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ABSTRACT High-Level Synthesis (HLS) tools help engineers to deal with the complexity of building

heterogeneous embedded systems that make it use of reconfigurable technology. Also, HLS opens up a

way for introducing, into the development flow of custom hardware components, techniques well known

in the software industry such as Test-Driven Development (TDD). However, the support provided by HLS

tools for verification activities is limited, and it is usually focused on the initial steps of the design process.

In this paper, a hardware testing framework is introduced as an enabler for effortless on-board verification of

components by applying the Unit Testing Paradigm and, hence, realizing TDD on reconfigurable hardware.

The proposed solution comprises a hardware/software introspection infrastructure to verify modules of a

system at different stages, spawning multiple abstraction levels without extra effort nor redesigning the

component. Our solution has been implemented for the Xilinx ZynQ FPGA-SoC architecture and applied

to the verification of C-kernels within the CHStone Benchmark. Effortless integration into the Xilinx

Vivado design flow and tools is supported by a set of automatic generation scripts developed for this

end. Experimental results show a considerable speedup of the verification time and unveils inaccuracies

concerning the co-simulation estimation obtained by Xilinx tools when compared with the on-board latency

measured by our framework.

INDEX TERMS Design for testability, on-board verification, high-level synthesis, FPGA, unit testing

framework, test-driven design.

I. INTRODUCTION

Lately, High-Level Synthesis (HLS) has broken into the mar-

ket as the technology that not only provides the ability to

speed up FPGA-based designs, but also to ease the burden of

verification processes [1]. In turn, HLS expands the horizons

of FPGA market since it allows the rapid evaluation of archi-

tectural alternatives, regardless of the engineer’s experience

and thus, makes FPGA-based solutions suitable for both soft-

ware and hardware engineers [2]. However, HLS lacks of the

means to easily verify HLS-based designs across abstraction

levels, usually covering only the first steps of the development

flow.

Thus, at the highest abstraction level, functional verifica-

tion of HLSmodels is performed by writing a testbench using
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the same high-level language as the one used to specify the

hardware component.

This testbench feeds the model of the hardware component

with the input vectors (stimuli) and compares the output

obtained against a reference (the outcome of the simulation of

the so called golden model). Later, most of the HLS tools per-

form the co-simulation of the synthesized, closer-to-hardware

RTL (Register-Transfer Level) model, reusing the same test-

bench. Since the testbench (application/system level) and the

RTL model (RTL/Logic level) targets different abstraction

levels, different domain languages (i.e. C/C++/SystemC and

VHDL/Verilog) are used. Hence, it is necessary to bridge both

domains by means of a dedicated software infrastructure.

However, the use of system-level models and co-simulation is

not the answer to all the challenges posed by the verification

of FPGA-based designs. For example, the outcome of the

RTL synthesis process is certainly complex to trace back to
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the HLS specification that originated it. Therefore, engineers

lose the control over the result, which brings into play addi-

tional issues. Also, the accuracy of the verification process is

affected when engineers move from one abstraction level to

the other.

Furthermore, latest studies [2]–[4] affirm that, for almost

one fourth of the projects surveyed, the tasks devoted to

ensure the correctness of designs combining an FPGA

with other processing technologies account for nearly half

of the effort in average, with peaks between 70%-80%.

Hence, verification activities are becoming a major concern

in FPGA-based projects [4]. Moreover, the validation of

HLS-generated modules introduces new demands in addition

to checking the mere correctness of their functional behavior.

For example, timing checking, which is not usually present

in software testing frameworks, is mandatory for HLS-based

designs. Also, hardware solutions must be compliant with

strict protocol checking rules or meet deadlines in hard

real-time systems. Unfortunately, these properties of a design

are only exposed at the lowest abstraction levels, and need of

the simulation of cycle-accurate models such as RTL specifi-

cations. However, RTL simulations are lengthy and proved to

be impractical as the size and complexity of the designs grow.

Contrarily, on-board verification is fast and accurate, which

makes this method the most sensible workaround provided

that the designer is given the tools and methods to easy the

path down to the FPGA fabric.

The adoption of HLS technology unlocks the possibility

to introduce mature, well-known practices from the software

realm that could contribute to improve the verification pro-

cess of custom hardware components, whilst integrating such

process into on-board testing flows. In this sense, the testing

framework presented in this work, RC-Unity, leverages the

know-how on unit testing environments, which are widely

used in software engineering projects, so as to realize the

Test-Driven Development (TDD) paradigm on FPGA-based

devices. TDD is a software development process that puts the

design of the test cases before the actual implementation of

the software. This way, software requirements are converted

to specific evaluations of the functionality. TDD has been

demonstrated to provide a variety of different benefits, such

as better productivity [5], better quality [6] and higher test

coverage [7].

In this work, an on-board verification framework, based on

the principles of TDD, for HLS-based designs is proposed as

a response to the current challenges concerning the verifica-

tion of systems implemented using FPGA technology. The

main contributions of this proposal are:

• A hardware verification environment (RC-Unity) as an

extension of Unity software testing framework, that

enables the use of a single test suite through the whole

hardware design flow, regardless of the abstraction level

and the design stage.

• Making the principles of TDD a reality and applying

them to the design of FPGA-powered solutions, enabling

the development of complex systems in short and safe

steps, by verifying the HLS modules these systems are

made of.

• A configurable and standardized heterogeneous testing

environment that helps engineers to reduce the verifica-

tion effort, contributing to ease and speed up the path

down to the FPGA implementation.

This paper is structured as follows. section II summarizes

the current state-of-the-art in the field of on-board verifica-

tion. Then, in section III the basics of HLS design is briefly

introduced. section IV introduces the RC-Unity workflow

to apply TDD for reconfigurable hardware. Later, section V

shows in detail how RC-Unity can be adopted to build

HLS-based modules with special emphasis on its architecture

and characteristics, whilst section VI analyzes the impact of

this technology applied to the embedded reconfigurable sys-

tems. Finally, section VII highlights the main contributions

of this work.

