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Towards Syntactic Characterizations of Approximation 

Schemes via Predicate and Graph Decompositions 

HARRY B. H U N T  111 ' RIKO JACOB MADHAV V. MARATHE R I C H A R D  E. STEARNS ' 

Abstract 

We present a simple extensible theoretical framework for devising polynomial time approximation 

schemes for probleins represenrcd using nalural syntactic (algebraic) specifications endowed with nat- 

ural graph theoretic restrictions 011 input instances. Direct application of our technique yields polyno- 

mial time approximation scheines for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93, 

HM+94a, HM+94] as well as theJim known approximation schemes for a number of additional com- 

binatorial problems. One notable aspect our work i s  that it provides insights into the structure of the 

syntactic specifications and the corrcsponding algorithms considered in [KM96, HM+94]. The un- 

derstanding allows us to exlend the class of syntactic specifications for which generic approximation 

schemes can be developed. The results can be shown to be tight in many cases, i.e. natural exten- 

sioiis of the specifications can bc shown to yield non-approxirnable problems. As specific examples of 

applicability of o w  techniques we get that 

1. the problem of maximizing the number of satisfiable tenns in a fonnula, where each term is 

represented explicitly by a bounded depth algebraic circuit with conimutative and associative 

operators over a polynomially bounded domain and range, has PTAS when ~-estriclt.d to pla- 

nar- instances. Problems that can bc naturally represented using this syntactic specification in- 

cludc maximization versions of constraint satisfaction problems in LSc78, FV93, JCG97, KM96, 

HM+94] and graph problems considered in CBa83, NC88, LT80, DTS93, HM+94a]. 

2. Simple exteiisions of our ideas can be applied to devise PTAS for the problem of maximizing (or 

minimizing) a linear objcctive fuiiction subject to linear packing (or covcring) constraints when 

restricted lo planar instanccs. Problems that can be represented using this specificatioii include 

natural NP-hard packing and covcring problems including those studied in [Sr95, PSW973. 

Our resulls provide a non-trivial characterization of a class ofproblcms having a PTAS and extend 

the earlier work on this topic by [KM96, HM+94]. 
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1 Introduction and Motivation 

I n  the past, extensive work has bcen done on the design of efficient approximation algorithms and 

schemes’ for problems restricted lo  planar instances (See [Ba83, Kh496, HM+94, CK95, NC88, LT801). 

and the development of a theory of approxiinability based on the syntactic characterization of opti- 

mization problems. (See [KT94, PR93, KM+95, CK95, PY91 J and related references) Recent results 

in [I-Ia97, RS97, AS971 show that in general, unless P = NP, a number of these problems are “hard” 

to approximate. Given these negative results, it is natural to consider restrictions on the gcneral prob- 

leni that are sufficient to ensure tractability (exact or approximate solvability). In this paper we con- 

centrate on obtaining positive rcsults and thus focus on the question raised by Khanna and Motwani 

[KM96] in this context: S “fs ihele a synractic characterization of NP-hard optimization problem 

having PTAS? ” 

We make further progress in the direction suggested by the above remarks. Building on our ear- 

lier results and the results in Kharina and Motwani [HM+94, KM961, we present a simple extensible 

framework for devising generic approximation schemes for problems represented using natural syn- 

tactic specifications in which thc input instances have a specified graph thcoretic structure. Direct 

application of our ideas yicld efficient approximation algorithnis and approximalion schemcs for all 

the problem studied in [Ra83, KM96, HMi-94, DTS93, NC881 and also for a number of additional 

impoitant problems for which no previous results were known. These results significantly extend the 

a number of related results in [LTSO, Ba83, Bo88, NC88, KM96, HM+94, HM+94a, DTS93, Ep951 

and affimialively answer reccnt open questions in [HM+94a, KM96, Ep951. We describe tlie results 

in detail in Section 3. Our work is motivated in part by the following set of contrasting results for 

bounded vcrsus unbounded arity prcdicatcs: 

(1 )  For each fixed set of finite arity Boolean relation S, the problems MAX SAT(S) (see [HMi-94, 

Cr951 for definitions) restricted to planar and near planar instances havc a PTAS, [HM+94] 

(2) the class ofprobleins MPSAT informally defined as: Given a collection C of terms over n variables 

such that each term Q) E C is a disjurtction ofU(iz0(’)) cottjuncts, find a truth assignment T 

niaximizing the total number of the tcrms in C that are satisfied have a PTAS [KM96] and 

(3) In a striking contrast to (2), a closely related class (obtained by simply interchanging the order of 

operators) infomially defined as: Givcn a collection C of term over 11 variables such that each 

term 4 E C is a conjrincfion qfO(nu(’))  disjuncts, find a truth assignment T maximizing the 

total number of the satisfiable FOFs in C is readily seen to be NP-hard to approximate4, evcn 

when restricted to planar instances. 

Note in particular that while the result statcd in (1) considers all bomided arity set ofrelations, results 

in ( 2 )  and (3) imply posirive results only for cerlain ypes unbounded wiry uelalions. Thus whilc in 

the case of bounded arity relations, the niere fact that the variable predicate bipartite graph is planar 

is sufficient to devise PTAS, thc unbounded arity predicate case requires ceitain additional knowledge 

about the semantics of the prcdicalcs. The results and the proofs in this paper providc one possible 

explnation of these contrasting rcsulrs. Specifically, our results are a step towards understanding class 

of unbounded arity predicates that are amenable to efficient approximalions. 

‘Following [CK9S, KM961, wc define thc class PTAS to consist of all NP-optiinim[ion problons having polynoinial titnc 

4cach q5 can consists of a 3CNF formula 

approxinialion schcines. 
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Given a set S of relations, where each Ri E S is specified by an explicit table, and an S-formula F ,  the 

problem MAX-REI.ATION(S) is to determine an assignment to the variables of F so as to maximize 

the number of tenns satisfied. In this paper, we restrict our attention to variables V = {SI,. . . , z,,} 

with domain D = (0, l,, . . . ,poZy(n)}; thus, we allow the domain sizc to grow polynomially with 

the number of variables in the formula. Although an adequate method of representing tcnns when 

they have fixed arity, the method of representing relations by tables can yield exponentially large when 

rclalions are non finite arity. The bipartite graph BG(F) associated with the formula F(P, V) defined 

as follows: The terms and variables in the foniiula F are in one to one correspondence with the veilices 

of the graph. There is an edge between a t c m  node and a variable node iff lhe variable appears in the 

tenn. The interaction graph IG(F)  associated with the formula F(P ,  V) defined as follows: Thc 

variables in the formula P are in one to one correspondence with the verticcs o f  the graph. There is an 

edge { t ~ ,  v }  E E iff variables 74 and w appear together in some term o f f .  

