaluated using different base classifiers (DT, RF, SVM).

The simulation results depict that the SVM outperforms both

RF and DT as a base classifier. The performance of both

SALM and GAN-NETBoost is evaluated using the dataset

provided by SGCC and performance metrics like ROC curve,

precision, recall, MCC, and F1-score. SALM achieved preci-

sion of 0.955, recall of 0.918, MCC of 0.876 and F1-score

of 0.939. Whereas, GAN-NETBoost achieved 0.968, 0.94,

0.91 and 0.95 for precision, recall, MCC and F1-score,

respectively. The simulation results depict that both models

outperform state-of-the-art techniques, such as SVM, BGRU,

CNN-RF, SMOTE, ADASYN, CDCGAN, etc. Moreover,

the performance of GAN-NETBoost is better than SALM

in terms of AUC on all training ratios, i.e., 60%, 65%, 75%

and 80%.

In our model, only electricity consumption data is used

for ETD; however, in practical applications, the electricity

consumption patterns of honest users are affected by sev-

eral features, such as electricity price, weather conditions,

vacations, etc. So, consideration of these features is very

important. In future, the affect of these features on electricity

consumption patterns will be studied.
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