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Towards Syntactic Characterizations of Approximation
Schemes via Predicate and Graph Decompositions

HARRY B. HUNT 1] !  Riko JACOBZ MADHAV V. MARATHE ? RICHARD E. STEARNS !

Abstract

We present a simple extensible theoretical framework for devising polynomia) time approximation
schemes for problems represented using nalural syntactic (algebraic) specifications endowed with nat-
ural graph theorctic restrictions on input instances. Direct application of our technique yields polyno-
mial time approximation schemes for all the problems studied in [LT80, NC88, KMS56, Ba83, DTS83,
HM+84a, HM+94] as well as the first known approximation schemes for a number of additiona! com-
binatorial problems. One notable aspect our work is that it provides insights into the structure of the
symtactic specifications and the corresponding algorithms considered in {KM96, HM+94]. The un-
derstanding allows us to exicnd the class of syntactic specifications for which generic approximation
schemes can be developed. The results can be shown to be tight in many cases, i.e. natural exten-
sions of the specifications can be shown to yield non-spproximable problems. As specific examples of
applicability of our tcchriques we get that

1. the problem of maximizing the number of salisfiable terms in a formula, where each term is
represcnted explicitly by a bounded depth algebraic circuit with commutative and associative
operators over a polynomially bounded domain and range, has PTAS when restricted to pla-
nar instances. Problems that can be naturally represented using this syntactic specification in-
clude maximization versions of constraint satsfaction problems in [Sc78, FV93, JCG97, KM96,
HM+94] and graph problems considered in [Ba83, NC88, LT80, DTS93, HM+%4a].

2. Simplc extensions of our ideas can be applied to devise PTAS for the problem of maximizing (or
minimizing) a linear objcctive function subject to linear packing (or covering) constraints when
restricted to planar instances. Probiems that can be represented using this specification include
natural NP-hard packing and covering problems including those studied in [Sr9S, PSW97].

Qur resulls provide a non-trivial characterization of a class of problcms having a PTAS and extend
the earlier work on this topic by [KM96, HM+94].

'Email eddresses: {hunt. res}@cs.albany.edu. Depsrtinent of Compuler Science, University at Albany - SUNY,
Albany, NY 12222, Supperted by NSF Grants CCR 89-03319 and CCR 94-06611.
p0O. Box 1663, MS R26S, Los Alamos National Lahoratory, Los Alamos NM 87545 Email:

jacob,marathe@lanl .gov. The work is supported by the Department of Epcrgy under Contract W-7405-ENG-
36,
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1 Introduction and Motivation

In the past, extensive work has been done on the design of efficient approximation algorithms and
schemes® for problems restricted 1o planar instances (See [Bag3, KM926, HM+94, CK95, NC88, LT80]).
and the development of a theory of approximability based on the syntactic characterization of opli-
mization problems. (See [KT94, PR93, KM+95, CK95, PY91] and related references) Recent resulis
in [Ha97, RS97, AS97] show that in general, unless P = NP, a number of these problems are “hard”
to approximate. Given these negative results, it is natural to consider restrictions on the general prob-
lem that are sufficient to ensure traclability (exact or approximate solvability). In this paper we con-
centrate on oblaining positive results and thus focus on the question raised by Khanna and Motwani
[KMS6] in this context: 8“Js there a syntactic characterization of NP-hard optimization problems
having PTAS?”

We make further progress in the direction suggested by the above remarks. Building on our ear-
iier results and the results in Khanna and Motwani {HM+94, KM96], we present a simple extensible
framework for devising generic approximation schemes for problems represented using natural syn-
tactic specifications in which the input instances have a specified graph theoretic structure. Direct
application of our ideas vicld efficient approximation afgorithms and approximation schemes for all
the problems studied in [Ba83, KM96, HM+94, DTS93, NCRB8] and also for a number of additional
important problems for which no previous results were known. These results significantly extend the
a number of related results in {LT80, Ba83, Bo8K, NCBE&, KM%, HM+94, HM+9%4a, DTS93, Ep95]
and athrmatively answer reccnt open questions in [HM494a, KM96, Ep95]. We describe the results
in detail in Section 3. Our work is motivated in part by the following sct of contrasting results for
bounded versus unbounded arity predicates:

(1) For each fixed set of finitc arity Boolean relation S, the problems MAX SAT(S) (sec [HM+9%4,
Cr95] for definitions) restricted fo planar and near planar instances have a PTAS, [HM+94]

(2) the class of problems MPSAT informally defined as: Given a collection C of terms over n variables
such that each term ¢ € C is a disjunction of O(n®)} conjuncis, find a truth assignment T
maximizing the total number of (he terms in C that are satisfied have a PTAS [KM96] and

(3} In a striking contrast 10 (2), a closely related class {obtained by simply interchanging the order of
operators) informally defined as: Given a collection € of term over n variables such that each
term ¢ € C is a conjunction of (H{n“U)) disjuncis, find a truth assignment 7 maximizing the
total number of the satisfiable FOFs in C is teadily seen to be NP-hard to approximate?, even
when restricled fo planar instances.

Note in particular that while the result stated in (1) considers all bounded arity set of relations, results
n (2} and (3) imply positive results only for certain 1ypes unbounded arity relations. Thus whilc in
the case of bounded arity relations, the mere fact that the variable predicate biparlite graph is planar
1s sufficient 1o devise PTAS, thc unbounded arity predicate case requires certain additional knowiedge
about the semantics of the predicaies. The resuits and the proofs in this paper provide one possible
explnation of these contrasting results, Specifically, our results are a step towards understanding class
of unbounded arity predicates that are amenable to efficient approximalions.

