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STRUCTURE, PHASE TRANSFORMATIONS 

AND DIFFUSION   
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TRANSFORMATIONS IN IRON AND STEEL 
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Despite of the appearance of numerous new materials, the iron based alloys and steels continue to play an 
essential role in modern technology. The properties of a steel are determined by its structural state (ferrite, 
cementite, pearlite, bainite, martensite, and their combination) that is formed under thermal treatment as a 
result of the shear lattice reconstruction γ (fcc) → α (bcc) and carbon diffusion redistribution. We present a 
review on a recent progress in the development of a quantitative theory of the phase transformations and 
microstructure formation in steel that is based on an ab initio parameterization of the Ginzburg-Landau free 
energy functional. The results of computer modeling describe the regular change of transformation scenario 
under cooling from ferritic (nucleation and diffusion-controlled growth of the α phase) to martensitic (the 
shear lattice instability γ → α). It has been shown that the increase in short-range magnetic order with 
decreasing the temperature plays a key role in the change of transformation scenarios. Phase-field modeling 
in the framework of a discussed approach demonstrates the typical transformation patterns.   

Keywords: ab initio, short-range magnetic order, steel, ferrite, pearlite, bainite, martensite, eutectoid. 
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1. INTRODUCTION 

Despite a broad distribution of numerous new 
materials, steel known from ancient times remains the 
main structural material of our civilization [1], due to 
high availability of its main components (Fe and C) 
and diversity of properties reached by a realization of 
various (meso)structural states [2–6]. One can control 
the structural state of steel due to a rich phase diagram 
of iron with several structural transformations at 
cooling from moderately high temperatures ( δ → γ → 
α); the presence of carbon adds carbide phases, 
cementite Fe3C being the most important one.  

Development of the phase transformations in steel 
includes two main types of physical processes, namely 
the crystal lattice reconstruction and redistribution of 
carbon between the phases. Depending on the rates of 
these processes and the morphology of decomposition 
products, metallurgists separate several main types of 
the transformations, namely, ferrite, pearlite, bainite, 
and martensite formation, which follow one another 
with decreasing temperature. All these 
transformations (except the martensitic one) involve 
both shear and diffusion mechanisms, their relative 
importance is changed with the temperature increase. 
The interplay of different types of transformations 
determines the diversity of properties of steel and 
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therefore it is of a crucial importance for our 
understanding of metallurgical processes.  

Regardless of the great practical significance and 
comprehensive experimental study, the mechanisms 
of phase transformations in steel are not fully 
understood. Firstly, there is still no commonly 
accepted quantitative theory that could describe the 
change of the transformation mechanism with 
temperature increase from martensitic (the lattice 
instability γ → α over the entire volume) to ferritic 
(diffusion-controlled nucleation and growth of 
precipitates of α-Fe). Secondly, the properties of steel 
are due to the precipitates morphology, understanding 
of which requires the development of quite a 
complicated kinetics theory of phase transformations, 
which takes into account simultaneously the lattice 
degree of freedom and carbon diffusion.  

Based on state-of-the-art first-principle 
calculations [7, 8] and combining them with the 
previous models [9–11], we have recently proposed a 
consistent model of phase transformations in steel [12, 
13] that includes a generalized Ginzburg-Landau 
functional with ab initio parameterization, and 
nonlinear elasticity equations for the shear 
transformation and diffusion equation for the carbon 
concentration. In the framework of this model it was 
shown that the main factor determining scenarios of 
the phase transformations in steel is the magnetic state 
of Fe and its temperature dependence. The constructed 
curves of the start of ferrite, bainite, and martensite 
transformations (A3, T0, MS) coincided with the 

experimentally known ones with good accuracy, and 
the phase field simulations reproduced the typical 
transformation patterns. In Ref. [14] this model was 
generalized, with taking into account the cementite 
formation, and it was shown that the pearlite colony 
can emerge by an autocatalytic mechanism at 
overcooling below the critical temperature.  

Here we review the earlier obtained and new 
results in the framework of this model. In comparison 
with previous publications, we consider in more detail 
the results of phase field simulation of transformation 
kinetics. Also, we discuss the effect of external 
magnetic field on the curves of transformations 
diagram.   

2. PHASE TRANSFORMATIONS AND 
MICROSTRUCTURE FORMATION IN STEEL  

Fig.1а presents the experimental transformation 
diagram of the Fe-C system, and Fig.1b shows the 
typical microstructures arising during these 
transformations. The boundaries of two-phase regions 
"austenite-ferrite" (A1, A3) and "austenite–cementite" 
(Acm), as well their metastable extensions, - are 
constructed according to data [15–17]. The lines of 
the start of the bainitic (BS) and martensitic (MS) 
transformations is drawn following results in Ref. [18, 
19]. Also, the eutectoid temperature Teutec (~1000K) is 
indicated. 

At high temperatures (T>A3, T>Acm) the fcc 
crystal structure of iron (γ-Fe, austenite) with 

 
Fig.1. (a) Schematic transformations diagram and (b) main scenarios of phase transformations in steel.  The lines A1, 
A3 and Acm are the boundaries of two-phase regions α + γ and γ + θ, as well their metastable extensions below the 
eutectoid temperature Teutec [16, 17]; BS and MS are lines of start of bainitic and martensitic transformations, 
respectively [4, 18]. 
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homogenous carbon distribution is stable. Small 
overcooling below A3, results in diffusion-controlled 
precipitation of ferrite (α-Fe, almost pure bcc iron) 
and the precipitation of cementite (orthorhombic θ 
phase with 25% at. of carbon) takes place below Acm. 
There are several morphological types of ferrite [20]; 
allotriomorphic ferrite is usually located at the grain 
boundaries, whereas the needle crystals of 
Widmanstätten and acicular ferrite form in the bulk.   

If both conditions T<A3 and T<Acm are fulfilled 
simultaneously, austenite usually decomposes into 
alternating lamellae of ferrite and cementite, and the  
interlamellar spacing decreases with overcooling 
temperature, )/(1~ eutecTT  . The resulting regular 
dispersed structure is known as pearlite. The kinetics 
of pearlite transformation includes the autocatalytic 
generation of new lamellae, – usually on the grain 
boundary, – and the growth of the lamellar colony into 
the bulk [6].   

Overcooling below the temperature BS results in a 
bainitic transformation, which develops by 
autocatalytic nucleation and growth of successive sub-
units [4]. In the case of upper bainite (which forms in 
the temperature interval 800K–670K) the ferrite 
platelets with the same crystallographic orientation are 
separated by cementite precipitates. In the case of 
lower bainite, which is formed at a lower temperature, 
the individual ferrite subunits contain the small -
carbide precipitates (usually transforming into 
cementite in the later stages) in addition to the inter-
platelet cementite laths. Presumably, a crucial role in 
the start of bainite transformation is played by a 
temperature of paraequilibrium T0 where the free 
energies of the α and γ phases with the same carbon 
concentration become equal. Temperature T0 was 
introduced in Ref. [21] as a pre-condition for the start 
of bainite transformation by displacive mechanism 
(cooperative displacements of iron atoms). It is 
assumed in [4, 21] that the diffusion is slower than the 
shear transformation and therefore there is no 
redistribution of carbon between the α and γ phases 
during the growth of α phase plates.  

At deeper overcooling (below the start 
temperature of martensitic transformation, MS) the 
diffusionless γ→α lattice reconstruction occurs by 
displacive mechanism, and cementite does not appear. 
Herewith the twinned structure of martensitic plates 
compensates for the elastic stresses accompanying the 
lattice reconstruction. Experimental evidence of the 
existence of two types of martensite, namely, 
isothermal (scenario of nucleation and growth of the 
colony of α-Fe plates with different orientation) and 
athermal (scenario of spontaneous lattice instability 

development over the entire volume simultaneously) – 
were given in [22–25], wherein the first scenario is 
realized at a higher temperature. 

3. CURRENT UNDERSTANDING OF PHASE 
TRANSFORMATIONS IN IRON AND STEEL 

As it accepted now [4], the displacive mechanism 
of transformation plays essential role in realization not 
only the martensitic and the bainitic transformation, 
but in the formation of high temperature structural 
state, such as Widmanstätten and acicular ferrite, as 
well. Thus, understanding of physical mechanisms of 
the lattice instability of fcc (γ) iron is essential part of 
our general view on the phase transformations in steel. 
Two possible mechanisms of γ→α lattice 
reconstruction were proposed, which correspond to 
the Bain (tetragonal distortion) [26] and Kurdjumov-
Sachs (two shear) [27] deformations schemes. Despite 
the fact that the Kurdjumov-Sachs scheme is better in 
corresponding to experiment, the Bain deformation 
(see Fig.2) usually is considered in the most of 
theoretical approaches. Reason for this is due to the 
fact that Bain scheme gives a simplest transformation 
way that captures, however, important transformation 
features. Based on the Bain transformation scheme, in 
Refs. [28, 29] there has been proposed a 
phenomenological model, being further developed in 
Refs. [9, 11], which describes the main features of the 
martensitic transformation, including the formation of 
coherent systems of twin-like domains.  

An overwhelming majority of materials 
demonstrating the martensitic transformation can be 
treated as the Hume-Rothery alloys where a particular 
crystal lattice corresponds to some interval of electron 
concentration per atom [30]. Electronic mechanisms 
of the crystal lattice instabilities for these cases are 
reasonably well understood. They are related to 
enhanced van Hove singularities in the electron 
energy spectrum and to the energy gain arising when 

Fe

C

Fe

C

 

Fig.2. Lattice γ → α reconstruction due to Bain 
deformation. 
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the Fermi energy lies in a pseudogap [31]. In the new 
crystal structure, the geometry of the Brillouin zone 
allows to accommodate all electrons with the essential 
decrease of the total energy. Since the position of the 
Fermi energy is determined by the number of 
electrons per atom, the Hume-Rothery alloys are 
called also electronic phases. Typically, in these 
alloys the transformations are close to the second-
order phase transitions with a very small hysteresis, 
the low-temperature phase being more close packed 
than the high-temperature one. For these alloys a soft-
mode picture of phonon spectra is typical [29, 32, 33]. 