The above representation of input instance (representing the functions in S and the graphical rep- 

resentation capturing the tenn-variable relationship) can be generalized in two independent directions 

-- tcrm and graphical representation. We choose to represent each temi as an algcbraic circuit, in which 

the variables and the coefficients arc allowed to takc values from a polynoniially bounded doniain. 

For most pait of this paper, we will also assume that the operators are commutative and associalivc 

multi-arity operators. The graphical struclure associated with such a formula is a natural Extension 

of thc bipartite graph representation. The circuit graph CG(lsl) associated with a formula F(V ,  P) 
consists of one node for each variable, an algebraic circuit for each tenn and edge from a variable node 

.7: to an input node of a teiin circuit L labeled 5 denoting that z appears in 2. The problem MAX- 

ClRCUIT-SAT is the following: Given as instance a circuit graph C G ( F )  representing P(V,  I’), 

find an assignment to thc variables V to satisfy maxinium nuiiibcr of tcnns in P. Wc usc thc phrase 

MAX-CIRCUIT-SAT restricted to planar instances to refer to tlic restriction whcn the graph CG(F)  

is planar and the circuit corrcpsoiiding to each term is of bounded depth. Note that givcn a forrnula 

F there are a number of ways to construct CG(F) .  In our input specificalion, wc will assume that 

the gates are labeled with the operators and the associated semaiitics specified. In case of algebraic 

circuits, typically the semantics are well understood and therefore omitted. In general our sequence 

of transformation start with an instance CG(F)  and yield a new instance CG(P’) which can thcn bc 

solved exactly in polynomial time. 

Given A E [O,  l]n‘x7z, b E [I, C Q ) ~  and c E [0, lJn with maxj cj = ,l,, a packing (rcsp. covering) 

integer program PIP(resp. CIP) sceks to maxiinizc (rcsp. minimize) c’ . z subject io z E 2; and 

a system of lincar constraints of the fonn Az 5 h (resp. Ax 2 b). Fuitherriiore if A E (0,  l}mx”, 

we assume that each entry of 6 is integral. Consider the variant of PIP’S (rcspcctively CIP’s) in which 

A E { O , l , .  . . p ~ l y ( n ) } ~ ~ ~ ,  B = poly(7z) and CG E {0,1,. . . p l y ( n ) } .  We call these Bounded 

packing (covering) programs and denote them by B-PIP and B-CIP respectively. We also usc B- 
IP to denote boundcd integer programs; Le. programs of the fonn maximize c“’ . z subject A E 

{0,1,. . . p ~ l y ( n ) } ” ~ ” ~ ,  B = poly(7~) and IC f {0,1,. . . po l~ / (n ) }  and Ax = 6. Finally, definc the 

variants B-IP(k) (respectively B-PIP(k) and B-CIP(k)) i f  each inequality contains cxactly li: terms. 

Given an instance I of a mathematical program with linear objective function, tlic graph CG(1) is the 

same as the circuit graph associalcd with (P ,V)  wherc P i s  thc set of constraints and V the set of 

variables. Thus for linear program CG(1) is identical to BG(I). 

We end with a few observations and remarks. Our definition of circuit graph associalcd with a 

fonnula is a departure from the definition of bipartite graph considered in [KM9A]. Note that ifCG(F) 
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is  planar then BG(F) is planar; the converse is not necessarily true. The graph CG(F)  can be seen as 

a refinement of the D G ( F )  depicting the internal graphical structure of each term. 

3 Summary of Results 

Thc main contributions of this paper are three folds. First, we (i) identify new and natural syntactic 

languages (specifications) to specify problems and (ii) identify new graph theoretic restrictions on the 

underlying inputs that imply PTAS for problems so specified. Second, to obtain our results we propose 

two new theoretical concepts: (i) predicate decomposability and (ii) approximation (optimum) pre- 

serving reductions that also preserve graphical structure of the underlying instances. Thcse concepts 

coupled with a new algorithmic tcchnique referred as struclure preservitig predicate deconiposition 

yiclds the necessary generic approximation schemes for problems represcnted using any of the syntac- 

tic specifications proposed here. Finally, we show that the circuit graph representation proposed above 

is i n  a sensc more robust than the bipartite graph representation proposed in [KM96]. The arguments 

are based on the following observations: (i) the problem in [KM96] can be reduced to corresponding 

problems for our representation in an approximation preserving way, aiid thus is not a loss ofgeneral- 

ity, (ii) the positive results for bipartilc graph representation in  [KM96] can no1 be cxtended in  gencral 

(unless P = NP) to more complicated predicatcs (e.g. nested formulas of depth more than 2), (iii) in 

contrast the results here based on the circuit graph lend themselves to immediate geiieralizalions. The 

main theorem of this can bc stated as 

Theorem 3.1 The problem MAX-CIRCUlT-SAT has a PTAS whart ivsrricred IO planar inslances. 

Moreover, we show that a number of important class of coinbinatorial as well as graph problems when 

restricted to planar graphs ( and in general graphs obeying LT-property, see Appendix for formal 

dcfinitions) can be reduced to appropriate instances of MAX-CIRCUIT-SAT in  a approximation 

preserving as well as graph stiucturc preserving way. Specifically, the reductions devised have two 

important properties: (i) they can bc carried out in polynomial time and (ii) if ll is restrictcd to planar 

inslances, then the instance of MAX-CIRCUIT-SAT obfained as a resulf of thc reduction is also pla- 

nar. Thus each of these problems have a PTAS, when restricted to instances obeying the LT-property. 
We all such reductions sfructurr preserving L-reductions. 

Thus, our rcsults provide a syntactic (algebraic) specifications, whose closurc under appropriate 

approxiination preserving rcductions define a characterization of problems that have PTAS. This rep- 

resents a non-trivial characterization (subsuming the earlier characterizations) of class of pi.oblcms 

having a PTAS. Exainples of problems that can be solved using our framework includc the following 

(for several of these results no prcvious approxiination algorithms weie known): 

( I )  Each of the graph theoretic, logical and coinbinatorial problelns considercd in Baker [Ba83], 
Khanna and Motwani [KM96], Hunt et al. [HM+94], Nizhiseki aiid Chiba [NC88], Lipton and Tarjan 

[LT80], and Diaz et al. [DTS93]. Notc that general instances of the problems considered here (e.g. 

maximum independent set) are oftcn vcry hard to approximate [Ha97]. 