IFallawing JCK9S, KM96], we deline the class PTAS to consist of all NP-optimizaiion problems having polynotnial time
approximaiion schomes.
cach ¢ can consists of a 3CNF formuia
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2 Preliminary Definitions

Given a set S of relations, where each 1t; € S is specified by an explicit table, and an S-formula F, the
problemn MAX-RELATION(S) is to determine an assigniment to the variables of I so as to maxintize
the number of terms satisfied, In this paper, we restrict our atiention to variables V = {z1,... .z}
with domain D = {0,1,,...,pely(n}}; thus, we allow the domain sizc to grow polynomially with
the number of variables in the formula. Although an adequate method of representing tenms when
they have fixed arity, the method of representing relations by tables can yield exponentially large when
relations are non finite arity. The bipartite graph BG{F) associated with the formula F{P, V') defined
as follows: The terms and variables in the formula F are in one to one correspondence with the vertices
of the graph. There is an edpe betwcen a term node and a vanable node ifY the variable appears in the
term. The interaction graph JG{F) associated with the formula {7, V) defined as follows: The
variables in the formula F are in one to one correspondence with the vertices of the graph. There is an
cdge {,v} € E iff variables = and v appear together in some lerm of f,
The above representation of input instance (representing the functions in S and the graphical rep-
- resentation capturing the term-variable relationship) can be generalized in two independent directions
--1erm and graphical representation. We choose to represent each term as an algebraic cireuit, in which
the variables and the coefficients are allowed to take values from a polynomially bounded domain.
For most part of this paper, we will also assume that the operators are commutative and associalive
multi-arity operators. The graphical struclure associated with such a formula is a natural extension
of the bipartite graph representation. The circuit graph CG(F) associated with a formula F(V, )
consists of one node for each variable, an algebraic circuit for each term and edge from a variable node
z o an inpul node of a term circuit ¢ labeled z denoting that z appears in 2. The problem MAX-
CIRCUIT-SAT is the following: Given as instance a circuit graph CG(I") representing F(V, P),
find an assignment (o the variables V to satisfy maximum number of terms in P, We use the phrase
MAX-CIRCUIT-SAT restricted to planar instances to refer to the restriction when the graph CG(F)
is planar and the circuit correpsonding o each rerm is of bounded depth. Note that given a formula
F there are a number of ways to construct C'G(IF}. In our input specification, we will assume that
the gates are labeled with the operators and the associated semantics specified. In case of algebraic
circuits, typically the semantics are well understood and therefore emitted. In general our sequence
of transformation start with an instance CG{F) and yield a new instance CG(F') which can then be
solved exactly in polynomial time.

Given A € [0,1]™*", b € [1,00)" and ¢ € [0,1]* with max; ¢; = 1, a packing (rcsp. covering)
integer program PIP(resp. GIP) sceks to maximize (resp. minimize) ¢ - subject 1o x € Z% and
a2 system of lincar constraints of the form Az < b (resp. Az > b). Furthermore if 4 € {0,1}™ ",
we assume that each entry of b is integral. Consider the variant of PIP’s (respectively CIP’s) in which
A€ {0,1,...poly(n)}"™, B = poly(n) and z € {0,1,...poly(n)}. We call these Bounded
packing {covering) programs and denote them by B-PIP and B-CIP respectively. We also usc B-
IP o denotc bounded integer programs; i.e. programs of the form maximize ¢! - = subject A €

{0,1,...poly(n)}"*™, B = poly(n) and z € {0,1,... poly(n)} and Az = b. Finally, define the
variants B-IP(K) (respectively B-PIP{k} and B-CIP(k)) if each inequality contains cxactly & terms.
Given an instance I of a mathematical program with linear objective function, the graph CG(I) is the
same as the circuit graph associated with {2, V) wherc 7 is the sct of constraints and V the set of
variables. Thus for linear programs CG(7} is identical to BG([).

We end with a few abservations and remarks. Our definition of circuit graph associated with a
fonmula is a departure from the definition of bipartite graph considered in [KM96]. Note that it CG(F)
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is planar then BG(F) is planar; the converse is not necessarily true. The graph CG(F) can be seen as
a refinement of the BG(F) depicting the internal graphical stracture of each term.

3 Summary of Results

The main contributions of this paper are three folds. First, we (i) identify new and natural syntactic
languages (specifications) to specify problems and (ii) identify new graph theoretic restrictions on the
underlying inputs that imply PTAS for problems so specified. Second, to obtain our results we propose
two new theorelical concepts: (i} predicate decomposability and (ii) approximation (optimum) pre-
serving reductions that also preserve graphical structure of the underlying instances. These concepts
coupled with a new algorithmic tcchnique referred as structure preserving predicate decomposition
yiclds the necessary generic approximation schemes for problems represented using any of the syntac-
tic specifications proposed here, Finally, we show that the circuit graph representation proposed above
is In a sensc more robust than the bipartite graph representation proposed in [KM96]. The arguments
are based on the following observations: (§) the problems in [KM96] can be reduced to corresponding
problems for our representation in an approximation preserving way, and thus is not a loss of general-
ity, (11} the posilive resuits for bipartitc graph representation in [KM96] can not be extended in gencral
{(unless P = NP) to more complicated predicaics (e.g. nested formulas of depth more than 2), (i#) in
contrast the results here based on the circuit graph lend themselves to immediate generalizations. The
main theorem of this can be stated as

Theorem 3.1 The problem MAX-CIRCUIT-SAT fas a PTAS when restricted to planar insiances.

Moreover, we show that a number of important class of combinatorial as well as graph problems when
restricted to planar graphs ( and in general graphs obeying LT-property, see Appendix for formal
definitions) can be reduced to appropriate mstances of MAX-CIRCUIT-SAT in a approximalion
preserving as well as graph structurc preserving way. Specifically, the reductions devised have two
inportant properties: {i} they can be carried out in polynemial time and (i) if II is restricted to planar
instances, then the instance of MAX-CIRCUIT-SAT obtained as a result of the reduction is also pla-
nar. Thus each of these problems have a PTAS, when restricted Lo instances obeying the LT-property.
We all such reductions structure preserving L-reductions.