However, the iron-based alloys belong to a group 
of rare materials where the high-temperature phase 
(fcc, γ) is close packed and the low-temperature phase 
(bcc, α) is not. Neither experimental data [34] or 
recent first-principle calculations [35, 36] show soft-
mode phonons in fcc Fe above the start temperature of 
martensitic transformation MS (see Fig.3). The 
question whether a soft-mode in phonon spectra 
appears under cooling, or the mechanism of transition 
is more complicated than for the Hume-Rothery alloys 
and cannot be described in terms of individual phonon 
soft modes, is unclear. The situation looks 
paradoxical: the γ→α transformation in iron was 
historically a prototype of martensitic transitions at 

all, but this case remains still rather poorly 
understood, in comparison with many cases 
discovered later.  

Starting from the seminal works by Zener [37], it 
is commonly accepted that magnetism plays a crucial 
role in the phase equilibrium of iron and its alloys, 
including the basic fact that the temperature of the 
γ→α transformation in elemental Fe is close to the 
Curie temperature of α-Fe, and bcc iron is stable at 
low temperatures (see, e.g, [38, 39]). Moreover, the 
recent first-principles calculations [7, 8, 40] showed 
that magnetic and lattice degrees of freedom are 
strongly coupled in γ-Fe. Therefore, it can be 
expected, the classical martensitic scenario (through 
lattice instability over the entire volume) of the γ→α 
transformation is realized at overcooling below some 
temperature where a strong enough short-range 
ferromagnetic order arises in γ-Fe (see Section 6 for 
farther discussion).  

The mechanism of bainite transformation that 
appears for temperature just above MS remains a 
subject of debate so far [4, 19]. Two competing 
theories (diffusion-controlled growth [41–45] and 
displacive diffusionless nucleation [4, 21, 46]) have 
been proposed to explain this transformation. This 
problem has not been solved until now; perhaps the 
upper bainite formation is a diffusion-controlled 
process and the lower bainite forms via lattice 
shearing, as it was assumed in Ref. [47]. Interestingly, 
in hyper-eutectoid steels the upper bainite is observed 
even at T>T0 [45, 48], where T0 is the paraequilibrium 
temperature at which the free energies of the α and γ 
phases with initial carbon concentration are equal [21, 
49]; that is in clear disagreement with the displacive 
model and allows us to consider the upper bainite as a 
diffusion-controlled nonlamellar eutectoid 
decomposition product. At the same time, the lower 
bainite is always formed below T0 [19]. However, in 
hypo-eutectoid steels the curve of the start of bainitic 
transformation, BS, is lower than T0, therefore the 
thermodynamic possibility of shear transformation 
does not always lead to the formation of upper or 
lower bainite. Thus, the problem which mechanism 
controls the bainite transformation is very obscure.   

The other sophisticated problem is nucleation and 
growth of pearlite colonies, which is a particular case 
of a more general issue of eutectoid decomposition. 
Transformations of this type are also observed in Zn-
Al [50], Cu-Al [51], Au-In [52], Cu-Zn, Al-Mn, Cu-
Sn, Cu-Be, etc., and the precipitates morphology 
(lamellar or globular structure) depends on the type of 
alloy and the position of alloy parameters on the phase 
diagram. Although the pearlite transformation (PT) in 

 

Fig.3. Phonon dispersion curves and corresponding 
phonon density of states of paramagnetic fcc Fe as 
calculated within the nonmagnetic GGA (top) and 
DMFT (bottom) [35]. The DMFT result is further 
interpolated using a Born-von Kármán model with 
interactions expanded up to the fifth nearest-
neighbor shell. The results are compared with 
neutron inelastic scattering measurements at 1428K.   
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steel is studied experimentally in detail [53–55], the 
process of lamellae colony formation remains unclear.  

The well-known spinodal decomposition kinetics 
[56] is not applicable to PT because the mixing energy 
of carbon in γ-Fe is positive [57, 58], so that the γ 
phase is stable with respect to small fluctuations of the 
composition. Thus, more advanced approaches are 
required for understanding of the PT kinetics. 
Theoretical studies have been focused on determining 
the interlamellar spacing and its temperature 
dependence in a steady state growth of the colony, as 
well as the problem of stability of the transformation 
front [21, 59–65]. In Refs. [21, 59] it has been shown 
that the interlamellar spacing in this case obeys the 
law T/1~ , where eutecTTT  . As it was found 
[61], the interlamellar spacing must ensure a 
maximum growth rate; thin lamellae dissolute and 
wide ones split during the growth of colony, thus 
optimum interlamellar spacing is achieved. Herewith, 
there was supposed an acceleration of diffusion on the 
transformation front. The recent results of phase-field 
simulations [63–65] confirm the necessity of the 
above assumption. This essential result describes the 
condition of steady state growth, but it does not 
concern the problem of nucleation of the pearlite 
colony, which remains in shadow.  

By now, a few important questions are still open. 
One of them is what phase (α or θ) is appears first or 
they both form together [66–68]. The question what 
factors ensure the stability of the front of colony is 
remained open to discussion [61–65]. The two 
competing mechanisms of lamellae multiplication by 
lateral replication [3, 53, 69] and splitting of existing 
lamellae [70] have been proposed. In addition, the 
reasons for the transition from lamellar to globular 
pearlite structure with increasing temperature is a 
matter of considerable interest [71–75]. There is no 
theory to explain the appearance of pearlite type 
colonies under realistic parameters.  

Even well-known kinetics of ferrite / cementite 
precipitation from a supersaturated austenite includes 
some unresolved problems. In particular, the 
mechanism of the lattice rearrangement γ→θ is under 
discussion. As is proposed in Ref. [76], the γ→θ 
transformation is realized through an intermediate 
metastable ε-cementite with hexagonal close-packed 
(hcp) crystal structure which is closer to γ-Fe than the  
orthorhombic θ phase. The recent ab initio 
calculations [77] indicate, that lattice γ→θ 
reconstruction can be implemented through a specific 
Metastable Intermediate Structure (MIS) that develops 
near the boundary of ferrite plate when the carbon 
concentration is about 15%at., i.e. far from the 
stoichiometric composition of cementite. The change 

of mechanical properties of pearlitic steel after 
annealing indicates the existence of metastable 
cementite states in the "fresh" pearlite [3]. 

In the case of ferrite transformation, the attention 
of the researchers is drawn to the difference of several 
morphological forms, polygonal, Widmanstätten, and 
acicular ferrite (WF, AF) [20, 78, 79]. The polygonal 
and the Widmanstätten ferrite are realized at a little 
undercooling (i.e. above the T0 temperature) and, 
therefore, they both are diffusion-controlled 
transformations. However, in the first case the lattice 
coherence on the γ/α interface is lost so that elastic 
stresses are absent, whereas in the second case the 
elastic stresses relax as a result of twinning of α phase 
plates. Unlike the two cases mentioned, the acicular 
ferrite appears below T0 and it grows by the displacive 
mechanism [4, 20]. Thus, WF and AF can’t be 
described in the framework of simple models with one 
order parameter. Phase-field simulations of WF 
formation [80] led to a controversial conclusion that 
the growth of the WF plates requires high anisotropy 
of interfacial energy, but the possible role of elastic 
stresses has not been considered in this work.  

Thus, both shear and diffusive scenarios of phase 
transformations in steels require detailed theoretical 
study. First, it is necessary to explain the mechanisms 
responsible for the change of transformation scenarios 
(ferrite   pearlite   bainite   martensite) with 
decreasing temperature. Secondly, the precipitates 
morphology in the decomposition (including the 
nucleation and growth of the pearlite and bainite 
colonies, conditions of lamellar or globular pearlite, 
upper and lower bainite formation, etc.) is a subject of 
considerable interest. Besides, in some cases (such as 
bainite or WF transformation) shear and diffusion 
kinetics should be described together. Discussion of 
these problems is a matter of the rest part of the 
present review.  

4. THEORETICAL APPROACHES TO 
THERMODYNAMICS AND KINETICS OF PHASE 

TRANSFORMATIONS IN STEEL 

In the framework of a phase-field approach [81] 
the evolution of microstructure during the martensitic 
transformation (MT) can be described by the Allen-
Cahn equation [9, 11, 82, 83] for a non-conserved 
order parameter in the capacity of which is the 
tetragonal deformation te  is chosen:   

t

t

e

F

t

e δδ


                                                      (1) 



 

 

 

6 

    



  rdekfeF ttt

2

2
1

el ,                          (2) 

where  teF  is the Ginzburg-Landau free energy 

functional, tk  is the parameter determining the 

interface energy, and elf  is the nonlinear elastic free 
energy contribution [84, 85] that is presented as 
polynomial over te : 

6
6

4
4

2
2 ttt

t eAeAeAff  elel                       (3) 

The transformation mechanism in this model switches 
from the normal type (nucleation and growth) to a 
martensitic scenario (lattice instability) when the 
parameter A2 decreases, so one can accept  

  MM TTTAA /202  , where TM is the start 
temperature of MT [10]. However, as was shown in 
[86], all components of the deformation tensor should 
be taken into account for a proper description of 
elastic energy at the polymorphic transformation, 
because they should satisfy a set of Saint-Venant’s 
compatibility conditions   0 e  [87], which 
can be written in 2D case as: 

  082  tyyxxxyv eee s ,                  (4) 

where   2/yyxxte  
 

is a tetragonal 

deformation,   2/yyxxve    is a dilatation, 

xyse 
 
is a shear (trigonal) deformation, ijε  are the 

components of deformations tensor, 
2/)( ,,,, jkikijjiij uuuu ε  and jiji xuu  /, , and 

ui are displacements. Therefore, Eq.(3) should include 
additional terms:    

),( sv eefff t
elelel  ,                                    (5) 

2/)(),( 22
ssvvsv eAeAeef el .                                   