II. RELATED WORK

In this section, the focus of the analysis of previous work

is put on proposals dealing with the verification of hard-

ware components using FPGA devices, rather than putting

the focus on development methodologies. Since the main

contribution of RC-Unity is the provision of a verification

infrastructure to support TDD for FPGA developments, it is

sensible to study how verification activities across abstraction

levels is approached by other researches, overcoming the lack

of on-board verification features of most HLS tools.

Most of the proposed solutions focus solely on the devel-

opment of the FPGA-based testing platform, where the DUT

(Design Under Test) will be deployed, and the communi-

cation infrastructure with the host of the tester [8]–[10].

Therefore, these solutions are highly coupled to the archi-

tecture and tools, which make them difficult to be reused in

other environments that target a different FPGA technology.

Feng et al. propose in [11] the use of emulation platforms that

provide an extra degree of flexibility. These emulation plat-

forms support the acceleration of the DUT, integrated with a

model of the rest of the system, at different concretion levels

(e.g. functional bus model versus cycle-accurate bus model).

RC-Unity, while providing the same functionality of these

verification platforms, effectively abstracts and standard-

izes the interface to the FPGA by means of the utilization

of technology-independent protocols and well-known archi-

tectural solutions (design patterns), ensuring its portability

across different FPGA families.

On top of the specificity of the majority of the propos-

als, there is a lack of support for a true, global verification

methodology since the reviewed works either overlook this

facet or keep the operation of the verification platform at the

lowest level of abstraction. That is, feed the DUT, retrieve the

output and check for differences. Just a few works go beyond

this elementary concept of a testing framework, extending its

functionality and the set of abstraction levels covered. To this

end, it is used, for example, the semantics and high-level
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artifacts of SystemVerilog, SystemC [12] or UVM (Universal

Verification Methodology) [13].

UVM establishes a verification framework with a clear

separation between the generator of the input test vectors

(stimuli) and the verification environment, that is composed

by a variety of artifacts, whose aim is to drive the verification

process. This separation of roles allows, for instance, the co-

simulation of designs at different levels of abstraction since

the interface between the DUT and the rest of the testing

infrastructure remains stable. Despite the complexity and

lengthy set-up time of a fully-compliant UVM environment

(one of the principal criticism to this approach) and the depen-

dency on the expertise of the verification engineer (who has

to be skilled in this technology), some works such as [14],

[15] propose in-hardware verification environments inspired

on the principles of UVM. Podivinski et al. introduce in [14]

the automated generation of the verification environment,

an interesting feature which is also supported by RC-Unity.

In order to ease the burden of a solution based on UVM

for FPGA designs, some works such as [16], [17] foster the

reutilization of as many of the components of the platform

and the standardization of the verification environment to

reduce the developers’ effort. Reutilization of C tests through

the whole UVM verification flow, at any abstraction level,

is proposed by Edelman et al. [17] as a way to avoid ‘‘hard to

understand’’ artifacts (e.g. randomized sequences) for inex-

perienced UVM practitioners. RC-Unity also advocates the

principle of reusability as a means to pave the way to decrease

the FPGA verification complexity and shorten the verifica-

tion cycle.

Regardless the different approaches followed by the above

mentioned works, the DUT is the minimum introspection

level possible during the verification process. Therefore, it is

common to see the DUT as a black box. This constraint

leads to a limited visibility of what is happening inside the

component. If everything runs smoothly, there is no need

to see further. However, in the case of a mismatch between

the output and the expected result, engineers are hands-tied

and no tools are provided to amend this situation. In order

to increase the visibility of the DUT internals and provide

engineers with better means to enhance the debugging capa-

bilities, Curreri et al. present in [18] an HLS technique

to efficiently support in-circuit assertions. In this sense,

RC-Unity provides the ability to check internal blocks/

functions of a DUT.

III. FPGA DEVELOPMENT FLOW WITH HLS

HLS technology supports a Specify-Evaluate-Refine (SER)

design methodology, targeting the development of acceler-

ators or application-specific processors. Through automa-

tion, HLS-based development tools ease the transition from

high-level models, describing the behavior of the component,

to low-level or implementation models.

The engineer only deals with a specification of the func-

tionality written using a High-Level Language (HLL) such as

C or C++. This specification is tuned and optimized until the

design requirements are met after several iterations. To this

end, the engineer makes it use of the simulation data and

resource usage and latency estimation reports produced by

the tool.

The verification of the design takes place at three points

during the design flow:

A. PROCESSOR/ACCELERATOR LEVEL: SOFTWARE

SIMULATION

Along with the model of the component (i.e. the functionality

to be accelerated and deployed in the FPGA), a functional

verification must be performed and, hence, a set of tests are

defined for such purpose. At this level, the verification takes

place in the software domain and is focused on the correctness

of the behavior, rather than the fulfillment of the timing or

resource requirements. This way, engineers get good support

that help them to check the exactness of the output generated

by the model of the component, following a known set of

input stimuli. The reference data set is usually generated

through the simulation of an executable reference model also

called golden model. Software simulations are fast, but they

cannot provide information about specific hardware domain

aspects such as timing.

B. RTL/LOGIC LEVEL: CO-SIMULATION

Next, the verification of the RTL model is performed through

co-simulation. HLS-based development frameworks usually

provide the necessary support to allow mixed simulations

in order to check for the correctness of the generated code.

To this end, the description of the component at logic level

(VHDL/Verilog) is instrumented with an adapter that is also

generated in an automatic way. This adapter is written in

a System-Level Design Language such as SystemC, with

capabilities to model both hardware and software, becoming

a bridge between domains. Thus, the RTL model can be

exercised with the same set of input stimuli provided by the

software test bench developed in the previous step, and the

outputs can be read in the same way. However, RTL sim-

ulations are slow though they provide accurate estimations

regarding the latency and throughput of the solution.

C. FPGA/CIRCUIT LEVEL: ON-BOARD VERIFICATION

Finally, the RTL model is synthesized and the output is

integrated with the rest of the components in the system.

The synthesis process is performed by the tools provided by

the vendor, and depends on the particular FPGA technology.