Thus, our results provide a syntactic (algebraic) specifications, whose closure under appropriate

approximation preserving reductions define a characterization of problems that have PTAS. This rep-
resents a non-trivial characterization (subsuming the carlier characterizations) of class of problems
having a PTAS. Examples of problems that can be solved using our framework include the following
(for several of these results no provious approximation algorithms were known);
(1)  Each of the graph theoretic, logical and combinatorial problems considercd in Baker [Ba831,
Khanna and Motwani [KM96), Hunt et al. [HM+94], Nizhiseki and Chiba [NC88], Lipton and Tarjan
[LT80], and Diaz et al. [DTS93]. Note that general instances of the problems considered here (e.g.
maximum independent set) are ofien very hard to approximate [Ha97].

(2) Planar versions of covering and packing programs in which both variables and coefficients take
values from [0, poly(n})], wherc n is the number of variables. This includes each of the problems
censidered in Peleg, Schechtman and Wool [PSW97] and Srinivasan [$r95] and 2 number of pack-

ing/covering problems studied in [PST95]. Iltustrative examples include: fault tolerant dominating sct
and hitting set.

(3} The optimization versions of the Boolean generalized CNF satisfiability problems studied in
Schaefer {Sc78] and the optimization versions of a number of constraint satisfaction preblems studied
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in Feder and Vardi [FV93] and Jeavons et al. [JCGY97], including H-matching for fixed H.

(4) A number of graph theoretic problems restricted to planar hypergraphs with unbounded arity
hyperedges, and of unbounded degree. Examples include simple B-matching, independent set, verlex
cover, ete. In general, these problems are NP-hard and can be approximated to within a factor of
OPT? /n [Sr95, AELS$8). (Here, OPT denotes the opiimal value and r represents the number of nodes
in the problem instance.)

(5) ~ Qur ideas arc also applicable to a class of graph theoretic problems for which no previous
approximation schemes were known even for planar graphs. Given a problem I, define the problem
D2-II (distance 2-II) as the problem of solving IT in the square® of the given graph G. Our results
yield PTAS for a number of problems II when (3 is restricted to be planar and of bounded degree (in
soine cases the restriction is not required). Note that if G? is §-near planar then the result is immediate
from the previous discussion, As an cxample, consider the problem D2-max independent set: Given a
graph G, find a maximum cardinality subset of vertices, such (hat the pairwise distancc belween them
is at least 2 (in terms of the number of edges). Our results show that when G is planar and of bounded
degree, there is an PTAS to solve this problem. Other examples include the D2-min dominating set
and D2-vertex cover.

Extensions and Generalizations. First, our results on covering and packing integer programs can
be extended substantially in iwo orthogonal dircctions, namely allowing non-linear constraints, and
lo cases where some of the variables take rational values. For example a constraints of the form
e17%yz + eaxyPw + - -+ + cuzyz® = b, where ¢; and b are integers taking values from a polynomially
bounded domain can be easily handled in our case. The only requirement we place is on the structure of
the circuit praph associated with such a set. We view this extensicon as significant; this to our knowledge
represents a non-trivial class nen-finear programs that have efficient exact or approximate solutions.
As the later scetions will demonstrate out results are essentially tight in the sensc that simple exlensions
of many of the classes vicld problcms that are provably non-approximable. In contrast, we can show
that the extension is likely to fail for general linear integer programs whose bipar(ilc graphs are planar.
We do this by showing — (i) the problem of deciding the feasibility of 1P instances [ restricted to
B@G(I) being a tree, or JG(F) being a scries parallel graph is NP-hard, and (3i) approximaling the
objective function for instances whose bipartite graphs arc planar is NP-hard.

Second, our PTAS can be extended to 1wo orthogonal graph classes.. The first class is more specific
to layouts which arc cfose to planar (bounded genus and weak Jevel treewidth property). We show that
(i) most of the problems, have a PTAS when restricted to instances salisfying the weak Icvel treewidth
property and (ii) several imporiant and well known classes of graphs including planar, bounded genus
graphs, (r, s)-civilized graphs and a subclass of k-ply neighborhood systems satis{y the LT-property.
In contrast, we show that gencral k-ply neighborhood graphs as well as k-neighborhood graphs defined
by Teng et al. [MT+97] do not obey the LT-property. The second class of inslances (d-near genus) we
comsider 15 obtained by extending the graph theoretic structure of planarity. Several of our results can
be extended to instances that are &-near genus or d-near (r, s)-civilized. Thus, our resulls show that for
a number of problems both the graph theoretic structure and the information about specific layouts can
be used to devise good approximation algorithms.

Third, the techniques can be used to design polynomial time algorithms for the path and clustering
problems considered in Eppstein {Ep95] (with running times esscntially identical to those in [Ep95))
when restricted 1o graphs obeying the LT-property. Finally, our results also provide more efficient ex-

*Given a graph G(V, E), the square graph G?(V, E’) is obtained by adding an edge between two nodes © and y whenever
there is a path of length at most 2 hetween x and y in .
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ponential algorithms for NP-hard problems restricted to problems whose underlying interaction graphs
obey the LT-property. Specifically, our new results on Tables and the concept of predicate decompos-
ability strongly extends the class of problems easily expressible as GSPs, solvable in deterministic
time 290" jncluding counting problems and many problems for graphs with unbounded arity ver-
tices and hypergraphs with both unbounded arnty vertices and hyperedges. For example, we get that
problems such as independent set, dominating set, vertex cover, etc for unbounded arily hypergraphs
with bounded treewidth have PTAS. _ '

The rest of the paper consists of discussion of selected results. A few additional details are also
given in the appendix, We refer the reader to {GI79, CK95] for basic definitions in graph theory,
computational complexity and combinatorial problems considered in this paper.