(2) Planar versions of covcring and packing progranis i n  which both variablcs and coefficients take 
values from [O,poly(n)], wherc n is the number of variables. This includes each of the problcnis 

considered in Peleg, Schcchtriian and Wool [PSW97] arid Srinivasaii [Sr95] and a number of pack- 

indcovering problems studied in [PST95]. Illustrative examples include: fault tolerant dominating sct 

and hitting set. 

(3) The optimization versions of thc Boolean generalized CNF satisfiability problcms studied in 
Schaefer [Sc78] and the optimization versions of a rlulilbcr of consfraint satisfaclion problems studied 

3 



1 ID: MRY 1 5 ’ 9 8  13:40 N o . 0 1 0  P . 0 7  

in Feder and Vardi [FV93] and Jeavons et al. [JCG97], including H-matching for fixed H. 

(4) A number of graph theoretic problcns restrictcd to planar hypergraphs with unbounded arily 

hyperedges, and of unbounded dcgrec. Examples include simple B-matching, independent set, vertex 

cover, etc. In general, these problems are NP-hard and can be approximatcd to within a factor of 

OPT2/n [Sr95, AELSS]. (Here, OPT denotes thc optimal value and n represents the number of nodes 

in the problem instance.) 

( 5 )  Our ideas arc also applicable to a class of graph theoretic problems for which no previous 

approximation schemes were known even for planar graphs. Given a problem II, define the problem 

D2-Il (distance 2-II) as the problem of solving ll in the square5 of the givcn graph G. Our results 

yield PTAS for a number of problcms II when G is restricted to be planar and of bounded dcgree (in 

some cases the rcslriction is no1 required). Note that if G2 is &near planar then the result is immediate 

from thc previous discussion. As an cxaniple, considcr the problem D2-max independent set: Given a 

graph G, find a maximum cardinality subset of vertices, such that the pairwise distancc belween them 

is at least 2 (in tcnns of the number of edges). Our results show that when G i s  planar and of bounded 

degree, there is an PTAS to solve this problem. Other examples include the DZmin dominating sct 

and D2-vertex cover. 

Extensions and Generalizations. First, our results on covering and packing intcgcr programs can 

be extended substantially in two orthogonal dircclions, nainely allowing non-linear constraints, and 

lo cases where some of the variables take rational values. For example a constraints of the form 

c] z2yz + czzy2w + . - . + c,,zyz3 = b, where q and b are integers taking values from a polynomially 

bounded domain can be easily handlcd in  our case. The oiily rcquireiiiciit we place is on thc structure of 

the circuit graph associated with such a set. We view this cxtcnsion as significant; this to our knowledge 

represents a non-trivial class rton-lineuar. prop-uiizs that have efficient exact or approximate solutions. 

As the later sections will demonstrate our rcsults are essentially tight in  the sensc lhat simple exlensions 

of inany of the classes yield problcnis that are provably non-approximablc. In contrast, wc can show 

that the extension is likely to fail for gencral linear integer programs whose bipartitc graphs are planar. 

Wc do this by showing - (i) thc pl-oblem of deciding the feasibility of 1P instances I restrictcd to 

B C ( I )  bcing a tree, or IG(F) bcing a scries parallel graph is NP-hard, and (ii) approximating the 

objective fiinction for instances whose bipartite graphs arc planar is NP-hard. 

Second, our PTAS can be extended to Iwo orlhogonal graph classcs.. The first class is inore specific 

to layouts which arc c:lose to planar (boundcd genus and weak level treewidth propcrty). We show that 

(i) most of the problems, havc a PTAS when restricted to iiistances satisfying the wcak lcvcl treewidth 

property and (ii) several impoilant and well known classcs of graphs including planar, bounded genus 

graphs, (T, s)-civilized graphs and a subclass of k-ply neighborhood systems satisfy the LT-property. 

In contrast, we show that gcncral Lply neighborhood graphs as well as k-neighborhood graphs defined 

by Teng el al. [MT+97] do izot obcy the LT-property. The second class of instances ( h e a r  genus) we 

consider is obtained by extending the graph theoretic slructurc of‘planarity. Several of our results can 

be extended to instanccs that arc h e a r  genus or &near (T-, s)-civilized. Thus, our rcsulk sliow that for 
a number of probleins both the graph theoretic structure and the infomation about specific layouts can 

be used to devise good approximation algoiitliins. 

Third, the techniques caii be used to design polynoinial time algoi-itlitns for thc path and clus[ering 

problems considered in Eppstcin [Ep95] (with running tiincs csscinially idenlical to those in [Ep95]) 

when restricted lo graphs obcyiiig [lie LT-property. Finally, our results also provide more efficient cx- 

’Givcn a graph G(V, E ) ,  the squarc graph CZ(V,  E’)  is obraiiicd by adding ail edge bctwcco two nodcs 3: and y wkciicvel 

thcrc is a path of Icngth a1 inost 2 hctween 3’ aiid y in C. 

4 
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ponential algorithms for NP-hard problems restricted to problems whose underlying interaction graphs 

obey the LT-property. Specifically, our new results on Tables and the concept of predicate deconipos- 

ability strongly extends the class of problems easily expressible as GSPs, solvable in deterministic 

time 2O(fi) including counting problems and many problems for graphs with unbounded arity ver- 

tices and hypergraphs with both unbounded arity vertices and hyperedges. For example, we get that 

problems such as independent set, dominating set, vertex cover, etc for unbounded arity hypergraphs 

with bounded treewidth have PTAS. 

The rest of the paper consists of discussion of selected results. A few additional details are also 

given in the appendix. We refer thc reader to [GJ79, CK95] for basic definitions in graph theory, 

computational complexity and combinatorial problems considered in this paper. 

4 Overall Technique and Preliminary Results 

The basic idea behind our algorithms is similar to thc shifting srvaregy first used by [Ba83, HM85, 

130961 far obtaining polynomial time approximation schemes (PTASs) for problems restricted to planar 

and geometric instances. Thc overall schemata consists consists of the following basic steps: 

( 1 )  Decompose the given graph (instance) into vcrtex (edge) disjoint subsets such that an (near) 
optimal solution to the subgraph (sub instance) induccd by each subsel can be obtained in polynomial 

time. (This step exploits the fact that the underlying graph is decomposable.) 