The result is a programming file called bitstream that is

used to configure the FPGA device. Unlike the previous two

steps, there is no direct way to bridge the test bench and the

hardware implementation in the FPGA device.

D. VERIFICATION CHALLENGES OF HLS-BASED DESIGNS

The previously introduced HLS design flow rises several con-

cerns regarding the verification of heterogeneous embedded

systems using FPGA devices.

Nowadays, HLS tools provide an estimation of

hardware-specific timing parameters in early stages of the
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FIGURE 1. Trade-off between accuracy and simulation effort.

design flow. However, the accuracy of the results is low and of

little help for engineers who should approve the model of the

component upon the imprecise information provided by the

tool. The functional verification of the system at behavioral

level (HLS model in C or C++, for example) is performed

using a software model that lacks of any reference to the

time domain. On the contrary, at RTL/logic and FPGA/circuit

levels engineers can get reliable, cycle-accurate information

regarding the behavior of the design intent. Also, on-board

verification has an advantage over RTL-based verification

that goes beyond the quantitative plane; some hardware bugs

are not exposed during simulations and can only be detected

once the implemented design is deployed and tested in a

real environment/device. Therefore, on-board verification is

faster and more precise.

However, verification process using hardware prototypes

demand an extra effort due to the need of a testing infras-

tructure which must be developed specifically for each

design, hardly reusable from one project to other (verification

reusability challenge). This work aims to ease the burden of

the verification activities at on-board level; the only level not

supported by current HLS tools and design flows such as

Vivado HLS suite from Xilinx, enabling the highest accuracy

while keeping to a minimum the human intervention (see

Figure 2).

It is worth to highlight a second defiance associated with

the nature of the established co-design flows for the develop-

ment of FPGA components using HLS technology. A design

model undergoes a series of transformations and refinements

until the intent is implemented at circuit level. Each step

in this process is devoted to capture different characteristics

of the system and makes it use of a complex mixture of

languages and models of computation for such end (veri-

fication correctness challenge). Even though current HLS

development frameworks automate the generation of code to

move from one abstraction level to other, such code must be

verified at each step due to the absence of formal methods that

ensure the correctness of such transformations (verification

efficiency challenge) [19].

IV. TOWARDS TDD FOR RECONFIGURABLE HARDWARE

The proposed verification framework, RC-Unity, allows both

time and functional introspection of hardware components,

FIGURE 2. RC-Unity workflow.

modeled and synthesized by means of HLS tools. The key

feature of RC-Unity is the automatic (i.e., no additional action

is required from the verification team) generation of the

HW/SW infrastructure. Therefore, there is no need to write

a single additional line of code or develop extra hardware

infrastructure when the verification team moves down to the

board level. On top of that, the test suite intended to check the

correctness of the functional model can be used to validate

the final implementation on the FPGA.

This fact enables the use of RC-Unity to apply Test-Driven

Development (TDD), a well-accepted practice in software

industry, to the design of embedded systems. Embedded sys-

tem design frequently implies the development of custom

processors or accelerators (using, for example, a reconfig-

urable logic fabric) that will be later integrated in the final

platform. Hence, it is interesting to explore the utilization

of TDD during this process and benefit from the gain in

productivity [5], quality [6] and high test coverage [7] as it

has been proven in the software realm.

Figure 2 illustrates the workflow to be followed by the user

of RC-Unity, identifying the manual (user intervention) and

automatic steps, together with the principal inputs and outputs

to/from the individual processes. The proposed workflow is

high-level and generic enough to be easily retargeted to dif-

ferent vendor-specific HLS toolchains as long as they provide

basic functionality such as RTL synthesis, co-simulation and

FPGA bitstream generation. Only the scripts that automate

the generation of the RC-unity stubs and virtual twins (step

four), and the board-specific project (step eight) must be

revisited. Also, minor changes should be required by the

RC-Unity Infrastructure components in order to be tailored

to the particular features of the target FPGA technology

(e.g. HW/SW interfaces, vendor-specific FPGA architec-

tural elements, etc.). In this work, the RC-Unity verification
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framework has been implemented for the Xilinx ZynQ

SoC-7000 architecture and, therefore, the automation scripts

and components have been developed to suit Xilinx technol-

ogy and Vivado toolchain.

Firstly, and as it is established by the TDD paradigm,

theUnit Testsmust be defined. Unit Tests are key in RC-Unity

design flow since they are the input to the three verification

processes corresponding to the three verification checkpoints

established during the development flow. As it can be seen

in the picture, the Unit Tests directly feed (dotted line in

Figure 2) Functional, Co-simulation and On-board steps,

without modifications or adaptations. This is the major

advantage of using RC-Unity, developers do not have to

revisit the definition of the tests or hand-write custom soft-

ware and hardware infrastructure to make the Unit Tests

compatible with the languages and tools necessary to perform

the verification at an specific abstraction level during the

design process. In this work, we rely on Unity [20] testing

framework to guide this task. An extension of the base set of

Unity pragmas (RC-Unity pragmas) is proposed with the aim

to check timing requirements.

Therefore, TDD fosters the use of unit tests, which are the

main core of the development process. Unit tests have several

characteristics that must follow a designer to write a robust

testbench. These attributes are known as F.I.R.S.T. princi-

ples [21], which are also met by the unit tests written with

RC-Unity.

• Fast: Running tests fast enough to not be a practical

problem for developers.

• Independent or Isolated: To avoid any dependence on

other tests. One test does not set up the next test.

• Repeatable: The test must be repeatable. It must return

the same result when it is run in loop.

• Self-validation: Test must return a Boolean result (pass

or fail), without subjective considerations detecting if

passed or not.

• Timely: Unit tests should be written just before the

production code, preventing bugs.

Listing 1 shows an example of how the unit tests look like

for a case study; the development of an accelerated version of

the HOG (Histogram of Oriented Gradients) feature extractor

[22]. The HOG algorithm is widely used in computer vision

and image processing for object detection, particularly suited

for human detection. The algorithm performs the operation

in different steps, being the subject of the unit tests the verifi-

cation of the vector normalization phase (l2-norm function).