4 Overall Technigue and Preliminary Resulés

The basic idea behind our algorithms is similar to the shifting strategy first used by [Bag3, HMBS,
Ho96] for obtaining polynomial time approximation schemes (PTASs) for problems restricted to planar
and geometric inslances. The overall schemata consists consists of the following basic steps:

(i) Decompose the given graph (instance) into vertex {(edge) disjoint subsets such thal an (near)
optimal solution to the subgraph (sub instance) induced by each subsci can be oblained in polynomial
time. (This step exploits the fact that the underlying graph is decomposable.)

{2) Reduce {using D-reductions) each sub-insiance to easily solvable sub-instance (uses predicate
decomposabihty). -

(3) Solve cach transformcd sub-instance optimally using kncwn metheds (such as Theorem 4.1)
developed in [SH95, HM+94] (This step uses the theory of efficient solvability of algebraic problems
restricted to instances of bounded reewidth developed in [HM+94, SH95].)

(4) Use the problem specification to combine the soluttons to each of the sub parts fo obtain a solution
for the entire instance.

The schemta outlined above is similar in spirit to that used in [Ba83, HM85, HM+94, KM96];
although needs a number of new lechnical ideas at each step. The main technical contribution of the
paper is to devise methods to accomplish Steps (2) and (3) above. It should be noted that the ordering
of steps is crucial to the performance of the algorithm. 1t might be tempting to try and carry out the
reduction on the planar instance directly rather than carrying out the reduction for each individual
picces. Such an attemipt fails to work due 1o the special nature of reduction used which do not preserve
approximation schemes but arc sufficient to derive optimal solutions for the original problem. The
proof of the following theorem appcars in the Appendix.

Theorem 4.1 Let S be a finite set of finite arity functions. an let k > 0 be fixed. Then the follow-
ing statements hold: (i}  For each fixed k > 0, the problem WT-MAX-FUNCTION(S) has an
exact NC-algorithm when restrictedd to instances f sueh that tw(BG(f)) < k. (ii)) WT-MAX-
FUNCTION(S) has an NC-approximation scheme. when restricted to instances f such that IG(f)
is planar. (iji) The problem B-1P(k), reswricted to instances I such that BG(I) is of bounded
freewidth has a polynomial time algorithm. (iv)  The problems B-PIP{k) (B-CIP{K)) restricted to
instances I such that BG(I) is planar have a PTAS,

Definition 4.2 Let 11 and I be two optinmization (maxinization or minimization) problems. We say
that I1 D-reduces to 11 (denated by T1 <p; ') if there are iwo polynomial time computable functions
[ and g and constants o, 3 > U, such that for each instance 1 of 11 f produces an instance I' = f{I)




MAY 15798 13:43 Mo .Q10 F.08

of T with the optimas OPT(1) and OPT{1') respectively and given any solution of 1’ with cost ¢, g
produces a solution of I with cost ¢ such that |c — QPT(I)| = |’ — QPT(I'}].

Notice crucially that the reductions are not approximation preserving. But the reductions allow us
to compute the optimal value for 7 from an-optimal value for I’. We will need this property in our
proofs and thus we summarize it below:

Proposition 4.3 Let P, Q, R be three optimization problems. Then the following holds: (i} D-reductions
compose; i.e, lf P <p Qand Q <p Rthen P <p R (i} If P <p Q and Q has a poiynomial time
algorithm then P has a polynomial time algorithm. () If P <, Qwith 3 =1then P <p Q.

5 PTAS for MAX-CIRCUIT-SAT for planar instances

In view of the discussion in the previous section, we only need show how Lo find optimal solution for
MAX-CIRCUIT-SAT when restricted 10 instances of bounded treewidth. We achieve this by opti-
mally transforming an instance [ of MAX-CIRCUIT-SAT toaninstance I’ of MAX-FUNCTION(S)
in such a way that TW{(CG(I) = O(TW{IG(I')). For clarity of exposition, we prove our resull in a
series of sleps.,

Consider a term of the form ¢ = (z} ©® 9+ ® zp), where © is a multi-arity operator that is
commutative and associative. Consider a formula F = A;c;, where each ¢; 15 in the form above. In
our proofs transforming F', we will work with a very special kind of tree decomposition which we call
Special Tree Decomposition. Consider the tree decomposition 7 of B(G{F), and consider single clause
¢. Te; © T denote the part of the tree that commesponds Lo ;. By the definition of tree-decomposition it
is easy to see thal T, forms a connected component and is therefore a tree. For cach set X, associated
with F, tet S C X} which contains elements from the set {c;, 21, ..., zp}. Without foss of gencrality
we can assume that c;-tree 7., has the following properties: (i) 7., is rooted and edges dirccted towards
the root (inward arborecense), (ii) the sets Sy, at each leaf node are of the form {¢;, 5}, (iit) for all sets
of the form {¢;, #;} there is leaf node v such that S, = {¢;, z;}, and (iv) T, is Binary. With these
assumptions, the notion of lowest common ancestor (LCA) of two nodes in 7, is well defined. Then
the PROCEDURE TRANSFORM-TERM consisting of performing the following iterative procedure: (1)

Choose a set of leaf nodes that cover all the pairs {c;, 7;}, where 2; € ¢;.

(2} Mark all these leaf nodes as “unprocessed™.
{3) Repeat the following procedure:

(32) Choose an LCA pg of maximum depth and of two nodes ¢ and p containing distinct variables
xq and x, and marked “unprocessed”.

(3b) Set S, = Sy — {ei} U {ypg 2o} Similarly set S§; = S — {c;} U {ypg, #p}. For all nodes ¢ on
the path from g to p, set S = S — {e;} U {Ypg. Zp, 74} Finally, set 8y = S, — {€:} U {ypqe}- Here
Ypy 18 @ new distinct temporary variable. Also add the clause yp, = 2, O 4.

(3¢c) Maik leaf nodes g and p as processed and proceed.