(2) 
dccomposabi 1 i ty). 

Reduce (using 0-reductions) each sub-instance to easily solvable sub-instance (uses predicate 

(3) Solve each transfonned sub-instance optirnally using kncwn methods (such as Theorem 4.1) 
developed in [SH95, HM+94] (This step uscs the theory of efFicicnt solvability of algebraic problems 

restricted to instances of bounded trccwidth developed in [HM+94, SH951.) 

(4) Use the problem specification to combine the solutions to each of the sub parts to obtain a solution 
for the entire instance. 

The schernta outlined abovc is similar in  spirit to that used in [Ba83, WM85, HM+94, KM961; 

allhough needs a number of new Icclinical idcas a t  each step. The main technical contributioii of the 

paper is to devise methods to accomplish Steps (2) and (3) above. I t  should be notcd that the ordering 

of steps is crucial to the perforniancc of the algorithm. 11 might be tempting to try and carry out thc 

reduction on the planar instance directly ratlicr than carrying out the rcduction for each individual 

picces. Such an attempt fails to work due lo the special naturc of reduction used which do not preserve 

approximation scheines but arc sufficienl to derive optirnal solutions for the original problem. The 

proof of the following theorcin appcars in the Appendix. 

Theorem 4.1 Let S be a,finite set oxfinite arity furictions. an let k > 0 be.fixed. Then the follow- 

irig stalenzents hold: (9 For- cnch.fixed k 2 0, the jmbleni WT-MAX-FUNCTION@) has an 

exact NC-algor-irhm wheri rcstr-icreiid lo iristurices f such that tuJ(BG(f)) 5 k. (iu WT-MAX- 

FUNCTION@) has an NC-al,/,r~~iiiiaIiori sclierne. w~heri resfr-icred to inst(mces f such that I G ( f )  
is planar: (iii) The pmblertr B-IP(k), resrr-icfed IO instucrnca I such thal L?G(I) is of bounded 

treewidlh Am a polynoniini ririie algorithni. (iu) Tlie problem €3-PIP(k) (B-CIP(k)) resb-icfed to 

instances I such that U G ( I )  isplaiinr hnve n PTAS. 

Definition 4.2 Let If mid IT' be two optiniizntion (nrminrizntion 01' rnininiiznfiori) probleins. We say 
thnl LI D-reduces to IT' (denoted by 11 50 n') ifthere are two polyrioiiiial lime. conrpulable,Fizctions 

f cmd g aid constants CY, p > 0, such tIiu(,fir- each inslcince I oJIl f produces air instance I' = j (1 )  

5 
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o f I S  with the optiinas OPT(Z) and OPT( Z‘) izspectively and given nny solution of l ’  wifh cost d, 9 
produces a solution of I wifh cost I: suc11 that I C  - OPT(1)I = IC‘ - OPZ’(1’)I. 

Notice crucially that the reducfiorrs are not approxipiation preserving. But the reductions allow us 

to coinputc the optimal value for I from anloptima1 value for I‘. We will need this property in our 

proofs and thus we summarize it below: 

Proposition 4.3 Let I‘, Q, R be three optitiiizntiori ptoblenis. Then the following holds: (i) D-reductions 

compose; Le., [fi‘ ID Q arid Q < D  R !lien P 511 R. (ii) lj-P ID Q and Q has a poiynoniial ritne 

algorithm then P has a poIyitoniia1 tiiiie algoi-ithiti. (iii) VI’ 51, Q with j3 = 1 then P <u Q. 

5 PTAS for MAX-CIRCUIT-SAT for planar instances 

In view of the discussion in the previous section, we only need show how lo find optimal solution for 

MAX-CIRCUIT-SAT when restricted to instances of  bounded treewidth. We achieve this by opti- 

inally transfonning an instance I of MAX-CIRCUIT-SAT to an instance I‘ of MAX-FUNCTION(S) 

in such a way that TW(CG(1) = O(TW(IG(J‘)) .  For clarity of exposition, we prove our result in a 

series of slcps. 

0 xp), where 0 is a multi-arity operator that is 

commutative and associative. Consider a fonnula F = AiCi ,  where each c; is in thc form above. I n  

our proofs transforming F, we will work with a very special kind of tree decornposition which we call 

Specinl7ke Decoiiiposirion. Consider the tree decomposition 7 of BG(F) ,  and consider single clause 

ci. X i  & 7 denote the part of h e  trcc that corresponds lo ci. By the definition of tree-decoiiiposition it 

is easy to see that T:i forms a connected component and is therefore a tree. For cach set XI, associatcd 

with T ,  let Sk C X k  which contains elements from the set {ci, 2 1 , .  . . , xp}. Without loss of gencrality 

we can assume that G-tree K.i has the following properties: (i) Ti  is rooted and edges dirccted towards 

thc root (inward arborecense), (ii) the sets Sk at each leaf node are of the form {ci, xj>, (iii) for all sets 

of the form { c i , z j }  there is leaf node v such that S,, = { c i , z j } ,  and (iv) 7;; is Binary. With these 

assumptions, the notion of lowest coiiiiimi anceslor (LCA) oftwo nodes in 7,; is wcll dcfined. Then 

the PROCEDURE TRANSPOItM-TlXM consisting of performing the following iterative procedure: (1) 

Choose a set of leaf nodes that cover all the pairs {c i ,  xi}, where zi E ci. 

(2) 

Consider a tenii of the fonn c = (XI 0 x2 

Mark all these leaf nodes as ”unprocessed”. 

(3) Repeat the following procedure: 

(3a) Choose an LCA p q  of maximum depth and of two nodes y and p containing distinct variables 
x q  and z:, and marked “unprocessed”. 

(3b) Set S, = S, - { c i }  u (TJ~~,,IC,}. Similarly set S, = S, - {Ci} U { y p Q , z p } .  For ail nodcs t 011 

the path from g top, set St = S1 - {c;} U {yJaq, zp, xq}. Finally, set S,, = S,, - {q} U {ypq}. Here 

yr,q is a new distinct temporary variable. Also add the claim -gpq 

(3c) Mark leaf nodes q and p as processed and proceed. 

xp 0 zg. 

(4) Mark the node p q  as “unprocessed”. 

Finally add a clause yi where yi is the last teinporaiy variable introduced in the abovc procedure. 