Each unit test in Listing 1 aims to check for the correctness

of one of the three tasks that the l2-norm function comprises,

namely: (1) sum of the square root of each pixel; (2) cal-

culation of the scaling factor; and (3) scale of the pixels.

Unit test code is clean and easy to write, by means of a

set of assertion macros. It is worth introduce the RC-Unity

Time Extensions (see subsection V-A) which allow to test

whether a specific functionality executes in a delimited num-

ber of cycles. In this example, the l2-norm algorithm must be

Listing. 1. Test cases for l2-norm algorithm.

completed within 487 cycles: no more than 200 cycles for the

first function (line 10 of Listing 1), between 30 and 40 cycles

for the second (lines 18 and 19) and no more than 250 cycles

for the last one (line 35).

Once the unit tests are defined, the implementation of

the HLS models (step 2 in Figure 2) for the three com-

ponents (i.e. sum_hist_pow, scale and mult_scale) must be

developed (see Figure 3) using the syntax and semantics

of the chosen HLS framework. After this step, Functional

Verification of the design can be completed. If no errors are

detected, verification at RTL level must be accomplished.

To this end, RTL Synthesis and the generation of the Co-sim

Stubs must be done beforehand (steps 4 and 5, respectively).

The former is performed by the vendor tools, whilst the

latter is carried out by the RC-Unity tool c2UTAdapters. For

each function under test, c2UTAdapters tool generates the

SystemC stub that bridges the unit test (written in C) and the

application/algorithm RTL model (VHDL or Verilog). These

stubs are in charge of interpreting the stimuli generated by

the unit tests, exercising the Design Under Test (DUT), and

the outputs from the RTL model. Again, no action from the

developer is needed.

Listing 2 shows the report generated by RC-Unity

after the verification at functional (simulation) and logic

(co-simulation) abstraction levels. In both cases, it is only

displayed information about the final status of the tests

(i.e., PASS or FAIL).
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FIGURE 3. HLS models of the l2-norm steps.

Listing. 2. Report for l2-norm functional and RTL verification
checkpoints.

After a successful Co-simulation (step 6 in Figure 2) of

the RTL model, the component is ready to be deployed on

the prototyping platform and undergoes the on-board verifi-

cation process. The component is instrumented in order to be

integrated in the RC-Unity verification framework at imple-

mentation level. Some of the elements are generic, and are

available through a library, and some are specific to the test

bed and are automatically generated by the before-mentioned

c2UTAdapters tool. Thus, the generation of the FPGA bit-

stream (step 7 in Figure 2) takes these three inputs (i.e., RTL

model, FPGA stub and RC-Unity instrumentation compo-

nents) and produces the hardware side of the on-board test.

The software side comprises the same Unit Tests written

at the beginning of the workflow and the On-board Vir-

tual Twins functions. Such virtual twins stand for the actual

implementation of the component in the FPGA, exposing an

identical functional interface to the Unit Tests. In this sense,

it ensures the reusability of the test bench up to the physical

implementation.

The result of the On-board verification (step 8 in Figure 2)

is another report with detailed information about execution

times. Listing 3 shows an example, displaying not only infor-

mation about the correctness of the output but the compliance

with the timing requirements after the execution of the test.

In this example, for test_scale and test_mult_scale the val-

ues of the latency, which are measured directly in hardware

by RC-Unity, proved to be within the specified ranges, but

for test_sum_hist_pow the actual execution time exceeds the

current limit.

As the reader can notice, the information is displayed in a

consistent style, independent of the design phase. Moreover,

designers do not need to check manually, whether the test

Listing. 3. Report of l2-norm with errors (on-board verification).

passed or not, so the Self-Validating F.I.R.S.T. principle is

fulfilled.

This section sketched the workflow supported by our

RC-Unity framework inspired by the TDD philosophy,

in which the design of the tests to be passed are the core of

the process. This way, and thanks to the automatic generation

tools and infrastructure components provided by the proposed

solution, it can be faced the development of complex systems

in small, fast and safe steps. No extra effort is asked from

hardware architects when it comes to the verification of the

design at board level. On top of that, cycle-accurate results are

obtained easily which allow the improvement of the optimiza-

tion loops since decisions are made based on actual timing

measurements.

V. RC-UNITY: A HARDWARE TESTING FRAMEWORK

As an answer to the before-identified restrictions and chal-

lenges concerning the verification of FPGA-based projects,

we propose an extension ofUnity [20] software testing frame-

work for embedded systems that rely on reconfigurable logic

devices. RC-Unity supports unit testing of hardware accel-

erators in an easy, straightforward way, based on two main

pillars: (1) the utilization of the same test bench regardless

the development stage and; (2) the automation of the on-board

verification path downwards the prototyping platform.

To achieve this twofold objective, it was necessary to

enrich both the syntax and semantics of Unity to incorpo-

rate concepts typical from the embedded systems such as

the verification of timing restrictions. Also, an standardized

hardware and software verification infrastructure is proposed

to isolate the specific model of the component under test

from the testing environment. Thus, the establishment of a

predefined set of mechanisms and communication protocols

enables the automatic generation of the necessary bridging

artifacts across abstraction domains (i.e. functional, RTL and,

implementation). Next, we provide the reader with an insight

of the main concepts of our RC-Unity proposal.

A. RC-UNITY TIME EXTENSION

To enable time analysis, Unity framework [20] has been

extended with new features that allow: (1) the unit test to

interact with the software and hardware components of the

verification infrastructure and; (2) to report to the devel-

oper information related to the execution time of the test

cases. Table 1 lists the set of macros available in RC-Unity.
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TABLE 1. RC-Unity macros.

These extensions have been written in ANSI C, which makes

it fairly portable across unalike platforms such as 8-bit micro-

controllers or 64-bit processors, taking advantage of theUnity

capability to extend its functionality and adapt the framework

to the particular requirements of the project.

Briefly, it is detailed the role of each macro.

RCUNITY_RESET macro sets the testing environment to

a well-known initial state and RCUNITY_CONF_TIMER

configures a timer that establishes the operation time of

the component under test. RCUNITY_START activates the

component, starting an internal counter and waiting for

the component to complete its operation, unless a limit of

time had been established using RCUNITY_CONF_TIMER.