(4) Mark the node pg as “unprocessed”,

Tinally add a clause y; where y; is the last temporary variable introduced in the above procedure.
The procedure can be seen to replace the original clause ¢; by a set of clauses ¢;. We do this for
each clauses introducing new set of variables for each clause. Denole the new fonmula abtained by
conjunctton of the the clause groups by Fi. The following lemma summarizes the properties of the
transformation PROCEDURE TRANSFORM-TERM.
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Lemma 5.1 Given a c-tree T, PROCEDURE TRANSFORM-TERM oulpuis a tree decomposition T,
(with more elements at euch node) of IG(c}) such that the for each set X (Tu) < 4+ Xp(Te,). 8 are
isomorphic. Moreover PROCEDURE TRANSFORM-TERM is a D-reduction.

Proof: The first part of Lemma follows since we replace an element in the set S), by at most 4 new
elements. To prove part (2) first note that ¢} is cquivalent to ¢;. This is true crucially since © is a
conunutative and associative operator by assumption and thus we can comibine the variables z,,... =),
in any order — in particular in the order of their proximity in 7, . The proof can now be completed by
noting thal

(a) Any iruth-assignment V to the variables of ¢; can be exlended uniquely to a truth-assignment
W to the variables of ¢f such that all clauses of ¢!, except possibly the single variable clause * are
satisfied by W, and Wiy _,} = 1 iff Vig] = 1. Conversely, any such truth-assignment W can be
resiricted 10 a truth-assignment V to the variables of ¢; such that Wiyl = 1iff V[e;J =1. =

We call such terms ¢ as structure preserving decomposable predicates since ituitively we can
decompose a large multi-arity formula as a conjunction of bounded arity formulas in a way that (i)
preserves the original trec decomposition and (ii) is a D-reduction. We omil a formal definition here
due 1o lack of space. Now consider the formula F itself. Note crucially that it was the commutativity
and associativity of © that allowed us to prove the second part of Lemma 5.1. We can apply the above
procedure of converting a single ¢ to cach of the ierms in a sequential order. Let F™ = A, ¢ denote
the ncw formula obtained as result of this complete transfonmation. Also let 70, 72,... 7™ denote
the sequence of tree decompostions that we get when we process the terms cy, ¢z, . . . & in that order.
Similarly ¥i,1 < i <, let F? (F! = F) denote the sequence of modified formulas obtained. We
make the following unponant observaiion;: Transforming the tree 7, to T does not affect the other
trees T, i.e. only the element ¢; gets deleted while working with the tree Te;. This allows us to
inductively maintain that for each set Xg (the set associated with node § in trce 7} Xf <44 Xf
Note importantly that a node X7 can be a part of at most TW (7} decompositions, Combining these
observations with Lemma 5.1 we can prove the following theorcm {proof omitted).

Theorem 5.2 For all i, 2 < i < n, the following statements hold: (1) The transformation from F* 1o
F' s g Dereduction,  (2) If TWI(CG(F!) < ATW{IG(F"™), (3) F©* s satisfiable iff F' is
satisfiable, (4} F™ and T can be obtained in time O{size(F)).

Completing the reduction. We are now ready to complcete the description and the proof of correciness
for the general case, namely when each term is a general nested formula with polynomial domain
and polynomially bounded intermicdiale values. Consider an instance F([%, V') of a formula such that
CG(F} is of bounded treewidth. As in the previous case we transform each ¢ € I in an approximation
as well as tree decomposition preserving way. Each gate of the circuit defincs a subterm; we begin
ptocessing a subterm defined by a gate that is farthest from the output gate. This subtenn is replaced
by a new term using transformation as given above. We then successively move to terms defined by
gates fthat are closcr to the output pate. The only crucial observation that we need to make is the
following: Consider a gatc g {(and hence a subtenn). Then the sct of nodes in the tree decomposition
of CG(F) contzining g form a connccted subtree.

Additional Remarks. First, note that as a direct corollary of the above discussion and Theorem 4.1,
we get a polynomial time algorithm for exactly solving B-|P when restricted to bounded treewidth in-
stances, In fact, it shows that cven for non-linear constraints whose circuit graph is bounded treewidth
can be cificienily solved. Second, the fact that the operators are commutative and associative was a
sufficient condition for exact solvability. Any formula that can be fransformed in a structure preserving
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way can be solved in this manner. Section 6 discusses one such formula. Third, the result points out
the robustness of our syntaclic specifications — the only internal structure used to guarantee efficient
solvability was the graphical structure. This should be contrasted with the discussion in the introduc-
tion. Fourth, the reductions outlined here are in fact more general — they can be simultaneosly used to
show the hardness (easiness} of decision, counting, uniqueness, parity and other related questions for
the problems under study. Finally, noting that this transformation can also be carried out for instances
having non-constant treewidth, we get 2°(v™ algarithms for several combinatorial problerns restricted
to planar and bounded genus graphs.

6 PTAS for MPSAT

Next, we consider the problems MPSATand outline anapproximation preserving reduction to an appro-
priate MAX-CIRCUIT-SAT problem. This result provides insights into the question and the discus-
sion at the end of Section 1 (introduction). The overzll idea behind the reduction is the following: Each
clause ¢ is first replaced by a forinula so that the resulting formula has bounded arity predicates. Next,
we replace cach such formula by a circuit so that the resulting reduction is 2 D-reduction. This allows
us to the instances [ in which BG(I) is treewidth bounded. We begin by describing the PROCEDURE
TRANSFORM-MPSAT. First, we crcate a new formula I} = (Wi, P) asfollows: V1 = X UY, X is
in one-to-one correspondence with the varfables in V. The variables in ¥ are in one to one correpson-
dence with the FOF’s in P = {p,...pm}. Letp = {1 v ...V t?"”". recall that each term is of the
form un A wo A ... w, where each w; is a literal. Now for each FOF p,, do the fellowing: Fer each
ff € p;, we creale a set of q; predicates, ""l(i.j)- Add thc 3CNF clauses hiid}(ﬂpi,:c) where, 1 <1 < qj’:—

and ¢ € VAR(f.j R (g, 2 is true iff uy, is not € or = has the value which which makes the literal
7 i, jivim 25

forx € tg true. Let C; denote the conjunction of clauses obtained by tranforming p;. Finally et the
clauses in Fy = AL, C,.