The coefficients ,vA sA  are expressed in terms of 

elastic moduli [86], 1211 CCAv  , 444CAs  , and 

)( 12112 CCA  . As was shown in Refs. [9, 11], by 
virtue of Saint-Venant’s compatibility conditions (4), 
the Eq.(1) can be converted to a integro-differential 
form taking into account the effective long-range 
interactions for the field of order parameter. Due to 
these long-range effects, the transformation occurs 
consistently in different microvolumes and is 
accompanied by the pattern formation that is really 
characteristic of the MT. Also it was reported on the 
specific tweed structure that appears as a result of 
compositional fluctuations and long-range effects at a 
moderately high temperature.  

It should be noted, that an energy-controlled 
effect of accomodation of elastic stresses that leads to 

the formation of modulated structures was early 
considered in Ref. [88]. At the present time the role of 
long-range interactions in the pattern formation is well 
known [89, 90, 91] and was discussed many times for 
very different systems, from stripes in high-
temperature superconductors [92–94] to stripe 
domains in ferromagnetic films [95–97].  

The equations of motion for the atomic 
displacements u(r,t) in the form [98] 

 








j j

iji

r

t

t

tu ),(),(
2

2
rr σρ ,                                (6) 

      
),(

),(
t

F
t

ij
ij

r

r

δ δσ  , 

are more convenient than Eq. (1) for numerical 
simulation of the transformations kinetics. Here ρ is 
the density, ),( tij rσ  are the components of elastic 

stresses, i,j={x,y}. The solution of Eq.(6) satisfies the 
Saint-Venant's compatibility conditions automatically 
and can contain also the lattice vibrations (lattice 
temperature). This approach has been used in the 
simulations of MT in Refs. [10, 99].  

First theoretical description of the martensitic type 
phase transformation in 3D case was proposed in 
Refs.  [28, 29]. This approach is based on the 
expansion of the Ginzburg-Landau functional over 
deformations relevant for the lattice transformation 
and taking into account only the deviatoric 
components ( ttt ee , ) of the deformations tensor: 

22222

22

)()3(

)(),(

tttttttt

tttttt

eeCeeBe

eeAeef




                        (7) 

где   2/yyxxte   ,   6/2 zzyyxxtte   . 

Within this model, the transformation mechanism is 
changed from “nucleation and grows” to lattice 
instability development (martensitic scenario) when 
parameter B decreases.  

In Ref. [10] the contributions related to carbon 
concentration and its interplay with deformations have 
been added to the free energy, and the system of 
equations for atomic displacements (6) and the Cahn-
Hilliard equation for carbon diffusion [56] was 
resolved by phase-field simulations for the martensitic 
and pearlitic scenarios of phase transformations. The 
equation for the carbon diffusion has a form: 

I
t

c





,     







c

F
cc

kT

D
I δδ)1( ,             (8) 

where c is a local carbon concentration, D is a carbon 
diffusion coefficient. Herewith the free energy 
functional has a form of:  
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        (9)          

where elf  is the density of elastic free energy, which 
includes the term given by Eq. (5) and contribution of 
concentration expansion, 4

4
2

2 cvcvf ch  is the 
chemical contribution to the free energy, and the  
term 22)(

t
c

t ecAf cpl  takes into account the coupling 

between elastic distortions and composition changes. 
Typical transformation patterns obtained in the 
framework of this approach are shown in Fig.4. The 
model [10] is one of the first attempts to take into 
account the interplay between the diffusive and 
displacive mechanisms of phase transformation. 
However, this approach is pure phenomenological and 
contains assumptions that are incorrect for steels. For 
example, the coupling contribution cplf  did not 

include the linear concentration term, although the 
solution energies of carbon are different in the γ and α 
phases [100–102]. Besides, the proposed model 
assumes that mixing energy of carbon in the γ phase is 
negative in disagreement with experiment [57] and ab 
initio calculations [58]. Finally, precipitates 
morphologies of pearlite obtained in the simulations 
were far from those observed in experiments [3, 53, 
69].   

It should be noted that the mechanism of colony 
formation in the system with a positive mixing energy 
(such as the γ phase) is unknown. The proposed 
approaches considered mostly the evolution of 
existing colony of alternating plates of ferrite and 
cementite placed on the flat grain boundary [62–65]. 
The model of eutectoid transformation in a system 
with a symmetric phase diagram was considered in 
Ref.[62] where the growth of two phase lamellae was 
observed in the case of equal diffusion coefficients in 
the different phases (see Fig.5). In a more realistic 
case the widths of cementite and ferrite lamellae are 
different, the carbon diffusion coefficient in ferrite is 
much more larger than this one in cementite and 
austenite, therefore an assumption of the diffusion 
acceleration on the colony front is required to provide 
steady state growth [63, 64].  

The problems of early stages of the colony 
formation and the multiplication of lamellae remain 
outside of the scope of proposed models. The similar 
issues exist in the eutectic colonies growth, where the 
metastable liquid phase decomposes into two new 
phases at the solidification under a temperature 
gradient [103–107] or without it [108–110].  

As was discussed above, the regular martensite 
pattern formation is driven by the accommodation of 
elastic stresses to minimize the energy. In last decade 
the attention of researchers was attracted to the 
problem of the plastic accommodation of 
transformation strains that provides another relaxation 
channel of elastic energy minimization [111–114]. It 
was shown that accounting for the plastic relaxation 
processes results in the possibility of the easier 
martensitic transformation and a more complex and 
coarser microstructure (see Fig.6). It should be noted 
that the essential role of plastic deformation in a phase 
transformation was early predicted in Ref. [115, 116] 
where a single ellipsoidal nucleus has been 
considered. The general phase-field approach 

 

Fig.4. The appearance and evolution of martensitic 
structure to pearlite-like one in the model taking into 
account an interplay between diffusive and 
displacive phase transformations; (a) t=4000, (b) 
6000, (c) 12000  [10]. 

 

Fig.5. The structure of stationary growing colonies 
in eutectoid system with a simmetric phase diagram 
at different temperatures; T/Teutec= (a) 0.59, (b) 0.70, 
(c) 0.82 [62]. 

 

Fig.6. Evolution of martensite in 2D case with only 
(a)–(c) elastic and (d)–(f) with elasto-plastic 
deformations; t= (a,d) 0, (b,e) 25, (c,f) 100 [111]. 
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including a system of the coupled equations for the 
order parameters of phase transformation and the 
mechanics equation for dislocation-assisted plasticity 
was proposed in Ref. [114].  

The main features of the pattern formation in the 
course of the martensitic-type structural phase 
transitions proved possible to describe within the 
framework of the models proposed in Refs. [9–11, 
112, etc.]. The scenarios of athermal [10, 86] (lattice 
instability over the entire volume in the case of rapid 
quenching), isothermal [9, 11, 117] (autocatalytic 
generation of martensitic plates in the case of holding 
the steel at a moderate temperature), stress-assisted,  
and strain-induced [112, 113, 118] MT were 
discussed. However, it remained unclear how to apply 
more correctly these model approaches to the real iron 
and steel.  

The general disadvantage of the theoretical 
approaches considered above is the phenomenological 
form of free energy density. In particular, the authors 
do not distinguish the enthalpy and entropy 
contributions to the free energy density, therefore the 
microscopic meaning of parameters appears lost and 
their correct choice is impracticable.     

5. THE AB INITIO BASED MODEL OF 
SHEAR-DIFFUSION PHASE 

TRANSFORMATIONS IN IRON AND STEEL 

The consistent model of phase transformations in 
steel should take into account (1) the lattice 
reconstruction γ→α during cooling to the critical 
temperature (Bain [26] or Kurdjumov-Sachs [27] 
deformation); (2) Saint-Venant’s compatibility 
conditions [87] for the components of deformations 
tensor leading to the appearance of effective long-
range interactions for the field of the order parameter 
[9–11]; (3) redistribution of carbon between the 
phases, including the formation of cementite. 
Herewith, the Ginzburg-Landau free energy functional 
should include the magnetic energy contribution.  

5.1. Ab initio parameterization of Bain 
transformation path. 

The total energy per atom along the Bain 
deformation path was calculated for both 
ferromagnetic ordered and paramagnetic (disordered 
local moment, DLM) states of iron [7, 8]. The 
difference between energies in these states is related 
to magnetic exchange energy. The ab initio 
computational results show that the appearance of 
ferromagnetic order leads to the change of the 
preferable crystal structure of Fe from fcc to bcc (see 
Fig.7). In [8] was also shown that there is strong 
coupling between the magnetic and lattice subsystems 

in fcc Fe so that exchange energy drastically changes 
due to the volume increase or tetragonal distortions 
(see Fig.8). In addition, the ferromagnetic ordered fcc 
structure is unstable in respect to fcc → bcc 
transformation. These results suggest that the 
martensitic transformation of Fe can appear as a result 
of lattice instability due to the increase in short-range 
magnetic order under the cooling.   

The first-principles computational results allow us 
to find an explicit expression for the density of free 
energy for pure Fe, which takes into account both 

 

Fig.7. Variation in the total energy per atom along 
the Bain deformation path for different magnetic 
states. FM (empty triangles) and AFM (solid 
triangles) label collinear ferromagnetic and 
antiferromagnetic structures, SS (empty circles) 
corresponds to the spin-spiral state, DLM (crosses) 
belongs to the disordered local moments 
approximation of paramagnetic state, DLM0.5 (empty 
diamonds) stands for the DLM state with a total 
magnetic moment equal to half of that for the FM 
state [7]. 