By default, it is measured the time for an operation taking

as the reference the first read operation (start time) and

the first write operation (stop time) issued by the com-

ponent. This behaviour can be modified if necessary; the

RCUNITY_CONF_SKIP_INPUT and RCUNITY_SKIP_

OUTPUT macros configures the moment the begin and end

events are captured to start/stop the counter. Last but not least,

the macro TEST_ASSERT_TIME compares the elapsed time

(retrieved from the platform) against the value of the macro

parameter which expresses clock cycles. Several comparison

operators are available in RC-Unity such as EQ (equal than),

LT (less than), GT (greater than), LE (less or equal than)

and GE (greater or equal than). Configuration macros are

lazy operations, they take effect after the RCUNITY_START

macro is executed.

Listing 4 shows the C implementation of the

RCUNITY_RE SET macro for an embedded OS based

on GNU/Linux. Such macro operates the Test Manager

component (see subsection V-B), which is abstracted by

the operating system as a memory-mapped peripheral that

can be accessed from software through the use of the

POSIX-compliant mmap primitive (lines 6-16 of Listing 4).

Once a pointer to thememory region, where the Test Manager

peripheral is mapped, is obtained the software writes (line

18 of Listing 4) ID_FUNC_RESET on register 0 × 00

(REG_OPERATION), indicating the requested operation (a

reset, in this case).

The rest of the extended macros listed in Table 1 fol-

low the same pattern as the RCUNITY_RESET macro

and those macros that contain parameters include some

Listing. 4. C implementation of RCUNITY_RESET macro.

Listing. 5. Example of test case (factorial) using RC-Unity.

writings after the identifier word, following the same

operation that shows line 18 of Listing 4. Contrary,

the TEST_ASSERT_TIME_XX macros do a reading instead

of a writing operation to get the time elapsed between the

start and the end of the operations done by the hardware

component that is being verified.

In order to illustrate how easy and straight forward is the

writing process of unit tests in RC-Unity, a test case for a

hardware component implementing the factorial function is

shown in Listing 5. In this example, the goal of the test case is

twofold: on the one hand, to check that the result produced by

the component is correct (line 11 of Listing 5); on the other

hand, to assure that the time taken by the factorial function
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FIGURE 4. RC-Unity verification framework.

does not exceed a specific number of cycles (line 13 of

Listing 5).

When performing the verification of the design at

FPGA/Circuit level (on-board verification), the hardware

infrastructure needs to be configured beforehand. RC-Unity

provides a neat way to accomplish this task through the

insertion of the necessary RC-Unity extension macros (lines

7-10 of Listing 5). By using these extensions, the test case

becomes fully reusable, without any changes, through the

whole design process, and makes it Repeatable and Indepen-

dent (F.I.R.S.T. principles) of other test cases; both principles

are fulfilled because the reset pragma sets the DUT in a

well-known state, removing the configuration and/or data

stored in internal memories of previous test cases.

B. HW/SW VERIFICATION INFRASTRUCTURE

In order to add value to standard HLS-based design and

verification flows, RC-Unity specifies a testing infrastructure

that allows the reutilization of the same test suite throughout

the entire lifecycle of a HLS project.

Figure 4 represents the main elements of the proposed veri-

fication framework. The different elements of the framework

are either pre-defined, customized (depending on the stage

of the design flow) components available to the engineer or

generated in an automatic way.

The verification framework comprises the following soft-

ware entities: (1) the set of Unit Tests that make it use of

the RC-Unity extension macros (see subsection V-A); (2) the

Test Runnerwhich calls upon each unit test case sequentially;

(3) the co-simulation and FPGA virtual twins (see subsec-

tion V-C. On the hardware side, the FPGA bitstream includes

the component to be verified surrounded by a tailored, auto-

matically generated on-board stub and an instance of the Test

Manager, from the RC-Unity hardware infrastructure library.

Next, we proceed to explain the principal features of the

above mentioned components and their role during the dif-

ferent steps of the verification process.

To execute the unit tests, a Test Runner is automatically

generated using the Ruby script provided by Unity frame-

work. The Test Runner is a C file that contains the main

function that launches the verification process. The code of

the Test Runner does not change, regardless the abstraction

FIGURE 5. RTL/Logic level implementation of the virtual twin function
(factorial function example).

level of the specification model of the design. To begin the

execution of a test, the Test Runner makes a call to the

top level function of the test. For example, test_Natural in

Listing 5. The actual implementation of the so called Design

Under Test (DUT) depends on the step we are in the devel-

opment process. Thus, we may have a functional software

model of the DUT, an RTL model and a bitstream physically

deployed on the FPGA. In order to make the Test Runner

independent on the implementation details of theDUT, it does

not interact directly with the DUT. The only exception is

when the functional verification takes place since both (Test

Runner and DUT) are defined using C programming lan-

guage. By contrast, for co-simulation and on-board verifica-

tion, the Test Runner interacts with the DUT through the RTL

and FPGA virtual twins, respectively.

A virtual twin is C/C++ code generated in an automatic

way that stands for the actual implementation of the DUT.

It exposes exactly the same interface as its functional coun-

terpart (see implementation of the factorial virtual twins

in Figures 5 and 7), so the Test Runner is detached from the

abstraction level, language or technology employed to model

or implement the DUT at any given design step (see Figure 4).

The virtual twin knows how to trigger the execution of

the actual DUT by using the services and API provided by

the platform. Invocations from the Test Runner (C or C++

software calls) are conveniently translated and redirected,

depending on the verification stage. Therefore, as it can been

seen in Figure 4, the virtual twin at RTL/Logic level exercises

the VHDL/Verilog DUT logic model using the SystemC

instrumental code generated by Vivado HLS tool. Neverthe-

less, the virtual twin at FPGA/Circuit level converts the DUT

invocations into AXI bus transactions at hardware level.