Lemma 6.1 Let F be a MPSATformula and Iy be the 3CNF formula obtained by tranforming R,
using PROCEDURE TRANSFORM-MPSAT. The the following holds.

(1) F\ is satisfiable iff IV is satisfiable.

(2) PROCEDURE TRANSFORM-MPSAT runs int time O{size(F)).

(3) The reduction is planarity preseyving: thus Fy is planar if F is planar,

(4} If BG(I') has treewidth T then the treewidth of TG (7)) has treewidth O(T).

(5) If BG{F'} has treewidth k, then F can be decided in time O(n*).

Proof: Censider an assignment which satisfies F. For each variable in X, the assignment to the
variable is the samc as the corresponding variable in V of F. Far each variable v, corresponding to a
clause p; € P, we set v, = 7, where j corresponds to one of the term T;’ € p; that is true. Conversly,
a solution for F; becomes a solution for &' by setting the variables in V the same as their value in X.
This proves part {1} of the theorem,

The proof of part (2) follows by observing that the reduction consists of replacing each MINTERM
of size (J(n) in a FOF by a CNF fonnula of size (J(n); thus the transformation 1akes time O(size(F)).

To prove part (3) and (4), observe thal for each of our predicates hiw._'j)(u,,i,:c), there is an edge
(p, z) in the bipartite graph BG{JF7}, so that BG{F) and JG{J7} arc isomorphic.

To prove the last part of the theorem, note that all the variables excepting vy, arc binary variables;
vp, has its domain {0, ... ,n}. We can simulatc each v,, using O(log n) Binary variables; thus incrcas-

8
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ing the treewidth to O{k log n). Now it is clear that solving a SAT{S) problem when S is a set of finite
arity Boolean relations takes time ({27n) time for instances with interaction graphs of treewidth 7. In
our case this translates into a 20¢ 1°6")n, time which is realty %) algorithm. =

Next, we describe PROCEDURE SOLVE-TwW-MPSAT: for solving MPSAT on instances of bounded
treewidth. First, obtain a new fonnula F1 (V). P,) from F(V, P) using PROCEDURE TRANSFORM-
MPSAT. By Lemma 6.1 the treewidth of BG(F)) is no more than ck for some constant k. Second,
convert Fi {4, A1) into a new formula F5(Vs, ) by replacing each term by an equivalent circuit.
Theorem 6.2 show that this transformation is a D-reduction. Moreover the treewidth of IG{Fy) is no
more than ¢ k, for some constant ¢;. Third, we solve F;y{Va, P2) optimally using Theorcm 4.1, Finally,
map the gssignment to the variables obtained in Step 6 to an optimal assignment to the variables in F.

Theorem 6.2 Let F, Fy and 5 be obtained as above in PROCEDURE SOLVE-TW-MPSAT. Let
tw(F) = k. Then the following holds.
(1) tw(Fy) = atw(F), for some constant ¢y, whenever tw(F,) > 4.

(2} The wansformation fiom F to Fa constitutes a D-reduction.
{3) PROCEDURE PTAS-MINSAT runs in time n®%). Thus the problems MPSAY can be solved
optimally in time n®%) for graphs of reewidth O(k).

Proof: Consider the tree decomposition 7 of BG(F}, and consider single FOF (term) C; = (m V
ma . ..MMy, ), where cracially the mls are the minterms. Let F C T denote the part of the tree that
corresponds to C. By the definition of tree-decomposition it is clear that F forms a connccted com-
ponent and is therefore a tree. Note that by Lemima 6.1, the trec decomposilion of BG{J) is almost
the same, excepting that some of the sets associated with each node in the tree arc slightly larger. We
will work with the fragement associated with the term C in BG(F}) {from now on, By following the
same sequence of steps as outlined in Section 5 for MAX-CIRCUIT-SAT , we can replace the term
C; by the new description C; = A, ; ;. ;. (v;, 7:), where hj . are the new relations added and v; is
the auxillary variable corresponding to the term C;. Note that since AND is a commutative and as-
soctative operator, we can form a new circnit that combines them in any order — in particular in the
order of their occurrence in the decomposition 1wee. The Step of converting 7y ta Fy is very similar
to the PROCEDURE TRANSFORM-SAT in Scction 5 and consists of replacing the sct of clauses in C;
by a new clauses by interpreting C); as a circuit. Example 8.1 depicts the construction. The details are
straight forward. We only make one crucial observation. The circuit can combitic (wo clauscs one of
the form k., (v;, m} and Ry 4(v;, z,.); the only constraint piaced on combining is their proximity in
the C; tree. This can be done since C is essentially flatiened out and all the clauses are connected by
AND. Such a rearrangement is valid because AND 1s a commutative and associative operator. [t is
now casy to sce that the treewidth of IG{F;) is no more than a constant factor times the treewidth of
IG(F) and thus IG(F). This compleles the proof of Part (1). To verify Part (2) of the lemma, note
that the new auxillary variables arc functionally dependent on the old ones. The proof now follows
along the same lines as the proof of Part (4) of Theorem 5.2. Wc now consider the running time of the
algorithm. Note that u; is a variable taking m; distinct values, where m; is the number of minterms
mn F. Thus the domain of each v; is bounded by O{n®), for soinc fixed & > 0. As a result vy can
be represented by a (J(Jog n} binary variables. This implies that the treewidth of F, as measured with
respect to this new representation is kO(logn). The running time is thus n®), This completes the
proof of the theorem:. ®

Notes: (1) Intuitively speaking the clavse C = (m; ¥V ma...m,), has been flattencd to Jv:m,
which can now be used to write the ¢lausc as one big AND, allowing to mix the new atoms of the