 

Fig.8. Exchange parameters Jn for n=1,2,3,4,5 and 
the total exchange parameter J0 in dependence on 
atomic volume for (a) fcc and (b) bcc Fe  [8]. 
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deformations and magnetic degrees of freedom. For 
this purpose, we represent the magnetic-dependent 
part of the total internal energy in Heisenberg-like 
form  

)()ˆ()ˆ( , TQJEE ij
ji

ji εεPM 


 ,                        (10) 

where  jiij TQ mm)(  is the correlation function 

of magnetic moments on sites i and j, EPM is the 
energy of paramagnetic state, and the brackets <…> 
mean the average over an ensemble of magnetic 
configurations at a given temperature. Assuming that 
the nearest-neighbor contribution is dominate in 
exchange interactions, the energy density can be 
presented as  

)()ˆ(
~

)ˆ(),ˆ( TQJgTg εεε PM  ,                          (11) 

where  /
~ 2 JmJ  ,   is the volume per atom and m 

is the magnetic moment, 2
10 /)( mTQ  mm  is 

the spin correlation function dependent on 
temperature; 0Q  stands for the totally disordered 
paramagnetic (PM) state and 1Q , for the 
ferromagnetic (FM) ground state. The exchange 
energy )ˆ(εJ  can be extracted from the computational 
data [7,8],  

)ˆ()ˆ()ˆ(
~ εεε PM FMggJ  .                                 (12) 

It is assumed here that )ˆ(εJ  depends on the Bain 
tetragonal deformation et only, and the value of 
dilatation is chosen from the minimum of energy at a 
given et.  

In order to determine the spin correlation 
function, the model proposed by Oguchi for the total 
spin equal to 1/2 [119] was employed as a benchmark 
in Refs. [12,13]. In this model 

j

j

eh

eh
TQ

2

2

)1)(2(

3)1)(2(
)(









ch

ch
,                         (13) 

jzhh )1(0  ,  
kT

H
h 0

0

gβ
 ,  

T

J
j

zk

~
 ,    (14) 

where 2g  is the Lande factor, β  is the Bohr 
magneton, H0 is the external magnetic field (if it is 
present),   is the reduced magnetization determined 
from the transcendental equation: 

1)(2

)(2
2 


 he

h
j ch

sh ,                                     (15) 

The essential advantage of the Oguchi model 
(compared with the well-known Langevin formula for 
the magnetization) is the accounting for the short-

range magnetic order at T>TC, where TC is the Curie 
temperature.  

Based on these formulas, in Ref. [13] there was 
accepted that TTQ /1~)(  (without an external 
magnetic field) for T>TC, and the empirical 
dependence of magnetization [120] was used for 

T<TC. It was assumed there that Q(TC)~0.4, according 
to Ref. [119]. The Curie temperature TC is related to 
the exchange parameter as kTC(et)  )(

~
teJλ , with the 

numerical factor αλ =0.472 for α-Fe; this choice of αλ  provides an agreement of the Curie temperature 
with the experiment, TC=1043K. The correlator for γ-
Fe is chosen in a similar way, with the Curie 
temperature γ

CT ≈300K, according to the calculations 
[8] for the fixed atomic volume 12 Å3; 

606.0γλ  according to Ref. [121] (see [13] for 

details). The nonphysical ferromagnetic long-range 
ordering in γ-Fe is not essential for our model, but the 
high-temperature short-range ordering in both α and γ 
phases is important enough for the transformation 
kinetics. 

Assuming that tetragonal deformation is counted 
from an fcc phase (et=0 in the γ phase and 

2/11te  in the α phase) we consider the order 
parameter 11    which is related to the Bain 

deformation as   te12/2  . Positive and 
negative values of   correspond to the two possible 
(mutually orthogonal) directions of the Bain 
deformation in two-dimensional case. 

The energies found from the first-principle 
calculations [7, 8, 13] for pure iron were 
approximated by the following polynomials:  





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


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


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


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


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
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)(~

464
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

PM(FM)
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PM(FM)γPM(FM)

c

c
gg

gg

                (16) 

Its form guarantees an extremum at the points 0  

or 1 , and parameters PM(FM)γ[α]g , PM(FM)c  were 

found by fitting to the ab initio computational results 
(see [13] for the details). 
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The Bain path energies are modified in the 
presence of carbon: 

 
    2/

)(12/

)(~),(

2

2

cvvc

fcv

cgcg

γαPM(FM)γPM(FM)α
γ

PM(FM)γPM(FM)PM(FM)













s           (17) 

where function  sf  have been chosed in the form 

   221  sf . Thus, in our approximation the 
dependence of Bain path energy on carbon 
concentration is reduced to the accounting for the 
solution energies of carbon, PM(FM)γ[α] , and the energies 

of carbon-carbon interactions (mixing energies) γ[α]v  

in the γ and α phases, but not in the intermediate 
states. The solution energies were obtained from ab 
initio calculations (see [13] for the details) and mixing 
energies from Refs. [57, 58]. It should be noted that 
the known estimates of v  vary widely from 1 to 3 

eV/at, i.e. the   phase is to be stable with respect to 
carbon decomposition. If the changes of carbon 
concentration are small or moderate (as in the cases of 
ferrite, martensite, and in the early stages of bainite 
transformations) the contribution of carbon-carbon 
interactions can be neglected [13]. However, in the 
cases of the cementite formation (i.e. in case of 
pearlite and at later stages of bainite transformations) 
the carbon concentration increases essentially (up to 

с=0.25); the carbon-carbon interactions must be taken 
into account in this case.  

Dependences of the energy density g(c/a) on 
tetragonal distortion calculated according to the 
formulas (16),(17) are shown in Fig.9a. One can see 
that γ-Fe is stable in paramagnetic state but it looses 
its stability with respect to tetragonal (Bain) 
deformation when becoming ferromagnetic. 
Therefore, the classical martensitic scenario (through 
lattice instability over the entire volume) of the γ→α 
transformation can emerge at the overcooling below 
some temperature where a strong enough short-range 
ferromagnetic order arises in γ-Fe. The doping by 
carbon does not change this important feature. 
Moreover, carbon decreases the energy of 
ferromagnetic γ-Fe, with the solution energy of the 
order of -0.2 eV per carbon atom. It is not surprising, 
since carbon creates a strong local ferromagnetic 
order in PM or AFM γ-Fe [40]. It is a common 
wisdom that interstitial impurities (including carbon) 
always prefer fcc surrounding compared to bcc, just 
for geometric reasons [122] (the voids are larger in fcc 
lattice than in bcc with the same density). This is for 
sure correct, also for carbon in iron and results in a 
more pronounced effect of carbon addition on energy 
of α-Fe. What is much less trivial is that carbon 
solubility in γ-Fe is sensitive to the magnetic state 
being maximal in ferromagnetic surrounding. 

 

 
Fig.9. (a) Energy resulting from the first-principle calculation for the Bain path at T=0K (curves 1,1'), 800K (curves 
2,2'), 1400K (curves 3,3') and in paramagnetic states (curves 4,4') and (b) the free energy density as a function of 
tetragonal deformation for the temperatures T=600K (curves 1,1’), 800K (2,2’), 1000K (3,3’), 1400K (4,4’) found 
from Eqs. (17). The carbon concentration is C = 0 (1–4) and C = 3at% (1'–4'); circles correspond to ab initio 
calculated results. 
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5.2. Generalized Ginzburg-Landau functional for 
the  –  transformation in steel. 

Bain path energy is important part to construct a 
quantitative theory of phase transformations in steel. 
The Ginzburg-Landau (G.-L.) functional of free 
energy of iron and steel should include also 
contributions related to the magnetic, phonon, 
electron, and carbon configuration entropy, energy 
gain during formation of cementite, energy of elastic 
stresses, and interphases energies. The G.-L. 
functional can be written in the form similar to Eq.(9): 

   ),(,,, st eefTecfF vel                    (18) 

        rde
k

e
k

t
t





 22

22 
 , 

where  Tecf t ,,,   is local density of free energy 
depending on the carbon concentration c, tetragonal 
deformation parameter te , temperature T, and order 
parameter   characterizing the transformation of 

austenite to cementite at the point r; ),( seef vel  is the 

elastic energy determined by Eq. (5); tk  and k are 

the parameters determining the width of ferrite or 
cementite interphase boundary, respectively [86]. 

Let us first consider the local density of free 
energy in the absence of cementite. This situation is 
typical of the ferritic (in low-carbon steel at T>Teutec) 
and martensitic (i.e. below the temperature MS) 
transformations. Using the Hellmann-Feynman 
theorem and Eq.(11) one can represent the free-energy 
density for the elemental Fe as 

 
   

J

tst JdTJQefTsgTef

~

0
0

~
),

~
(),( PM ,  (19) 

where s0 is the high-temperature limit of the entropy 
difference between the fcc and bcc phases, including 
phonon contribution;  ts ef  is a function provided a 
gradual switching of the entropy contribution from fcc 
to bcc (   1ts ef  in fcc and   0ts ef  in bcc) phase. 
According to existing concepts (see, for example, 
[123]) the value s0 depends slightly on the temperature 
at T>TD, where TD is the Debye temperature (473K in 
bcc and 324K in fcc phase). It has been chosen such 
that the start of the transformation determined by the 
condition 0)()()(  TfTfTf αγ  agrees with the 

experimental value for elemental Fe, T0 = 1184K. This 
gives us the value s0= -0.19k, quite close to the 
experiment [124].  

The temperature dependence of the energy 
)()()( TgTgTg αγ   and free energy difference 

)()()( TfTfTf αγ   for the pure Fe agrees well 

with the results of CALPHAD [124] within the 
temperature range 600÷1200K (see Fig.10). Herewith, 
the magnetic contribution dominates at T ≤ TC and is 
compensated essentially by the phonon contribution at 
T > TC. 

The configurational entropy of carbon is found 
from the model of ideal solutions, assuming that for T 
>300K carbon is equally distributed among all three 
interstitial sublattices in α-Fe, whereas in γ-Fe carbon 
atoms can occupy only quarter of the interstitial 
positions [88,102]. As a result, the local density of 
free energy can be presented as:  

 

     ,1

~
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~
(),,(

~

0
0

ts

J

tst

efSSST

JdTJQefTsgTecf



 

γαγ
PM     (20) 

where α(γ)S  is the configurational entropy of carbon 

in the α(γ) phase,  3/ln ckcS α , and 
  4/)41ln()41()4ln(4 cccckS γ . 