The Test Manager is a hardware component that interme-

diates between the Test Runner and the FPGA implementa-

tion of the DUT. It actually implements: (1) the time-related

functions listed in Table 1; and (2) the functionality related

with the configuration, execution and control of the hard-

ware verification environment. By identifying and embedding

this functionality into an independent component, RC-Unity

decouples the testing environment from the DUT. This fact

facilitates the portability of the testing framework to scenarios

involving different languages and technologies.
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The Test Manager exposes an standardized interface and

protocol to both the FPGA virtual twin and the FPGA imple-

mentation of the DUT. The FPGA virtual twin translates

either commands (RC-Unitymacros) or data (stimuli) to AXI

bus transactions that are received by the Test Manager. Then,

the Test Manager interprets such transactions and proceed

accordingly.

The DUT is instrumented (on-board stub) to provide it

with the capability to interact with the Test Manager (the

real interface to the rest of the verification environment).

A custom, automatically generated VHDL wrapper imple-

ments the necessary functionality: (1) interpretation of the

commands issued by the Test Manager; (2) gathering of the

DUT execution statistics. The on-board stub also interfaces

with the DUT at signal level in order to control (i.e. start,

stop) and monitor its operation.

C. INSTRUMENTATION: STUBS AND VIRTUAL TWINS

RC-Unity has been specifically conceived to help in the

verification tasks of systems that make it use of recon-

figurable technology to implement hardware accelerators.

Nowadays, leading FPGA manufacturers deliver embedded

platforms that combines a reconfigurable logic fabric with

standard hard processors (FPGA-SoCs), also known as Pro-

grammable Logic (PL) and Processing System (PS), respec-

tively. Such hybrid devices exploit the diversity offered by

multiple processing technologies, allocating computing tasks

to the cores whose technology better fits the requirements

of the target application (e.g. high-performance, low-power,

etc.).

In our approach, the unit tests are always executed on the

PS side, whilst the DUTwill bemapped on the PL. Suchmap-

ping leads to certain interfacing challenges between HW-SW

artifacts that are solved by means of an RMI (RemoteMethod

Invocation) approach [23]. In this sense, RC-Unity offer a

cross-domain solution that bridges the test environment and

the DUT in a transparent way, despite the fact the latter

might be modeled or implemented using different specifi-

cation languages depending on the abstraction level. As it

was mentioned before, RC-Unity delegates this responsibility

to the stubs and virtual twins, which both are automatically

generated.

The generation process of these instrumentation elements

is accomplished by means of the application of the RMI

paradigm [24]. RMI was initially proposed in networked dis-

tributed systems as a mechanism to allow interaction between

components deployed physically distant. Themain advantage

of RMI is that it provides orthogonality between functionality

and communication; any method invocation must take place

between special components that provide the endpoints of

the communication with the illusion that they are interacting

directly.

This separation of concerns (functionality and commu-

nication) is applied in RC-Unity so as to achieve effective

decoupling between the different components in the testing

framework. Each module has a functionality assigned which

constitutes its interface. When this functionality is known

beforehand, RC-Unity implements a static version of the

stubs and virtual twins such as it is the case of the Test

Manager. But, when the functionality to execute depends on

the design, as it is the case of the DUT, RC-Unity provides

the designer with an interface compiler (the c2UTAdapters

tool) that automatically generates the stubs and virtual twins

taking as the sole input the functional interface definition of

the components.

Figure 5 shows the virtual twin of the factorial DUT

for co-simulation whereas Figure 7 depicts the virtual twin

implementation for on-board verification purposes. The code,

generated by the c2UTAdapters tool, is ready to be used

directly either in a Vivado HLS project or executed by the

Processing System of the FPGA-SoC.

The signature of the factorial function interface specifies a

32-bit integer as the input and returns another 32-bit integer.

As it can be observed, the factorial virtual twin maintains the

original signature of the DUT (lines 1 and 2 of Figures 5

and 7) so it can be invoked directly by the unit test, just as

it is done during software verification (line 11 of Listing 5).

1) RTL/LOGIC VIRTUAL TWIN

When it comes to co-simulation, Vivado HLS will generate

the necessary SystemC glue logic to inject stimuli to the RTL

model of the DUT produced during the synthesis process. The

RTL/Logic virtual twin prepares the input arguments (mar-

shalling) as they are expected by the co-simulation stub,

which decodes (unmarshalling) the data and exercises the

actual implementation of the DUT. Therefore, the virtual twin

plays the role of the proxy and the Co-Sim stub behaves as the

skeleton, attending to the architecture defined by the before

mentioned RMI paradigm.

The DUT HLS model is instrumented through the def-

inition of two channels; the input channel is used to feed

the co-simulation stub (wrapperDUT function in line 8 of

Figure 5) with the arguments serialized following a common

packet format, whilst the output channel is used to read the

result obtained from the DUT. The result is also serialized,

following the same marshalling rules defined by RC-Unity.

Lines 4 and 5 of Figure 5 define the input/output channels

using the Vivado HLS class hls_stream, and lines 6 and

7 build the RMI message. In the example represented in

the figure, the invocation message consists of two 32-bit

words. The first one is the function identifier (necessary

since the co-simulation stub can be the front end for various

DUT) and the second one is the number of stimuli. Then,

the actual factorial function is executed (line 8 of Figure 5).

The marshalling and unmarshalling mechanisms are much

more complex than those represented in this example, since

the processing of the packet depends on multiple parame-

ters such as the datawidth of the communication channels,

alignment, number and type of the input/output arguments,

etc. In this case, the interpretation of the result does not need

further processing, and the data pop out of the output stream
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TABLE 2. Latency statistics and timing accuracy errors of CHStone kernels.

Listing. 6. Example of RTL/Logic stub (factorial).

is directly returned by the factorial RTL/Logic virtual twin to

the unit test (line 9 of Figure 5).