CIC & GROUP GFFICE MAY 1357938 1547 No,ULU F.L1l5

clause as needed, (2) Note that we reduced the problem for disjunction of minterms to the case of a

SAT{(S) problem where the relation set S is not fixed but grows with the instance. This is okay so long
as it is easy (in our cas¢ conslant time) to check if a given assignment to the variables is satisfiable.
(3) The results demonstrate that the concept of circuit graph is sound and roboust in designing exact

as well as approximation algorithms. (4} The results extend the results of Bodlaender [BoB8]) and

those of Stearns and Hunl [SH95] on certain types of predicates for which the resulting problems can
be solved exactly. In particuiar it says that if the bipartile graph corresponding to a hypergraph without
a bounpd on arity of edges and degree of nodes has bounded treewidth then several classical problems
such as independent set cic has PTAS,

7 Packing and Covering Programs

Next, we discuss the extensions to finding PTAS for packing and covering programs when the corre-
sponding resiricted fo planar instances. We first discuss the polynomial time solvability of the corre-
sponding programs for instances of bounded treewidth. First note that by direct application of result
in Section 35, the B-IP problem, restricted to bipartite graphs of bounded treewidth have a polyno-
mial time algorithm. Thus the problems B-PIP and B-CIP restricted to bipartite graphs of bounded
trecwidth has a polynomial time algorithms. Next consider B-PIP (B-CIP) for planar instances, These
problems have a PTAS and is proved by a direct application of arguments similar to the proof of Part
{4) of Theorem 4.1. In contrast to the positive results in the earlier scclions, we show that certain
desriable extensions of these results fail.

Theorem 7.1 (1)  The OM-\P-feasibility problem is NP-hard even when restricted 1o instances I

such that BG(I) is a ree. The NP-hardness holds even for instances I with (YG(I) with bounded
treewidth,; and variables ranging over Z%. (2) Unless P = NP, the problem 0/1-1P does not have

polynomial time e-approximable for any € > 1, even when restrcited 1o instances I whose BG(I) is
planar:

Proof: Proof of part (1) is by a reduction is fram the Partition problem. Let § = {ay;,...qa,} be an
instance of the partition problem. Then checking if there is a subset S7 C S'suchthat 37, .5, a; = B/2
is equivalent to checking if the equation §_ e;x; = I3/2 subject 1o the condition that z; € {0,1}. Jtis
casy to see that the bipartite graph js simply a star, To exfend the resuit to hold for intcraction graph
having a boundcd treewidth we introduce new variables ; and then add then construct the following
instance I: equations: V1 £ ¢ < m— 2, a7 + @iq 1Ty = 3 8nd onTy + Y1 = BJ2. It is easy
to sce that that the treewidth of IG(I) is bounded. The proof of part (2) foliows from a reduction from
Ex-1-3SAT. =

The hardness and the casiness resulis discussed above should be carefully compared. The hardness
of 0/1-1P feasibility stems from the fact that we work with algebraic structures that are cxponentially
large (and in general infinite). Also, note that to obtain PTAS, we only needed the packing and covering
constraints to satisfy the following requirement: The variables in the layers that are thrown away can
be given values without destroying the feasibility of the constraints. This is similar to thc monotonicity
constraint considered by Feder and Vardi [FV93). Packing and Covering programs by their nature
provide sufficient conditions to achicve this.
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Appendix

8 Additional Definitions and Proofs

For a set I and a natural number m, the set of m-tuples of elements of D are denoled by D™. A
subset R of D™ is called a m-ary relation over IJ; rn denotes the arity of R (a function is defined
similarly). We will also use the map f : D™ — IJ in our discussion. A term is a string of the form
“R{zi,...,Tx)” where x; are variables or constants and R is a k-ary relation (or function) over D,
(The tuples of R; indicate the allowed values that the variables {z),...,z;} can take.) A formula ¥
is a pair (V, P) where V is a set of variables and I’ is a set of terms such that V 2 VAR(P). The
problem WT-MAX-FUNCTION(S) is lo assign values to each x;, 1 < ¢ < =, 50 as to maximize
s Ji, (X, )

Proof of Theorem 4.1: Paris (1) and (2): The proof follows by a direct extension of ideas in [HM+94).
Part (3): The proof is obtained in two stages. First, by extending the ideas in [SH95], it follows that the
problem B-1P(k], restricted to instances J such that IG(I) is of bounded trecwidth has a polynomial
time algorithm. The only point to noic is that the variables can take values from {0,1,... poly{n)}
and can be represented by ©(logn) binary varisbles encoding the binary representation. Thus if
IG(I) has treewidth k, then the new treewidth is O(log n)k, resulting in an overall running time of
90{iog ik — O, To complete the proof note that if BG(I) has bounded lreewidth [, and the number
of variables in each inequality is bounded by a fixed constant %, then, therc is a constant g > () such
that tw(IG(I) < pki < pkiw(BG(I).

Part (4): To prove this part, we follow the tdea given in [KM96]. Specifically, we break the graph into
collection of layers obtained as a result of BFS. Consider a set it is S; = ULy such that Ly, are layers
whose indices & are congruent to 2 modulo 2(p+ 1). Here the levels L, . .. L, are divided into groups
S0, - . - Sp- The proof now follows by observing the following;

1. By a simple averaging argument, it is clear that there exists a set S; for which 3., cc. cumy 18
smaller than %{if-'. Thus, we can afford to assign a value 0 to the variables in these layers and

still get a near optimal solution.

2. Setting the variables in layers that were thrown out to ), we do not alier the feasibility of the
inequalitics; thus the inequalitics are still satisfied.

3. The problem in each of the smaller pieces (subgraphs) consists of finding an optimal solution to
B-1P when restricted to instances that are tfreewidth bounded. This can be done using the exact
result for treewidth bounded instances..