The procedure can be seen to replace tlic original clause ci by a set of clauses ci. We do this for 

each clauses introducing new set of variables for each clause. Denote the new fonnula obtained by 

conjunction of the the clausc groups by Fl. The following Icmma sutiiinarizes the properties o f  the 

transformation PROCEDURE TRANSFORM-TERM. 

G 



Lemma 5.1 Given a c-tree xi PROCEDURE TRANSFORM-TERM outputs a free deconiposition 7,! 
(with miore elements at each node) oJIG(4)  such that the for each set Xk('T4) 5 4 + &(Ti). S' a& 

isonroiphic. Moreover PROCEDURE TRANSFORM-TERM is a D-reduction. 

Proof: The first part of Lemma follows since we replace an eleinent in the set sk by at most 4 new 

elemcnts. To prove part (2) first note that I$ is cquivalent to ci. This i s  true crucially since 0 is a 

coilunutative and associative operator by assumption and thus we can combine the variables 2 1 ,  . . . zp 
in any order - in particular in the order of their proximity in T,, . The proof can now be completed by 

noting that 

(a) Any truth-assignment V to the variables of q can be extended uniquely to a trulh-assignment 

W to the variables of ci such that all clauses of c:, except possibly the single variable clause yi are 

satisfied by W, and W[yb-2] = 1 i f f  V[G] = 1. Conversely, any such truth-assignment W can be 

restricted lo a truth-assignment V to the variables of Q such that W[yg] = 1 i f f  V[ci] = 1. 

We call such terms c as structure preserving deconiposahle predicates since intuitively we can 

decompose a large multi-arity fomiula as a conjunction of bounded arity formulas in a way that (i) 

preserves the original trec decomposition and (ii) is a D-reduction. We omit a formal definition here 

due to lack of space. Now consider the fonnula F itself. Note crucially that i t  was the corninutativIty 

and associativity of 0 that allowed us to prove the second part of Lernma 5. I .  We can apply the above 

proccdure of converting a single c to cach of the tenns in a sequential ordcr. Let Fm = Ai ci denote 

the new formula obtained as result of this complete transfonnation. Also let T1, 72, . , . 7f" denote 

the sequencc of tree decoinpostions that we get when we process the terms c1, c2, . . . cnl in that order. 

Similarly V i ,  1 5 i 5 m, let Fi (F' = F) denote the sequcnce of modified formulas obtained. We 

make the following imponant observarion: Transfomiing the tree z.i to z! does not affect the other 

trees T,, i.e. only thc clement ci gets deletcd while working with thc tree T.,, This allows us to 

inductively maintain that for each set Xf (the set associated with node j in trce Ti X! 5 4 + Xj. 
Note imporlantly that a node X j  can be a part of at inost TW (T) dcconipositions. Combining thesc 

observatioris with Lemma 5.1 we can prove the following theorcni (proof omitted). 

Theorem 5.2 For all i ,  2 5 i 5 71, rhe.following statements hold: ( I )  The irmsjbrniation from Pi to 

Fi" is a 0-reduction, (2) !I' T W ( C G ( P )  5 4'1'W(IG(F"'), c?) F'*' is satisfiobk i gFi  is 

satisfiable, 

I 

(4) Fin and 7'" COJI bc obrairied in 1ir7ie O(sizc(F)) .  

Completing the reduction. Wc are now ready to complete the description and the proof of correctness 

for the general case, namely when each tenn is a general nestcd fonnula with polynoinial domain 

and polynoniially boundcd interiiiediate values. Consider an inslance F(P ,  V) of a fonnula such that 

CG(F)  is of bounded treewidth. As in the previous case we traiisfoiin each c: E P in  an approximation 

as well as tree decoinposition preserving way. Each gate of the circuit dcfincs a subterm; we begin 

processing a siibterm defined by a gate that is farthest from the output gate. This subtcrin is replaced 

by a new term iising transfonnation as given above. We then successively nwve to terms defined by 

gates that are closer to the output gate. The only crucial obseniaiion that wc need to make is thc 

following: Consider a gatc g (and hence a subtenn). Then the sct of nodes in the tree decomposilion 

of C G ( F )  containing g fomi a connccted subtrce. 

Additional Remarks. First, note that as a direct corollary of thc abovc discussion and 'Theorem 4.1, 

we get a poly~ioniial time algorithm for exactly solving B-IP when restricted to bounded treewidth in- 

stances. In fact, it shows that evcn for non-lineaar. constraints whose circuit graph is bounded treewidth 

can be cfficiently solved. Second, the fact that the operators are commutative and associative was a 

suficient condition for exact solvability. Any formula that can be transformed in a structure preserving 

7 
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way can be solved in this manner. Section 6 discusses one such formula. Third, the result points out 

the robustncss of our syntactic specifications - the only internal structure used to guarantee efficient 

solvability was the graphical structure. This should be contrasted with the discussion in the introduc- 

tion. Fourth, the reductions outlined here are in fact more general -they can be simultaneosly used to 

show the hardness (easiness) of decision, counting, uniqueness, parity and other related questions for 

the problems under study. Finally, noting that this transformation can also be carried out for instances 

having non-constant treewidth, we get 2O(fi) algorithms for several combinatorial problems restricted 

to planar and bounded genus graphs. 

6 PTAS for MPSAT 

Next, we consider the problems MPSATand outline anapproximation preserving reduction to an appro- 

priate MAX-CIRCUIT-SAT problem. This result provides insights into the question and ihc discus- 

sion at the end of Section I (introduclion). The overall idea behind the reduction is the following: Each 

clausc Cp is first replaced by a forinula so that the resulting formula has bounded arily predicates. Next, 

we replace each such formula by a circuit so thal the rcsulting rcduction is a D-reduction. This allows 

us to the instanccs I in which B G ( l )  is treewidth bounded. We begin by describing thc PROCEDURE 

TRANSFORM-MPSAT. First, we create a new fonnula 171 = ( V I ,  P I )  as follows: V, = X U Y ,  X is 
in  one-to-one correspondcnce will1 the variablcs in V. The variablcs in Y are in one to one correpson- 

dence with the FOF’s in P = { p l  , . . . P , ~ } .  Let pi = 1: V . , . V tytpi .  recall that each term is of the 

form U J ~  A w2 A . . . U J ~ ,  where each U J ~  is a literal. Now for each FOF pi, do the following: For each 

t: E pi, we creak a set of qj prcdicates, I L ; ~ , , ~ ) .  Add Ihc 3CNF clauses I ~ f i ~ ) ( v ~ , ~ ,  z) where, 1 5 1 5 qj 

and 2 E VAR( t i ) .  hti , j l (~~pi ,  z) is true iff iiPi is not i or z has the value which which inakes the literal 

for n: E ti‘ true. Let Ci denote the conjunction of clauses obtained by tianforming pi. Fiixilly let the 

clauses in = AY.lCi. 