2) RTL/LOGIC STUB

The RTL/Logic stub is the main responsible for execut-

ing the logic that implements a particular function. To do

this, the stub parses the header, which is sent by the test

case through the din port, and stores the identifier of the

function that must be invoked and together with the size

of the data it expects to be received in a struct (line 4 of

Listing 6). If the identifier does not match with a known

function, the stub will discard as many 32-bit words as the

indicated by the size field (lines 12 to 15 of Listing 6). On the

contrary, if the identifier is known, the stub will call upon

the corresponding function (line 8 of Listing 6). Before the

function call, the stub extracts the input parameters that are

required by the function. In our example, the stub gets the

unique parameter needed by the factorial function (n) through

the readParameters_Factorial function, which is

automatically generated from the signature of the factorial

function (see line 7 of Listing 6).

Once the result of the function is ready, the stub builds the

response message that is sent through the dout port. Such

response includes a small header that contains the identifier

of the call function and the size of the result expressed in

32-bit words (lines 9 and 10 of Listing 6, respectively).

In this sense, RTL/Logic stub provides the mechanisms

to ensure the Timely F.I.R.S.T. principle. Unlike soft-

FIGURE. 6. RC-Unity on-board verification environment.

ware, hardware designs must include a mechanism to dis-

card call invocations that have not been implemented yet.

Thus, the function identifier, included in the header, allows

to decide whether there is code to manage it (lines 12 to 15 of

Listing 6) or not (lines 6 to 11 of Listing 6).

3) ON-BOARD VERIFICATION INFRASTRUCTURE

The last step in the design flow of an FPGA-based accelerator

is the implementation of the RTL model. This process, called

synthesis, generates the bitstream, that is, the programming

file of the FPGA. Only then is possible to test the DUT under

real conditions; this process is also known as on-board veri-

fication. This type of verification has two main advantages:

(1) it saves time since hardware execution is faster than RTL

simulation; (2) it increases the accuracy of the results (see

Table 2 in section VI) and; (3) since it is the final hardware

implementation, it may unveil any potential inconsistencies

introduced by synthesis tools, as in the case of interface

protocols at signal level.

In this work, a prototype of the proposed verifica-

tion environment has been developed for the Xilinx ZynQ

SoC-7000 architecture. Such architecture combines a dual

ARMCortex A9 processor in the PS part and aXilinx 7-series

FPGA in the PL side. In this sense, Figure 6 shows how the

differentRC-Unity entities aremapped on hardware resources

in the FPGA System-on-Chip. In this case, the PS is respon-

sible for executing the RC-Unity framework and the unit

tests on top of a Linaro Ubuntu distribution (a GNU/Linux-

based embedded OS), whereas the PL hosts the synthesized
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Test Manager and the DUT, together with its communication

adapter (on-board stub).

Both, the PL and PS are connected using AMBA

(Advanced Microcontroller Bus Architecture) technology

that enables the transfer of data between them. Thus,

the Test Manager component is connected to an AXI bus

and receives messages that encapsulate either commands

(RC-Unity macros) to control and monitor the verification

process, or data (stimuli) to exercise the DUT. Although the

depth of the internal memory of the Test Manager component

is customizable at design time, the data transfer process is car-

ried out through an off-chip memory (DDR), in which stimuli

and execution traces are stored. In this sense, test cases write

the stimuli in a reserved region of the DDR, whilst the Test

Manager reads such stimuli to exercise the DUT. The output

of the DUT can be also stored in the DDR by the Test Man-

ager, and then the test case reads the output from the DDR

to compare it with the golden values. Thus, the Test Manager

plays the role of a DMA with additional capabilities, such as

measuring the time elapsed to perform a task by the DUT.

It is worth mentioning that designers must allocate enough

memory space in the DDR for the stimuli and output values.

As in the case of the RTL/Logic stub, the on-board stub

is automatically generated by the c2UTAdapters tool. Also,

the communication between the FPGA virtual twin and the

Test Manager follows the same RMI principles as the ones

described for the communication between the co-simulation

virtual twin and the RTL/Logic co-simulation stub.

Figure 7 represents the actual implementation of the FPGA

virtual twin for the factorial function. It is worth pointing

out that this version of the virtual twin maintains the same

signature (lines 1 and 2 of Figure 7) than the one generated

for the RTL/Logic level (see Figure 5). Therefore, the Test

Runner does not have to change its behavior and the unit test

has not to be re-written, achieving one the goals set in this

work. Thus, the virtual twin implementation for on-board ver-

ification purposes maps the input/output channels of the DUT

to memory, accessible by the user process (line 5 of Figure 7).

In fact, it is the Test Manager who holds a register of the

DUT channels mapped to memory, and the one that redirects

the traffic to the DUT, behaving as a transparent bridge. This

is implemented this way because the on-board Test Manager

accounts for specific functionality (i.e. gathering statistics)

that requires awareness of the transactions between the testing

environment and the DUT. The virtual twin uses the pointer

to memory as a read/write stream, just like the interface

defined at RTL/Logic level where the hls::stream abstraction

is used. In both cases, the communication stub builds the RMI

message that, in the end, will be translated into transactions

over an AXI bus (lines 6-8 of Figure 7).

VI. RC-UNITY IN PRACTICE: VIVADO HLS FRAMEWORK

USE CASE

In order to demonstrate the strengths and potential of

RC-Unity, our verification framework has been tested for

a collection of C-kernels defined by the CHStone bench-

FIGURE. 7. FPGA/Circuit level implementation of the virtual twin function
(factorial function example).

mark [25]. This benchmark suite comprises a selection of

algorithms from various application domains, aiming to set

a comparison framework for HLS tools.

The architecture of the proposed framework can be easily

adapted to different FPGA-SoC platforms and toolchains,

due to its modularity and the use of design patters such

as RMI (that isolates the technology-dependent components

and enables the automatic generation of the low-level imple-

mentation routines). Nevertheless, in this article it has been

selected the Vivado HLS tool for evaluation purposes. Free

licensing and a complete workflow down to the board level

were key in this choice. It is also worth mentioning that the

comparison with other commercial or academic HLS tools

is, in many cases, complex if not impossible. For example,

tools such as LegUp only performs RTL synthesis and, then,

it relies on third-party tools to simulate RTL and generate

the bitstream out of the VHDL or Verilog code. So, not

functional or RTL/Logic co-simulation is supported which

handicaps the possibility to establish a fair comparison. In this

case, it would be necessary to perform the necessary inter-

face adaptations to make it compatible the semantics of the

RTL interface generated by LegUp with the one defined by

RC-Unity. This way, the DUT would be compatible with the

rest of the infrastructure.