Dependences of the local density of free energy 
on tetragonal distortion, calculated according to the 
formulas (20), are shown in Fig.9b. It can be seen 
from a comparison of Fig.9a and Fig.9b that the 

 

Fig.10. The energy difference 
)()()( TgTgTg αγ   (curve 1) and free energy 

difference )()()( TfTfTf αγ   (curve 2) at the  

→  transition in elemental iron in comparison with 
known data (dotted lines 1’,2’) [124]; contribution 
of magnetic entropy to the free energy (curve 3) and 
the contribution from phonon entropy (curve 4). 
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curves )( teg  and )( tef  are qualitatively similar, but 
they differ in the depth of the minima corresponding 
to the phases α and γ. In particular, the minimum 
corresponding to the γ phase exists on the curve of 

)( tef  up to the sufficiently low temperature about 
400K. It means that lattice reconstruction requires an 
overcome of some energy barrier at an experimental 
temperature MS, and one follows to expect that the 
martensitic transformation occurs by the nucleation 
and growth of an embryo in this case.  

The lattice reconstruction γ→θ leading to 
cementite formation is another structural 
transformation, which is controlled by carbon 
diffusion. Herewith, the order parameter   in Eq.(18) 
describes a preferred trajectory of the transition 

   including the Metastable Intermediate 
Structure (MIS) [77]. According to these ideas, the 
MIS appears in the thin ferromagnetic layer existing 
near the ferrite plate. The subsequent lattice 
reconstruction MIS→θ occurs by the cooperative 
displacements mechanism when the local carbon 
concentration increases to a threshold value с~0.18. 
Then the θ phase is saturated with carbon to the 
stoichiometric composition of cementite ( cemC =0.25). 
As a result, the lattice coherence is maintained, 
whereas the elastic stresses are well compensated at 
the interface α/θ.  

Since the lattice reconstruction is a rather fast 
process (unlike diffusion), γ→θ can be considered as 
immediately occurring as soon as the free energies of 
austenite and cementite become equal. Then, the local 
carbon concentration is a single order parameter 
characterizing the cementite, and the density of its 
free energy [14] can be written as 

  ),()()(

)()(),(
)1()1( Tfcfcf

TfTfTcf e

boundθcemθθ αθFαθ


               (21) 

where )(Tf Feα  is the free energy of the pure α-Fe, 

)(Tfαθ  is free energy of formation of cementite 
from the pure compounds (α-Fe and graphite) known 
from CALPHAD and ab initio calculations [125, 126], 
ccem is the stoichiometric composition of cementite 
(ccem=0.25), )()1( cfθ  is the concentration dependence 
of free energy of cementite [127]. The value of 

boundθf ~ -0.02eV/at is a shift of free energy of 
cementite due to magnetization induced by the 
adjacent ferrite plate; boundθf =0 if an isolated 
cementite nucleus is considered.   

 
 

5.3. Description of transformation kinetics.   

By using the approach proposed in Ref. [10] the 
transformations kinetics can be described by the 
system of coupled equations for the atomic 
displacements (6) and carbon redistribution (8). The 
carbon diffusion coefficient we define as: 

  
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



θ γαγ
           (22) 

where h(x) is a smoothed Heaviside function, 

0TС , 1TС  are the carbon concentrations corresponding 
to the conditions of paraequilibrium, namely, 

),(),( TcfTcf αγ   and ),(),( TcfTcf θγ  ,  

respectively. Eq. (22) provides that the carbon 
diffusion coefficient is equal to αD , γD , θD  in the 

bulk of the respective phases and it takes the 
intermediate values )(cD  at the interfaces. The ratios 

of the coefficients γα DD / , θγ DD /  are 102 or 103 

[128, 129], thus the simulation with realistic diffusion 
coefficients is unfeasible, but the qualitative trends 
can be derived by choosing a reasonably large value 
of ratios of the diffusion coefficients.  

6. CONSTRUCTION OF TRANSFORMATIONS 
DIAGRAM OF STEEL 

The model proposed in Refs [12–14], which 
includes the lattice and magnetic degrees of freedom, 
allows to construct the transformation diagram of the 
system Fe-C. This diagram (Fig.11) includes the 
boundaries of two-phase regions γ/(α+γ), γ/(θ+γ) 
(lines A3 and Acm respectively, see Fig.1), as well their 
extensions into metastable region below the eutectoid 
temperature Teutec, and also the lines of instability in 
respect of the γ→α and γ→θ transitions (T0 and T1, 
respectively).  

The lines A3 and Acm are defined by the equality of 
the chemical potentials of carbon, and the lines T0 and 
T1 are determined by the equality of the free energies 
of corresponding phases at a fixed carbon 
concentration: 
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where θ)α(γ,f  are the free energy density of the α(γ,θ) 
phases, wherein α(γ)f  are determined by the Eq.(20) 



 

 

 

13 

at te = γ
te =0 in the γ phase and te = α

te 2/11  in 

the α phase, respectively, and θf  is determined by the 

Eq.(21) at 0 boundθf . The line TF was construct by 

using the condition    TcefTcef tt ,0,,, 0  αγ , 
where с0 is the initial (average over the sample) 
carbon concentration; and the line MS (the start of 
martensitic transformation) is defined by the 
disappearance of the barrier on the Bain deformation 
path,   0/,, 22  tt eTcef . The line A1 is close to a 
zero carbon concentration and is not presented here. 
The transformation diagram at a low carbon 
concentration (Fig.11a), without the formation of 
cementite, was constructed in Ref. [13] and at a high 
carbon concentration (Fig.11b) discussed in Ref. [14].   

Let us first consider an expected qualitative 
picture of the ferritic and martensitic transformation 
scenarios in low- and medium-carbon steel [13]. At a 
low enough overcooling below the temperature А3 the 
ferrite transformation proceeds slowly, since its 
driving force is small. The nucleation of ferrite as a 
result of thermal fluctuations is scarcely probable, 
because the critical size of nucleus (determined by the 
ratio of surface energy to the bulk energy gain) is very 
large. This is more likely at the grain boundaries 
where the chemical potential of carbon is changed. 
Herewith, the growth rate of ferrite is limited by 

carbon diffusion in the γ phase in this case, because 
the energy of the α phase without carbon is higher 
than the energy of the γ phase with an initial 
composition. In the case T ≤ TF the ferrite nucleus can 
grow even if the composition of the γ phase remains 
unchanged and the growth rate of ferrite accelerates 
essentially. 

A further decrease of temperature results in a 
slowdown of carbon diffusion and enhancement of the 
transformation driving force. At intermediate 
temperatures, a crucial role in determining of the start 
of transformation is played by the temperature of 
paraequilibrium T0 (see formula (24)), below which 
the free energy density of the α phase is less than the 
free energy density of the γ phase with the same 
carbon concentration. Temperature T0 was introduced 
in Ref. [21] as a pre-condition for the start of bainite 
transformation. Since diffusion is slower than the 
shear transformation [4, 21], there is no redistribution 
of carbon between the α and γ phases during the 
growth of α phase plates. In low-carbon steels the 
relation Teutec<T<T0  is possible, when the shear lattice 
reconstruction is realized in the ferrite region of the 
transformations diagram. The corresponding 
transformation scenario can be interpreted as acicular 
ferrite, which is realized by displacive mechanism 
[20]. As can be seen in Fig.11a, the calculated value 

 
 

Fig.11. (a) Calculated lines (solid) corresponding to the start of ferrite formation, shear nucleation (line of 
paraequilibrium), and martensitic transformation [13]. MS and MS’ are the start temperatures of the absolute lattice 
instability and martensitic colonies nucleation. Dashed lines show experimental boundary of two-phase region (A3) 
[16], experimental paraequilibrium temperature (T0Z) [49], and experimental temperature of the start of martensitic 

transformation ( exp
SM ) [18]. The circles correspond to the start of martensitic transformation in phase-field 

simulations with thermal fluctuations.  (b) Transformation diagram taking into account the formation of cementite 
[14]. The boundaries of two-phase regions γ/(α+γ), γ/(θ+γ) (lines A3 and Acm, respectively) with their metastable 
extensions and the curves of paraequilibrium γ/α,  γ/θ (T0 and T1 respectively) are calculated. 
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of A3 and T0 agrees well with the known experimental 
quantity exp

3A and T0Z [16,49]. 

The condition   0/,, 22  tt eTcef , 
corresponding to the disappearance of the barrier on 
the Bain deformation path, is attained by quenching of 
the γ phase to the temperature MS where 
ferromagnetic short range order in the γ phase 
becomes important. Below this temperature the 
absolute lattice instability of the γ phase should take 
place, and the obtained martensite can be called as the 
athermal one. It can be seen that the temperature MS 
found in this way is actually lower than the 
experimental value. However, according to the 
concept of isothermal martensitic transformation [22–
25] the condition of the martensite start may be taken 
as kTCf 0

~
αγ

barrier , where parameter 0
~
C =0.04 is 

chosen by fitting to the experiment for pure Fe [18]. 
The temperature MS’ determined in this way agrees 
well with the experiment in a broad interval of carbon 
concentrations.   

The possibility of overcooling of austenite to the 
liquid nitrogen temperature, with the formation of 
martensite only during the subsequent heating, was 
first discovered in Ref. [22]. This observation is 
clearly points to thermally activated character of the 
transformation with a rather small activation energy 
value of about 0.04eV/at [22]. It has been later shown 
that the isothermal kinetics changes to an athermal 
one in some Fe-based alloys at overcooling below 
some critical temperature [2]. The avoiding of 
discussion of this problem can lead to some kind of 
misunderstanding. For example, the athermal 
martensite was in focus of the model used in Ref. 
[10], whereas the kinetics of the nucleation and 
growth of isothermal martensite has been investigated 
in Ref. [11].  