Lemma 6.1 Let F be a MPSATformula niid FJ he the 3CNF fornruln obrniried by tranfornring I2 
using PROCEDURE TRANSFORM-M I’SAT. Tile the.foliowiug holds. 

(1) FI is srrtisfiahle i f F  is satisfiable. 

(2) PROCEDURE TRANSFOItM-MPSAT ru11.v in t i t i i f  O(sizc(F)) .  

(3) The laductiori is ylanoriry pirsel-viq; tlius Fl is planar ifP is planai: 

(4) I /BG(F)  has treewidth 7. iherr die rt-eewidih of IG(F‘1) has treewidill Cl(7) .  

(5) IJBG(F) has treewidfh k. theti F can be decided in tiirte O(nk) .  

Proof: Consider an assignment which satisfies F. For each variable in X, the assignment to the 

variable is the same as the corresponding variable in V of F. For each variable tipi corresponding to a 

clause pi E P, we set up = j ,  where j corrcsponds to one of thc term ti E pi that is true. Conversly, 

a solution for PI becomes a solution for F by setting the variables in V the same as their valuc in X. 
This proves part ( I )  of the theorem. 

The proof of part (2) follows by observing that the reduction consists of replacing each MINTERM 
of size U ( n )  in a FOF by a CNF fonnula of size O(n); thus the transformation takes time O(size(F)) .  

To prove part (3) and (4), observe that for each of our prcdicates h t i , j , ( 7 1 r , t ,  z), there is an edgc 

( p , ~ )  in the bipartite graph BG(P’), so that B G ( F )  and IG(F1) arc isomorphic. 

To prove the last part of the theorein, note that all the variables excepting upi arc binary variables; 
up, has its domain (0, . . . , n}. We can simulate each up; using O(log n)  Binary variables; thus incrcas- 
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ing the treewidth to O(k log n). Now it is clear that solving a SAT(S) problem when S is a set of finite 

arity Boolean relations takcs time 0(2rn) time for instances with interaction graphs of treewidth r .  In 

our case this translates into a 2°(k10grL)n time which is  really no(k) algorithm. 

Next, we describe PROCEDURE SOLVE-TW-MPSAT: for solving MPSAT on instances of bounded 

treewidth. First, obtain a new fonnula Fl(V1: P I )  from F(V,P) using PROCEDURE TRANSFORM- 

MPSAT. By Lcinina 6.1 the treewidth of UG(l;j) is no more than ck for some constant k. Second, 

convert Fl (VI, PI) into a new formula I;i(V2: P2) by replacing each tenn by an equivalent circuit. 

Theorem 6.2 show that this transforniation is a D-reduction. Moreover the treewidth of IC(&) is no 

more than c1 I C ,  for some constant c1. Third, we solve FJ (V2, P2) optimally using Theorem 4.1. Finally, 

map the assignment to the variables obtained in Step 6 to an optimal assignment to the variables in F. 

rn 

Theorem 6.2 Let F,  Fl aird P2 he obtaiiied as above in PROCEDURE SOLVE-TW-MPSAT. Let 

tw(F) = k. Then the following holds. 

( I )  

(2) 

(3) 

opfininlly in lime no(k) for g . ~ p h ~  cfhpewidtl, O( k). 

tw(I;i)  = cltut(F), f o r s o m  constant c], whertever tw(F1) 2 4. 

The transfor-iiiation j i . 0 1 1 1  F to I72 consrirutes a D-rcducrion. 

PROCEDURE PTAS-MINSAT runs in h i e  Thus [he pmblenis MPSAT can he solved 

Proof: Consider thc tree decomposition 7 o f  B G ( F ) ,  and consider siiigle FOF (term) Cj = (m1 V 

r n 2  . . . mn), where crucially thc 774s are tlie inin~erins. Let 7 C 7 denote the part of the tree that 

corresponds to C. By the definition of tree-decomposition it is clear that F fonns a connccted corn- 

,ponent and is therefore a tree. Note that by Lemma 6.1, the trec decomposition ofBG(I;;) is almost 

the same, excepting that some of the sets associated with each node in the tree arc slightly larger. We 

will work with the fragerneiit associated with [he tenn C in DG(J',) from now on. By following the 

same sequence of steps as outlined in Section 5 for MAX-CIRCUIT-SAT , we can replace the term 

Cj by the new description Cj Ai,j,k h j , k ( u j ,  xi), where h j , k  are the new relations added and v j  is 

the auxillary variable corresponding to the term Cj. Note that since AND is a coinmutative and as- 

sociative operator, wc can form a new circuit that combines them in any order - in particular in Ihe 

order of their occurreiice in the decomposition tree. The Step of converting F1 to F2 is very similar 

to the PROCEDURE TRANSFORM-SAT in Scction 5 and consists of replacing lhe scl of clauses in Cj 

by a new clauses by interprc~ing Cj as a circuil. Example 8.  I dcpicts the construction. The details are 

straight forward. We only makc one crucial observation. The circuit can combinc two clauscs one of 

the form hj,,,(uj, xnI) and hj,-,(vi, x r L ) ;  the only constrainf placed on combining is their proximity in 

the Cj tree. This can be done since Cj is essentially flattened out and all the clauses are connected by 

AND. Such a rearrangeincnt is valid because A N D  is a commutative and associative operator. It is 

now casy to sce that the treewidlli of IG(F2) is no more than a constant factor t.jines the treewidth of 

IG(F1) and thus IG(F) .  This coinpleles the proof of Part (1). To verify Part (2) of the lemma, note 

that the new auxillary variables arc ftinctionally depcndent on the old ones. The proof now follows 

along the same lines as the proof of Part (4) of Theorem 5.2. W c  now considcr the running time of [he 

algorithm. Note that wj is a variable taking rnj distinct values, where " j  is the number of mintenns 

in F .  Thus the domain of each vj is  bounded by o(n"), for soinc fixed (2 2 0. As a result vj can 

be represented by a O(10gn) binary variables. This implies that the trccwidth of Fz as measured with 

respect to this new representalion is kO(1ogn). The running time is thus no(k). This completes the 

proof of tlie theorem. 