The aim of this section is to show the reader a glimpse

of the main capabilities of RC-Unity when it comes to

the improvement of the verification process of FPGA-based

developments (i.e. reduced verification times and better accu-

racy) for a specific use case such as Vivado. In future work,

RC-Unity support to other tools or HLS frameworks could be

extended. It would be only necessary to update the backend

of the c2UTAdapters to include the implementation details

for a specific platform or technology that is realized by the

different virtual twins and stubs, whilst the rest of the frame-

work components (e.g. Test Manager or unit tests) would

remain unmodified. This would be the case of CatapultC,

for example. Since it does have support for functional and

mixed simulations but not for on-board verification it would

be necessary to rewrite some parts of the backend.

Table 2 shows a comparison of the simulation and exe-

cution times for the twelve kernels present in CHStone. For

each kernel, a variable number of tests have been conducted
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TABLE 3. Latency and timing accuracy errors of dfsin kernel.

(second column). The simulation time has been obtained by

using the co-simulation feature that is present in the Vivado

HLS tool. The actual execution time has been measured by

means of our RC-Unity on-board verification framework.

For each kernel, the average simulation and execution

times have been calculated, as well as the minimum and

maximum difference observed between co-simulation and

on-board testing (represented in absolute and relative terms

in Table 2) when comparing to the latency measured in hard-

ware. Comparing both strategies, it can be conclude that the

results obtained using co-simulation can lead in certain cases

to erroneous design decisions due to the actual difference

when measuring the latency on-board using RC-Unity.

Noteworthy is the significant error detected for some of the

CHStone kernels, which ranges from 5% to 66%. Focusing on

the dfsin kernel, which is the one with the highest relative

error, Table 3 shows that the error increases with the number

of test cases. It has been observed that Vivado HLS builds a

queue of stimuli, one entry per input to the DUT. The latency

of a single execution is measured starting from the time the

stimuli for such test case is inserted in the queue not when

the processing of the stimuli begin. Therefore, this fact pro-

duces wrong timing profiling, leading the developer to wrong

conclusions. Our solution measures the real time elapsed just

when the stimuli are read by the function that the test case

exercises, and hence, it provides more accurate timing results.

A special mention has to be made for the results of unit

FIGURE. 8. Trade-off between test execution and number of tests.

test adpcm where the unit test with the minimum latency

exposes an error between co-simulation and on-board execu-

tion of 390.91%. In this case, we could not conclude that the

SystemC bridge generated by Vivado HLS tool was respon-

sible for such difference as in the previous two cases. Further

study of the co-simulation infrastructure was not conclusive.

From the point of view of RC-Unity’s role, it is important to

highlight that the proposed framework unveiled such situa-

tion, demonstrating that the designer should not rely 100%

on the estimations provided by the tools. So, this is a repre-

sentative case of accuracy improvement using our approach.

One of the aims of this work is to reduce as much as

possible the FPGA-in-the-loop verification time. This is a

key requirement to reduce the wait times and, therefore make

it sensible the application of a TDD approach on reconfig-

urable hardware. In this sense, the generation of the bitstream,

the programming file of the FPGA, is a costly task in terms

of time and energy, this work fosters the reuse of those parts

of the RC-Unity FPGA infrastructure that do not change from

one verification project to other.

Thus, the DUT is the only part of the project that has

to be synthesized, reducing significantly the overall time

spent by one iteration of the verification loop. Figure 8

compares the co-simulation (RTL/Logic level) and on-board

(FPGA/Circuit level) verification times for the DSP kernels

of the CHStone benchmark that have enough test cases to

analyze timing trends. The co-simulation time comprises the

simulation of the C model (functional verification), RTL

generation and test execution, while the on-board verification

time includes circuit implementation (RTL generation and

synthesis) and test execution. The chart shows that the cost

of verification at RTL/Logic level (co-simulation) grows with

the number of tests, reaching a point that makes it more costly

than verification at FPGA/Circuit level (on-board). It must be

recalled that, when a new test case is added, co-simulation

must perform the generation of the RTL model again. This

process entails the instrumentation of the DUT and the gen-

eration of the SystemC stubs, necessary to allow mixed lan-

guage simulation, every time a new test case is added before
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the execution. Contrarily, on-board verification only has to

execute the test cases. The time to generate the bitstream

contributes just once, and it is shared between all the test cases

(i.e. the larger the number of tests, the smaller the impact)

which makes it a more scalable solution. Thus, the Fast

F.I.R.S.T. principle is met; test cases are executed as fast as

possible, taking a small amount of seconds (see Figure 8),

even if there are thousands of unit tests.

VII. CONCLUSION

In this paper, RC-Unity verification framework has been

introduced. RC-Unity is a comprehensive proposal that lever-

ages unit testing of HLS-based hardware modules to ease and

improve the design of embedded systems targeting an FPGA

fabric. To the best of our knowledge, this is the first work

facing the development of an on-board verification environ-

ment that is fully reusable during the whole design cycle,

regardless the abstraction level of the system specification.

Thus, engineers are provided with the tools for generating,

in an automatic way, the necessary HW/SW infrastructure,

saving time and effort. On top of that, RC-Unity enables TDD

to embedded system design, making it possible to import

the multiple benefits of this popular software development

methodology.

RC-Unity provides support to perform both functional and

timing verification; the latter is a specific new challenge,

derived from the nature of real-time and hardware projects.

By means of a technology-independent architecture and the

use of well-known design patterns such as Remote Method

Invocation, RC-Unity offers a multi-domain solution while

maintaining the test suite through the whole project lifecycle.

Thus, the proposed verification framework spans across the

three main abstraction levels, as to the detail in the spec-

ification of an embedded system (i.e. functional, RTL and

implementation/physical).

Finally, automatic generation makes this proposal accessi-

ble and easy to use for both hardware and, specially, software

engineers who do not need to put extra effort to quickly draw

on the benefits of this technology.
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