The transformations diagram shown in Fig.11b 
takes in addition into account the formation of 
cementite (for details of parameterization see Ref. 
[14]). The line Acm is the boundary of the two-phase 
region γ+θ. The intersection of A3 and Acm lines is the 
eutectoid point (ceutec,Teutec); below the themperature 
Teutec the pearlite transformation (PT) occurs. In 
accordance with a traditional point of view, the PT is 
realized between the A3 and Acm lines extrapolated into 
a T < Teutec region ("Hultgren extrapolation" [130]), 
where the simultaneous nucleation of α and θ from the 
initial γ phase is possible (the possibility of PT outside 
of Hultgren extrapolation is also discussed [131]). The 
line Acm intersects also the paraequilibrium line T0, so 
the different transformation kinetics in the bainitic 
region above and below Acm can be expected. This 
may be relevant to the formation of several 

microstructures below the line T0, such as acicular 
ferrite and various morphologies of bainite. At last, 
the line T1 describing the start condition of the γ→θ 
transformation lies in the region of high carbon 
concentration (c~0.20), which causes a problem in 
describing the nucleation of cementite. The possible 
mechanism of facilitation of cementite formation due 
to local magnetization and appearance of the 
intermediate state (MIS) near the boundary of ferrite 
plate is discussed in Section 7.2.   

To conclude this section, it should be stressed that 
the curves A3, Acm, T0, T1, TF do not depend on the 
energy relief along the Bain path and are determined 
only by the terminal values PM(FM)γ[α]g . On the contrary, 

the martensitic curves MS and MS’ depend on the 
transformation energetics at intermediate deformation 

te . For the carbon concentration under consideration 

the magnetic order effects in γ-Fe are negligible, for 
the temperatures above T~400K. Therefore, the 
transformations diagram is determined, first of all, by 
the evolution of magnetic state in α-Fe. In particular, 
the γ→α transition turns out to be possible above 
Curie temperature ( α

CT ≈1043K) in pure iron due to 
the short-range ferromagnetic order in α-Fe. The short 
range magnetic order in γ-Fe becomes important at T 
≈ 400K, which determines the start temperature of the 
athermal martensitic transformation MS, developing 
via the lattice instability. Thus, the temperature 
dependence of magnetic short-range order is the key 
factor determining the diversity of phase 
transformations in iron and steel. The closeness of the 
Curie temperature in α-Fe to the temperature of 
structural transformation is not accidental, but is 
related with the essence of phase transformations in 
iron and steel.  

7. MODELING OF THE PHASE 
TRANSFORMATION KINETICS 

The phase diagram discussed above determines 
the conditions of the start of phase transformations 
and the fraction of a new phase at large times. 
However, it does not allow to understand the 
intermediate stages of transformation and features of 
microstructure formation. Namely, the microstructure 
formed in the intermediate stages of the 
transformation is a matter of the greatest interest to 
achieve desirable properties.  

7.1. Athermal and isothermal martensite 
transformation.  

Phase-field simulation of transformation kinetics 
in the framework of proposed model, i.e. numerical 
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solution of Eqs. (6), (8) with G.-L. functional (18), is 
required for the analysis of a martensitic 
transformation (MT). Herewith, the shear 
transformation occurs with a velocity ~ 103 m/sec, i.e. 
in a time much shorter than the characteristic diffusion 
times. Thus, the carbon distribution can be considered 
as a "frozen", and the Eq.(8) may be neglected. The 
modeling of MT kinetics was carried out on a square 
grid by the classical Runge-Kutta method with 
periodic boundary conditions [12].  

 As was mentioned above, the formation of 
martensite does not require thermal activation at 
T<MS, while the appearance of isothermal martensite 
is expected in the temperature range MS<T<MS’ after 
aging as a result of thermal fluctuations. Therefore, 
the simulation of MT must take into account the 
thermal lattice vibrations. The lattice temperature was 
introduced in the framework of microcanonical 
ensemble. First, the system is heated to a high 
temperature (Т=1200K) by the small random forces 
 (r,t) (the corresponding term is appended to the 
right side of Eq.(6) leading to the Gibbs distribution of 

atomic displacements). Then the random forces are 
shut down and the equilibrium state is attained after 
aging at this temperature. Finally, the lattice 
temperature is reduced to the desired value from the 
interval 400K...1000K by rescaling of velocity field. 
Herewith, the estimation of lattice temperature was 
carried out by calculation of the average kinetic 
energy per degree of freedom, 2/2  vkT ρ , 
where <v2> is the average square of the velocity over 
the calculation area. The spin temperature was chosen 
in the region of stability of the γ phase during these 
preparation procedures and then it switches to the 
value of lattice temperature.  

The typical patterns of the order parameter 
distribution   depending on time are shown in 
Fig.12–14. Black and white colors correspond to the 
two possible values of order parameters for the α 
phase in two-dimensional case, 1 , i.e. to the two 
mutually orthogonal directions of the Bain 
deformation. Time is given in dimensionless units, 

 ρα 2/
~

LJtt  . At significant overcooling (T<MS) 

 
Fig.12. Kinetics of athermal martensitic transformation; T=400K, c=0. [12] 

 
Fig.13. Kinetics of isothermal martensitic transformation; T=800K, c=0. [12] 

 
Fig.14. Heterogeneous nucleation of isothermal martensite, with taking into account the relaxation of elastic stresses; 
T=700K, c=0.01. [13] 
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the homogeneous transition is realized by 
development of all fluctuations inherited upon cooling 
from a high temperature state (see Fig.12). In the 
temperature range MS<T<MS2 the system remains 
stable with respect to small fluctuations, and the phase 
transformation starts with the appearance of critical 
fluctuation after the incubation period (a few 
nanoseconds) and it is realized by replication of 
twinned plates (see Fig.13). The similar mechanism 
was early observed in Ref.[11] at phase field 
simulation of MT in the system with an α phase 
nucleus initially introduced in it. The difference of 
orientation of the neighboring domains reduces the 
elastic energy of the system, but raises its surface 
energy. As a result, the characteristic size of domain is 
determined by minimization of the sum of elastic and 
surface contribution to the total energy. The 
temperature MS2 is defined in this case as a result of 
phase-field simulations in 2D model and it does not 
necessarily coincide with MS', which was early 
obtained (see Fig.11a) from the fitting to experimental 
data. Nevertheless, these temperatures are close; the 
values of MS2 obtained from simulations are 
designated by the solid circles in Fig.11a. 

The elastic stresses play a crucial role in 
martensite transformation. As it is well known, the 
components of the deformations tensor are coupled to 
each other by Saint-Venant's compatibility equations 
(4). It leads to an additional contribution to the G.-L. 
functional and results in effective long-range 
interactions in distribution of order parameters, which 
play a crucial role in pattern formation upon the phase 
transition [9–11].  

As was shown in [111–114], the relaxation of 
elastic stresses during the transformation is an 
important factor determining the martensite 
morphology. The main relaxation channel is the 
plastic deformation arising under local stresses 
exceeding the yield stress. A consequent description 
of the plastic deformation requires an essential 
complication of the model by including additional 
order parameters. Instead, in Ref. [13] the plastic 
deformation has been taken into account in a 
phenomenological way. Since the contribution of the 
elastic stresses to the Ginzburg-Landau free energy 
functional is determined by the coefficients Av, As, the 
real values of these parameters were replaced by some 
effective, temperature-dependent values, 0< eff

vA <Av, 

0< eff
sA <As. The thermal lattice fluctuations can not 

be taken into account in this scheme, since the 
renormalization of Av, As leads to the incorrect change 
of fluctuations amplitude, affecting the start condition 
of homogeneous transition and the morphology of 
martensite. This approach can be considered as 

reasonable for the stage of growth of isothermal 
martensite. It provides the fast stress relaxation and 
the lattice remains coherent during the whole 
transformation process. 

Fig.14 shows the MT kinetics when choosing 
parameters eff

vA , eff
sA  in such a way that the average 

elastic energy over the sample is equal to the 
experimental value of the stored energy in martensite, 
0.007eV/at [132] (i.e. ~10% from the nominal values). 
Herewith, the heterogeneous nucleation is provided by 
additional contribution to the free energy near grain 
boundary (see details in Ref.[13]). In this case the 
martensite is formed as a lenticular colony of twinned 
plates.  

Thus, the proposed model [12,13] reveals two 
types of MT kinetics, athermal and isothermal at 
different temperatures, in accordance with existing 
concepts [133, 2, 22–25]. The experimentally known 
line of the start of MT [18] corresponds to isothermal 
MT, whereas the athermal scenario is more 
hypothetical and it can develop due to short-range 
magnetic order in the γ phase.   

 
7.2. Kinetics of pearlite transformation. Globular 
and lamellar structures. 

The pearlite morphology is similar to that formed 
during discontinuous decomposition [134–136], when 
the supersatured mother phase 0α  decomposes into a 

two-phase structure βαα 0 , where the phases 

0α  and α  have the same crystal structure, but with 
different composition. The model of the spinodal 
decomposition (SD) provoked by grain boundaries 
was proposed for explanation of this phenomenon 
[137]. However, the SD kinetics is not applicable to 
PT, because the mixing energy of carbon in γ-Fe is 
positive (v>0) [57,58] that prevent of the carbon 
inhomogeneity formation in the γ phase. PT is also 
similar to the eutectic colony growth in the absence of 
a temperature gradient [108,109], a process that 
presupposes a realization of the condition of the solid 
solution decomposition. As it was shown recently 
[14], the lamellar structures can arise by an 
autocatalytic mechanism below the critical 
temperature even if the mother phase (austenite) is 
stable with respect to decomposition (v>0) and the 
transition from lamellar structure to globular one takes 
place with temperature increase.  

First of all, let us discuss the possible 
transformation scenarios of decomposition by using 
schematic Fig.15 where free energies of involved 
phases at different temperatures are presented. At a 
high temperature the stable equilibria of α/γ or γ/θ 
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exist in the system and ferrite or cementite will 
precipitate from a γ matrix in different concentration 
intervals (curve a).  At a lower temperature, T<Teutec, 
the γ phase is metastable with respect to the 
decomposition α+γ or γ+θ and, in addition, the stable 
equilibrium of α/θ appears (curve b). The uncorrelated 
nucleation and growth of the α and θ phases inside a 
γ- phase matrix are expected in this case.  