Notes: ( I )  Intuitivcly speaking the clause C = (771,l V m 2  . . . malt), has been flattened to 3u: rn, 

which can now be used to write thc clausc as one big AND, allowing to mix the new atoms of the 
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clause as needed. (2) Note that we reduced the problem for disjunction of minterrns to the case of a 

SAT(S) problem where the relation set S is not fixed but grows with the instance. This is okay so long 

as i t  is easy (in our case constant time) to check if a given assignment to the variables i s  satisfiable. 

(3) The results demonstrate that the conccpt of circuit graph is sound and roboust in designing exact 

as well as approximation algorithms. (4) The results cxtcnd the results of Bodlaender [Bo881 and 

those of Stearns and Hunt [SH95] on certain types of predicates for which the rcsulting problems can 

bc solved exactly. In particular it says that if the bipallitc graph corresponding to a hypergraph withorit 

a Boirnd on arip of edges arid degree ofnodes has bounded treewidth then several classical problems 

such as independent set ctc has PTAS. 

7 Packing and Covering Programs 

Next, we discuss the extensions to finding PTAS for packing and covering programs when the corre- 

sponding rcslricted to planar instances. We first discuss the polynomial time solvability of the corre- 

sponding programs for instances of bounded treewidth. First note that by direct application of result 

in Section 5 ,  the B-IP problem, restricted to bipartite graphs of bounded treewidth have a polyno- 

inial time algorithrn. Thus the problems B-PIP and B-CIP restricted to bipartite graphs of bounded 

trecwidth has a polynomial time algorithms. Next consider B-PIP (B-CIP) for planar instances. These 

problems have a PTAS and is proved by a direct application of arguments similar to the proof of Part 

(4) of Theorem 4.1. In contrast to the positive results in the earlier sections, we show that certain 

dcsriable extensions of these results fail. 

Theorem 7.1 (I) The 0/1 -lP+asibiliry problerii is NP-hard even wAen restricted IO instances I 

such that BG(I)  is a tree. The NP-hardmvs holds cvcn.for instances I with ( I G ( I )  wich bounded 

treewidth: and variables ranging over Z+. (2) Unfess P = NP, the problem O/l-IP does not have 

polyiioiiiiaf lirire e-nppmxiiiiable for- any E > 1, even when restrciied to instances I whose BG(I)  is 

planar 

Proof: Proof of part ( I )  is by R reduction is from the Partition problem. Let S = ((11, . . . a,} be an 

instance oftlic pailition problem. Then checking ifthere i s  a subset SI 2 S such that Cn,FSI ai = B/2 

is equivalent to checking if the equation u p i  = B / 2  subject to the condition that xi E (0:  1). I1 is 

casy to see that the bipartite graph is simply a star. To extend the result to hold for interaction graph 

having a boundcd trccwidth we introduce new variables yi and then add thcn construct the following 

instance I: equations: Vl 5 i 5 11. - 2, a j q  + and o.,,z,, + yn-l = B/2.  It is easy 

to see that that the treewidth of IC(1) is bounded. Thc proof of part (2) follows from a reduction from 

The hardness and the casiness resulrs discussed abovc should be carefully compared. The hardness 

of 0/1 -IP feasibility stems from thc fact that we work with algebraic structures that are cxponentially 

large (and in general infinite). Also, note that to obtain PTAS, we only needed the packing and covering 

constraints to satisfy tlic following requiremcnt: Thc variables in the layers that are thrown away can 

be given values without destroying the fcasibility of the constraints. This is similar to thc nroriotonicity 

constraint considered by Feder and Vardi [FV93]. Packing and Covering programs by their nature 

provide sufficicnt conditions to achicve this. 

]qtl = 

Ex-I-3SAT. 

10 
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Appendix 

8 Additional Definitions and Proofs 

For a set D and a natura1 number m, thc set of m-tuples of elements of D are denoted by Dn. A 

subset R of Pn is called a m-ary relation over D; 7n denotcs the arity of I3 (a knction is defined 

similarly). We will also use the map f : Dm + D in our discussion. A term is a string of the forni 

“R(z,, . . . , zk)” where zz are variables or constants and R is a k-ary relation (or function) over D. 

(The tuples of Ri indicate the allowed values that the variablcs {q, . . . , zk} can take.) A forinula P 
is a pair (V, P) where V is a set of variables and P is a set of terms such that V 2 V A R ( P ) .  The 

problem WT-MAX-FUNCTION(S) is to assign values to each zi, 1 5 i 5 n, so as to maximize 

C wi, .fir (Xi, ). 

Proof of Theorem 4.1 : Parts (I) and (2): The proof follows by a direct extension of ideas in [NM+94]. 

Part (3): The proof is obtained in two stages. First, by extending the ideas in [SH951, i t  follows that the 

problem B-IP(k), restricted to instances 1 swh  that IG(1) is of bounded treewidth has a polynomial 

time algorithm. The only point to note is that the variables can take values from {0,1, . . . poly(n,)} 

and can be represented by O(10gn) binary variables encoding the binary representation. Thus if 

I G ( I )  has treewidth k, then the new treewidth is O(l0g n)k, resulting in  an overall running time of 
2°(10g’t)k = To coinpletc the proof note that if B G ( I )  has bounded treewidth 1,  and the number 

of variables in each inequality is bounded by a fixed constant k, then, therc is a constant p > 0 such 

that tzu(IG(1) 5 plcl 5 p k I7u(BG(I). 

Part (4): To prove this part, we follow the idea given in  [KM96]. Specifically, we break the graph into 

collection of layers obtained as a result of BFS. Consider a set it is Sj = U L I :  such that L k  are layers 

whose indices IC are congruent to 27’ modulo 2 ( p +  1). Here the levels L1.  . . L, are dividcd into groups 

so,: 

1 .  

2. 

3. 

. S,. The proof now follows by observing the following: 

By a simple averaging argumcnt, i t  is clear that there exists a set Sj for which czkFsj C k X k  is 

sinaller than - ::;’. Thus, we can afford to assign a value 0 to the variables in these layers and 

still gel a near optimal solution. 

Setling the variables in laycrs that were thrown out to 0, we do not alter the feasibility of the 

inequalitics; thus the inequalities are still satisfied. 

The problem in each of the smaller pieces (subgraphs) consists of finding an optimal solution to 

B-IP when restricted to instances that are treewidth bounded. This can bc done using the exact 

rcsult for treewidth bounded instances.. 

The proof now follows. 