The proof now follows. =

Example B.1 Let p; be the FOF given by (zy + zy + wx). We will create three predicates hy, ho
and ha. We also have three new variable v;, for the predicate p;. Now we have the clauses Cil =
hi(vi, ) Aby (v, y) & C? = halvi, 2) A ha(vi,y) & CF = ha{og, w) A ha(vy, x)

The FOF p; is replaced by C} A C? A Cf. The intended meaning of the predicates h; 1 <1 < 3is
as given above. We nofe that the interaction graph corresponding to this fragment p; is identical to the
bipartite graph corresponding to p;. Let the C; tree be as shown in Figure I. Now consider obtaining
the formula Fy from Fy. The fornula is given by:

(1, = hh] (‘L’i,.‘l’;’)) /\(12 = h,‘}:;(‘b‘h I)) /\(tg =t A tg) /\

13
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Figure 1: Figure shwing the C;-tree corresponding to the bipartite graph for C; in the formula Fj.

(ta = hay (v, 1)) \ts = hip(u, ) \lts =t Ats) A
(tr = hia(vi, 2)) A(ts = hiavi,w)) A

(ty = f3 Atg) /\(f-m = {g N t7) /\(tn = ig (\f.m) /\f.”

The tree decomposition for the bipariite graph associated with C; as represented above can be easily
constructed from the above formula and Figure |

9 Extension to Graphs obeying the LT-property

Next, we discuss the notion of level-ireewidth property for a graph class G. We firsi dcfine the notion
of level numbering — which is just an abstraction of the level numbers associated with a breadth first
ordering of vertices.

Definition 9.1 A level numbering of a graph G(V, I7) is ¢ numbering of the vertices of the graph with
the following properties:

1. Each vertex is assigned a wnigue number:

2. Letting Ly, ..., L, dencte the set of vertices assigned levels 1,.. . ,p, Uil =V, LinL; = ¢;
|L:| 2 1 — thus implying that the level numbering partitions the set of vertices of G.

3 Foralll <i < p, ifavertex v assigned level 1, then N(v) — the neighbors of v are assigned
levels {i — 1,1, (¢ + 1)}. Vertices at level 1 are have all their neighbours at levels 1 and 2 and
sinvilarly vertices at level p have all the neighbors at levels (p — 1) and p.

The set L; are sometimes referred 1o as levels; and we say that that level L; is adjacent 1o Jevel
Liyy and Ly, when these quantities are well defined. A subgraph induced by k consecutive levels L,
t0 Ly 4k is the subgraph U}EHLJ‘.

Definition 9.2 A graph class G obeys the Ievel-treewidth property (LT-property) if there is a polyno-

mial time algorithm A that, for every G € G, assigns a level numbering (o the vertices of G such that
SJorall k > 1 the treewidth of the subgraph induced by k consecutive levels is O f{k)).

14
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As in Eppstein [Ep95], a graph class G has a diameter-treewidth property (B T-property) if the treewidth s
of any graph in this family with diameter D is f{D), for some function f.

In [Ep95], Eppstein characterizes those minor closed families that obey the DT-property. Extend-
ing his results, we obtain the second main theorem of this paper. The result implies the existence of
PTAS for problems in the classes MPSAT, TMAX and TMIN when restricted to several well known
classes of graphs. To prove this we only need to show that these graph classes obey the LT-property.
Following [Ep95] define an apex graph G 10 be a graph such that for some vertex v (the apex) G/{v}
is planar. By using a key theorem proved by Eppstein [Ep95], we can show that:

Proposition 9.3 Given an n-node graph G that is minor closed and and does not contain all apex
graphs. Then G obeys the LT-property.

Theorem 9.4 Let G be a n-node (r, s)-civilized graph. The subgraph of G induced by the vertices
in any k consecutive levels has treewidth O(k). Thus the set of (v, s)-civilized graphs satisfy the DT-
property.

Proof: The algorithm A consists of dividing the plane into horizontal strips of width r and assigning
level ¢ to all the vertices that lie in strip ¢. Note that the vertices in k consecutive levels of a (r, s)
civilized graph lie in a rectangular slice of side height O{rk) and width O{n). Since G is an (r, 5)
civilized graph, the maximwn number of vertices in a rectangular region of dimensions O(rk) x O(s)
is at most krs. Furthermore, removal of the vertices in this square breaks the graph into disjoint pieces.
By recursively applying the above idea on each smaller piece, we can construct a tree decomposition
of the graph G with trecwidth krs = O(k) since r and s are fixed. w -

A neighborhood system N = { B}, By, . .. B, } is a finite collcciion of neighborhoods. For integers
k,d > 0, we say that A is a k-ply-neighborhood system in d-dimensions if no point of R? is strictly
inferior to more than k of the balls. The intersection graph of a k-ply-neighborhood system is a
graph in which each vertex corresponds to a neighborhood and there is an edge between two verlices
T the corresponding neighborhoods have a non-empty intersection. Intersection graphs of k-ply-
neighborhood systems are a sirict generalization of {r, s)-civilized graphs as well as planar graphs.
The proof of the following theorem is omitied.

Theorem 9.5 There exists family of k-neighborhood graphs and k-ply neighborhood graphks do not
obey the level treewidth property.

Define a side-uniform k-ply ncighborhood system for Rectangular neighberhoods; each such
neighborhood is a closed rectangle with fixed width but varying length. centered at p as follows: A
neighborhood system N = {B),By,... B,} is 2 finilc collection of neighborhoods. For integers
k,d > 0, we say that AV is a k-ply-ncighberhood system in d-dimensions if no point of £ is strictly
mierior 1o more than k of the balls. The defintion of intersection graph of a side-uniform k-ply-
neighborhood system is straightforward Notice that these graphs are a restriction of the earlier more
general case. The advantage of thesc graphs though is the fact that they have nice decomposability
properties as shown below.

Theorem 9.6 The intersection graph of a side-uniform k-ply-neighborhood system obey the LT-property.

In contrast there exists family of k-neighborhood graphs and k-ply neighborhood graphs do not obey
the level treewidth property.
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