A further decrease in temperature leads to the loss 
of one or both metastable equilibria at a preservation 
of thermodynamic equilibrium between the α and θ 
phases (curves c and d). As a result, the change in the 
decomposition kinetics of austenite is expected, 
because the cooperative formation of the α and θ 
phases becomes preferable. As was shown in Ref. 
[14], in this case the pearlite colony can emerge by 
some kind of autocatalytic mechanism when the 
appearance of one of the phases ( or ) stimulates 
the nucleation of next one, and the lamellar or 
globular structure can form in dependence of the 
temperature. The similar autocatalytic decomposition 
scenario was earlier considered for the system with 
the metastable phase and a symmetric phase diagram, 
and the possibility of such a mechanism of PT was 
discussed in Refs [138,139].  

A key component of the model PT is the start 
condition of the cementite formation. Indeed, 
according to the transformation diagram in Fig.11b, 
when a carbon concentration increases the metastable 
equilibrium of α/γ is achieved before then the 
cementite formation is realized, since the line A3 goes 
much left of T1. To solve this problem, in Ref. [14] it 
was accepted that cementite nucleation is facilitated in 
the thin ferromagnetic region near the ferrite plate 
where so called the Metastable Intermediate Structure 
(MIS) [77] exists. As a result, the line T1 is shifted to 

the left by the value boundc ~0.05 and crosses the line 
A3 at approximately 15% carbon. (see Fig.16). Thus, 
the occurrence of MIS [77], which is a precursor of 
cementite formation, is very important for the kinetics 
of PT.   

On the transformation diagram in Fig.16 there can 
be identified three regions I–III where different PT 
scenarios can be realized in dependence of 
temperature. These regions are determined by 
intersection points of the lines A3 and Acm with bound

1T  
and T0 and correspond to free energies curves b,c,d in 
the Fig.15, respectively.  

 

Fig.15. Variants of phase equilibrium in the system 
with the triple-well potential f(c).  

 

Fig.16. Transformation diagram of carbon steel 
taken into account the facilitation of cementite 
formation near the ferrite boundary. The temperature 
regions I–III are determined by intersection points of 
the two phase region boundaries A3 and Acm with the 

paraequilibrium lines bound
10 ,TT . 

 

Fig.17. Temperature dependences of pearlite 
colonies (1) nucleation rate, (2) growth rate, and (3) 
the effective transformation rate [3]. 
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The formation of the regular lamellar pearlite by 
autocatalytic mechanism is to be expected in region 
III, wherein the instability of austenite in respect to 
the γ→α+θ decomposition appears stepwise with 
decreasing temperature. This agrees with the 
experiment [3]; the temperature dependence of 
pearlite colony nucleation rate, growth rate, and the 
effective transformation rate (see Fig.17) have a 
maximum near the temperature 820K, which indicates 
the thermodynamic instability of austenite.  Moreover, 
the pearlite nucleation rate (in contrast to the growth 
rate) is close to zero at eutecp TTT exp  and changes 

abruptly at exp
pT 820K (similar results were found 

earlier in Refs. [53, 66]). So, the nucleation rate 
appears very slow above 820K, while existing pearlite 
colony can grow. Therefore, the temperature T~820K 
may be considered as an experimental estimation of 
the value )2(

pT  in Fig.16.  

Since PT is realized above the paraequilibrium 
temperature (T>T0), it is controlled by carbon 
diffusion. In this case Eq. (8) can be solved under the 
assumption that the lattice reconstruction is a rather 
fast process in comparison with the characteristic 
diffusion times. In this case, the fast variables te ,  
can be avoided by minimization of the local free 
energy density over these ones, so 

),(),,,( TcfTcef t eff . In result, the G.-L. 
functional have a form: 

  







 drc

k
fTcfF c 2

2
),( eleff               (25) 

 ),(),,(),,(min),( TcfTcfTcfTcf θγαeff  ,                                                        

where  Tcf ,γ(α,θ)  is the local density of the free 

energy of austenite (ferrite, cementite). Since the α 
and θ phases in pearlite colonies are usually 
conjugated with small mismatch and the coherency is 
lost mostly on the transformation front [140] the 
elastic energy contribution elf  was neglected in [14].  

Fig.18 shows the typical evolution of 
transformation patterns arising at overcooling of 
austenite into the region III of the transformation 
diagram. Carbon is pushed out from an embryo of 
ferrite because its solubility in the α phase is much 
lower than in the γ phase. Since c(A3)>c( bound

1T ) (see 
Fig.16, the region III), the local metastable phase 
equilibrium of α/γ can not be reached, and the 
formation of cementite takes place. The growth of the 
arising cementite nucleus leads to depletion of carbon 
in surrounding austenite. Since c(Acm)<c(T0) (see 
Fig.16, the region III), the local metastable phase 
equilibrium of θ/γ also can not be reached, and the 

new ferrite layer is formed near the θ phase. The 
process described above is repeated, so the 
corresponding mechanism can be considered as 
autocatalytic. Phase-field simulation shows that a fine 
lamellar structure is formed in this case and the 
movement of the front of pearlite colony is 
accompanied by increasing its transverse size. As a 
result, the pearlite colony becomes of a fan-type shape 
in accordance with experiment [3, 53, 74]. Note that a 
similar fan-type pearlite structure appears, if we start 
from one cementite embryo instead of the case of 
ferrite.  

Fig.19 shows the decomposition kinetics in the 
case, where the metastable equilibrium of the γ phase 
with cementite exists in the region II, but its 
equilibrium with ferrite is impossible, i.e. )2()1(

pp TT  . 

In this case the PT starts only with ferrite embryos, 
since they alone can not be in equilibrium with 
austenite. The condition of autocatalytic 
multiplication of lamellae is violated and the phase-
field simulation demonstrates the relevance of 
globular structure. As in the previous case, carbon is 
pushed out from the embryo of ferrite and the 
nucleation of cementite takes place. However, in this 
case the line Acm is achieved before the critical 
concentration c(T0) does, so that the metastable phase 
equilibrium of γ/θ is realized, and the new ferritic 
layer does not appear. As a result, the other scenario 
of transformation takes place, which results in 
numerous small cementite precipitates in the single 
ferritic matrix.   

In the region I in Fig.16 austenite is decomposed 
by conventional nucleation-and-growth mechanism, 
as was discussed in Ref.[13], and we do not show 
corresponding pictures here. Carbon is pushed out 
from the ferrite embryo and its concentration near 
ferrite interface reaches the value determined by A3 
curve. Since c(A3)<c( bound

1T ), the metastable phase 
equilibrium of α/γ is reached, and the formation of 
cementite does not occur in this case. And vice versa, 
if we start from one cementite embryo, the metastable 
phase equilibrium of γ/θ is realized and ferrite does 
not occur because c(Acm)>c(T0).  

Thus, the two possible scenarios of pearlite 
transformation, lamellar and globular, are possible 
within the model presented in [14], and second one is 
realized at a higher temperature. The autocatalytic 
decomposition described above differs from the well- 
known spinodal decomposition (SD) by the fact that 
the γ phase loses its stability in respect to large 
composition deviations (near the existing 
precipitates), so that decomposition is realized by the 
scenario of colonies growth, while during SD the 
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homogeneous instability of solid solution in respect to 
small compositional fluctuations develops in the bulk. 

The nucleation of globular pearlite, also known as 
Divorced Eutectoid Transformation (DET), attracts an 
essential interest [71–75]. This state is usually 
produced by the heating of the existing lamellar 
pearlite above the temperature Teutec until the 
cementite is almost completely dissolved, and then the 
cooling below the temperature Teutec is carried out. As 
a result, the observed PT morphologies is similar to 
the Fig.19, wherein the numerous precipitations of 
cementite are immersed in the single α matrix with a 
pronounced transformation front. According the 
conventional point of view, the cementite nucleuses 
are storing in the γ matrix after the heating and grow 
upon a subsequent small overcooling below Teutec , 
while the nucleation of lamellar structure do not occur 

before completion of DET. This scenario is consistent 
with the transformation in the region I (see Fig.16). 
Moreover, in Ref.[72] it was pointed out that the 
globular pearlite is realized in hypoeutectoid steels 
even at overcooling from an almost homogeneous 
state, thus the number of cementite globules after the 
DET is much more than the number of potential 
nuclei. In the context of presented phase-field 
simulations (Fig.19), this fact may indicate that the 
kinetics of globular pearlite includes the autocatalytic 
nucleation of the new cementite globules, as it occurs 
in the region II of transformation diagram.     

Variation of the parameters leads to some changes 
of the precipitates morphology. We only discuss the 
general trends observed in the calculations. The 
interlamellar spacing decreases with the decreasing of 
temperature T in accordance with known classical 

 
Fig.18. Kinetics of lamellar structure growth from a nucleus placed on the grain boundaries junctions (ferrite nucleus 
on the bottom left and cementite nucleus on the upper right are indicated by arrows); T=675K, c0=0.06, γv =1.5 eV/at  

[14].  The carbon concentration is indicated by the gray scale; the black color corresponds to ferrite, and the white to 

cementite. The time is given in dimensionless units, αDL /2 . The embryos of ferrite and cementite are introduced 

into the initial state, lower left and upper right corner of the calculation square, respectively. 

 

Fig.19. Kinetics of globular colony growth from a ferrite nucleus; T=800K, c0=0.06, γv =1.5 eV/at  [14]. 

 

Fig.20. Kinetics of lamellar structure growth from a nucleus of ferrite; T=675K, c0=0.06, γv =2 eV/at. 
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concepts [3]. The ratio of the temperatures )1(
pT , )2(

pT  

can be changed by varying of the parameters FM(PM)γ  

and γv . The tendency of lamellar structure formation 

increases with increasing γv  (see Fig.20), however, 

the morphology of lamellae differs from the 
conventional pearlitic structure (the concentric layers 
instead of radial strips are observed). In our opinion, 
the elastic stresses can play an essential role in the 
orientation of lamellae, which are not taken into 
account in the simplified G.-L. functional, Eq.(25).  