Example 8.1 Let pi be the FOF giveti by (xjj  + zg + wZ). We will ci-eaie three predicates h l ,  It2 

and h3. We also have tltr-ee new variable v;. Jot- the predicate pi. Now we have the clauses C/ z 

h l ( ~ i , ~ )  A I & ~ ( V ~ , Y )  & C: 
The FOFp; is replnccd by C: A Cz A C?. The intended meaning oJthe predicates ILi, 1 5 i 5 3 is 

as given above. We note thut [he immction graph corresponding to this fiugrtient pi  is ideiilical to the 

biparrite graph cormpoiiding to pi. Lei die Ci tree he as skowri in Figure 1. Nuw consider o.blaiiiiitg 

the for.niuh I;i from FI .  The fomula  is given by: 

I L ~ ( v ; , z )  A I L ~ ( v ~ , ~ / )  & C: G I A ~ ( v ~ , w )  A I L ~ ( v , , z )  

(ti s / t i , ,  ( ~ i ,  2:)) Act2 5 h i , 3 ( ~ i ,  z)) l \ ( t 3  t i  A 1.2) A 
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Figure I : Figure shwing thc Ci-tree corresponding to the bipartitc graph for Ci in  the forinula PI. 

9 Extension to Graphs obeying the LT-property 

Next, we discuss the notion of level-treewidth propcrly for a graph class G. We firs1 dcfine the notion 

of level numbering -which is just an abslraction of the level numbers associated with a breadth first 

ordering of vertices. 

Definition 9.1 A level numbering of o grqih G(V, E )  is u rrumberirzg of [he vertices qf the gruyh with 

the following pr-operries: 

1. Each ver-tex is assigned a unique nunibcr: 

2. Letting L1,.  . . , Lp denote the set of verlices assigned levels 1,. . . ,p ,  UiLi = V, Li n Lj = 4; 
lLil 2 1 - thus iniplying /hat the level nuniberi-inzg yartitions the set of verlices of G. 

3. For all 1 _< i 5 p ifa vertex v assigned level i, then N ( v )  - the neighbors of ‘u ale cissigtied 

levels (i - 1, a ,  (i + 1 )  ). Verrices at leial 1 are have all their- neighbours at Ievcls 1 ond 2 and 

sinrilarly vertices at level p have nll the riaighbola at levels (11 - 1 )  arid p. 

The sct Li are sometimes refcrrcd to as levels; and we say that that level Li is adjacent IO level 

&+I and Li-1, when thcse quantities are well defined. A subgraph induced by k consecutive levels Lr 

to L,.+k is the subgraph l.+r 
‘--r+k 

Lj. 

Definition 9.2 A gruplz class G oheys the Icvcl-lrccwidth property (LT-property) rftheie is a poij~no- 

m i d  finze algorithm A tRnt, .for- eveiy G E G, nssigns a level nirrriheririg lo Ihe verfices ?(G such thnt 

for- all k 2 1 the treewidlh ofthe subgraph induced by k consecutive levels is O( f (k)). 
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As in Eppstein [Ep95], a graph class E has a diameter-treewidth property (DT-property) if the treewidth 

of any graph in this family with diameter D is f ( D ) ,  for some function f. 
In [Ep95], Eppstein characterizes those minor closed families that obey the DT-property. Extend- 

ing his results, we obtain the second main theorem of this paper. The result implies the existence of 
PTAS for problems in the classes MPSAT, TMAX and TMlN when restrictcd to several well known 

classes of graphs. To prove this we only need to show that thcse graph classes obey the LT-property. 
Following [Ep95] define an apexgraph G to be a graph such that for some vertex PI (the apex) G/{v} 

is planar. By using a key theorem proved by Eppstein [Ep95], we can show that: 

. 

Proposition 9.3 Given an n-node graph G that is niinor closed and and does not contain all apex 

graphs. Then G obeys the LT-property. 

Theorem 9.4 Let G be a n-node (r ,  s)-civilized graph. The subgraph of G induced by the verlices 

in any k consecutive levels has treewidth O(k).  Thus die set of(r,s)-civifized graphs satisfi the OT- 
property. 

Proof: The algorithm A consists of dividing the plane into horizontal strips of width T and assigning 

level i to all the vertices that lie in strip i. Note that the vertices in k consecutive levels of a (r,  s) 

civilized graph lie in a rectangular slice of side heighi O(rk)  and width 0(n). Since G is an (T, s) 

civilized graph, the maximum number of vertices in a rectangular region of dimensions O(rk)  x O(s) 

is at most krs. Furthermore, removal of the vertices in this square breaks the graph into disjoint pieces. 

By recursively applying the above idea on each smaller piece, wc can construct a tree decomposition 

of the graph G with trecwidth krs = O ( k )  since r and s are fixed. 

A neighborhood system hl= { B1, D2, . . . &} is a finite collcclion of neighborhoods. For integers 

k, d > 0, we say that h/ is a k-ply-neighborhood system in d-dimensions if no point of 8' is strictly 

interior to more than k of the balls. The intersection graph of a k-ply-neighborhood system is a 

graph in which each vertex corresponds to a neighborhood and thcre is an cdge between two vertices 

iff the corresponding neighborhoods have a non-empty intersection. Intersection graphs of k-ply- 

neighborhood systems are a sliict generalization of (7-, s)-civilized graphs as well as planar graphs. 

The proof ofthe following theorem is omitted. 

rn 

Theorem 9.5 There exists family of k-neighborhood graphs arid k-ply neighborhood graphs do not 

obey the level ttvewidth property. 

Define a side-uniform k-ply neighborhood system for Rectangular neighborhoods; each such 

neigliborhood is a closed rectangle with fixed width but varying length. centered at p as follows: A 

neighborhood system JV = {&, BP, . . . I?,} is a finilc collection of ncighborhoods. For integers 

k, d > 0, we say that N is a k-ply-neighborhood system in d-dimensions if no point of 8' is strictly 

interior to more than k of the balls. The defintion of intersection graph of a side-uniforni k-ply- 

neighborhood system is straightforward Notice that these graphs are a restriction of the earlier more 

general case. The advantagc of these graphs though is the fact that they have nice decomposability 

properties as shown below. 

Theorem 9.6 The intersection graph of a side-uniform k-ply-neighborhood system obcy the LT-property. 
In contrast there exists family of I;-neighborhood'graphs arid I;-ply neighborhood graphs do not obey 

the level trecwidth pmperty. 
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