The qualitative conclusions presented here are 
quite general and they can be attributed to other 
eutectoid systems, for example to the alloy Zn-Al 
[50], where the lamellar structures are also formed. In 
the same time, the proposed model does not explain 
the appearance of a small number of colonies of 
coarse lamellar pearlite, which is observed in the 
temperature range eutecp TTT exp  [3], i.e. together 

with DET. So, additional factors should be taken into 
account (such as incompatibility elastic stresses) to 
provide more reliable results of calculations.  

7.3. Scenarios of ferrite and intermediate 
transformations.  

The ferrite transformation (FT) starts just after the 
cooling below the line A3 and results in the appearance 
of almost pure bcc-iron (α phase). Because driving 
force in this case is rather small, the transformation 
usually starts on grain boundaries where nucleation is 
facilitated. Since carbon solubility in the α phase is 
very small, the carbon is pushed out into the γ matrix, 
which results in the appearance of the regions 
depleted or enriched in carbon. FT is a diffusion-
controlled phase transformation, so that nucleus of the 
α phase can not grow without carbon redistribution in 
this case. The temperature region of diffusion 
controlled growth of the α phase is T0<T<A3 (see 
Fig.11b) and the condition where ferrite can grow 
without cementite formation is T>Teutec.  

It is necessary to pay attention to the two 
important features of FT. At first, the gain of free 
energy in the formation of ferrite is small (see Fig.9b), 
therefore the realization of FT requires almost 
complete relaxation of elastic stresses. Secondly, FT 
is even observed experimentally above the Curie 
temperature, T>TC, thus it is due to short-range 
magnetic order in the absence of long-range order.   

Fig.21 shows the kinetics of FT when the solution 
of the complete set of equations for shear-diffusion 
transformations is carried out. The upper and lower 

rows of images correspond to the shear order 
parameter and carbon concentration, respectively. 
Time is given in dimensionless units, 

 ρα 2/
~

LJtt  . It was supposed, the elastic stresses 

are absent,  ffe
vA = eff

sA =0, and the additional 
contribution to the free energy exist near the grain 
triple junctions and boundaries (see [13] for details). 
The growing polygonal ferrite precipitates, 
surrounded by a carbon shell, are observed in 
accordance with experiments [6].  

In the temperature range MS’<T<T0 the model 
demonstrates several possible scenarios. As was noted 
in the discussion of a transformation diagram, at 
temperature T<T0 the lattice reconstruction γ→α can 
occur even if homogeneous carbon distribution is 
retained. However, the diagram (Fig.11) was 
constructed without taking into account the 
contribution of elastic stresses to the free energy. As 
was discussed in [13], the nominal contribution of 
elastic stresses is very large, but it decreases due to 
plastic deformation. The effective values ffe

vA , ffe
sA  

can be roughly estimated from experimental data on 
the residual stresses [4]. As a result, the start 
temperature of shear transformation decreases, 
Tstart<T0. Therefore, transformation scenario in the 
temperature range MS’<T<T0 depends on degree of 
undercooling. Here we restrict ourselves to discussion 
of the scenarios of ferrite nucleation and growth in the 
presence of elastic stresses, without the cementite 
formation, and we call them scenarios of intermediate 
transformation. 

At elevated temperatures the transformation is 
controlled by carbon diffusion, as in the case of ferrite 
formation, but the precipitate of α phase acquires a 
plate form, like bainitic or Widmanstatten ferrite 
(Fig.22). At lower temperatures the ferrite nucleus 
appears and grows by shear mechanism, up to some 
critical size, determined by increasing elastic stresses 
(Fig.23). In this case the depletion of carbon of an α 
plate and its diffusive growth occurs in the second 
stage. Besides, at the same temperatures, but at a large 
amplitude of the initial perturbation on GB, the sheaf 
of ferrite plates can be formed, in which the elastic 
stresses produced by tetragonal deformations are 
compensated (Fig.24). For large times, the carbon 
accumulates at the boundaries of ferrite plates, where 
its concentration reaches the big values, and cementite 
nuclei may appear. 
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The scenarios of intermediate transformation 
shown in Fig.22–24 may be associated with upper and 
lower bainite. Indeed, the opinion that upper bainite 
emerges by diffusion and lower bainite by shear 
mechanism is widespread [19]. However, the stopping 
of growth of plates in the presented calculation is due 
to the boundary conditions, whereas the stopping of 
bainitic plate growth is explained by lattice coherency 
disturbance on the boundary γ/α after the plastic 
deformation [4]. Herewith, all subunits in the bainite 
colony have the same orientation; this is problematic 
without coherency disturbance on the colony front. 

Thus, the proposed model describes the main 
peculiarities of ferrite and some features of initial 
stages of bainite transformations. The consistent 
model of bainite transformation should take into 
account the plastic deformation more correctly, 
including the loss of lattice coherency at the γ/α  
boundary when the critical size of ferrite subunits is 
reached. 

8. EFFECT OF EXTERNAL MAGNETIC FIELD 
ON THE START OF PHASE 
TRANSFORMATIONS 

The effect of powerful pulsed magnetic field on 
the martensitic transformation (MT) in steel was first 
discovered in Ref.[141]. In Ref. [142, 143] it was 
shown that the magnetic field linearly shifts the start 
temperature of MT ( exp

SM  increases by about 0.5 
degree in the field H=1kOe). In Ref. [144, 145] it was 
concluded that the pulsed magnetic fields do not affect 
the isothermal MT, but can provoke the athermal MT, 
leading to the specific distinctive morphology of 
martensitic crystals. This was explained as follows: 
the rate of athermal MT is close to the impulse 
duration (~10-3 sec), while the rate of isothermal MT 
is much less (ten minutes), so that isothermal MT can 
be realized only in a powerful static field; such fields 
were not available in Ref. [144, 145]. In Ref. [146] it 

  

Fig.21. Kinetics of formation of polygonal ferrite at 
triple grain junctions, T=1000K, c0=0.01 [13]. 

Fig.22. Diffusion-controlled nucleation and growth of 
bainitic ferrite plate with taking into account the elastic 
stresses, T=850K, c0=0.01. 

  

Fig.23. Shear-controlled nucleation and growth of 
bainitic ferrite plate with taking into account the elastic 
stresses, T=800K, c0=0.01. 

Fig.24. Shear-controlled nucleation and growth of the 
sheaf of bainitic ferrite plates, T=800K, c0=0.01[13]. 
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was shown that the static field shifts the start 
temperature of isothermal MT. Futher investigation 
has pointed out that the static magnetic field 50kOe 
also accelerates the pearlite and bainite 
transformations, herewith the start temperature shifts 
by 10 degrees [145]. The interest to the effect of 
external magnetic field on the kinetics of diffusion 
controlled transformations increases in recent years 
[147–150]. In particular, it was found that the 
magnetic field enhance the mass fraction of 
proeutectoid ferrite and influences the morphology of 
cementite precipitates.   

To explain the effect of magnetic field on MT, the 
Krivoglaz-Sadovsky equation was proposed [145, 
151]. According to this formula, the magnetic field 
shifts the thermodynamic equilibrium to the formation 
of a magnetic α phase  

qHMVTT /0 αα ,                                        (26) 

where T0 is the start temperature of the γ→α 
transformation, αV , αM  are the volume and the 
magnetization of the α phase, H is the magnetic field, 
q is the heat of transformation. Also, the formula for 
the shifting of solubility limits was obtained from the 
condition of equality of chemical potentials of the 
phases:  
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where )(Hci , )0(ic  are solubility limits in the 
magnetic field and without it.  

It should be noted that the Eqs (26), (27) 
correspond to the lines T0, A3 (see Fig.11) determined 
by equilibrium conditions, while the lines MS, MS' are 
related to the barrier on the Bain path. Thus, formulas 
(26), (27) can not be used for the analysis of a 
martensitic transformation, contrary to the popular 
belief. According to the model [13], the athermal MT 
is due to the appearance of short-range magnetic order 
in the γ phase, and isothermal MT depends on the 
energy of some intermediate state near the γ phase on 
the Bain path.   

The transformation diagram in the case of the 
presence of external magnetic field is presented in 
Fig.25. Here we used the general formulas (10)–(11) 
with an additional contribution 0Hgβ  and formulas 
(13) –(15) for the spin correlation function. The 
external magnetic field increases the degree of order 
near the Curie temperature, which results in increase 
of the spin correlator magnitude and the shift of lines 
of the transformation diagram. Herewith, the change 
of the magnitude of the correlator depends on a 
tetragonal deformation,  

 )(1)(),(  sγαγ fQQQTQ HHHH  , (28) 

where HQγ(α)  is the change of correlator in γ(α) 
phases, and )(sf  is the function characterizing the 
magnetic susceptibility in intermediate lattice states. 
Fig.26 shows the transformation diagram "under" the 
field H=50kOe in the case of 22 )1()(  sf  

(curves A3(1), T0(1), MS(1), MS'(1)) and  1)(sf  

(curves A3(2), T0(2), MS(2), MS'(2)). One can see that the 
lines A3, T0 do not depend on the choice of )(sf , 
whereas the lines MS, MS' are very sensitive to this.  

Thus, the proposed model allow us to find the 
shifts of the lines A3, T0 in agreement with Refs.[145], 
and it also shows that the formulas (26), (27) can not 
be used for the lines MS, MS'. The construction of 
these lines under external magnetic field is to be a 
separate problem and requires a justification of the 
form of )(sf . 

9. CONCLUSIONS AND OUTLOOK 

The problem of the phase transformations and 
microstructure formation in iron and steel is to be in 
scope of interest for a long time and is actively 
discussed by now [1–6, 19, 22]. Nevertheless, despite 
great efforts, the number of important questions are 
still under debates. One of the reasons for this is the 
complexity of the phase transformations in iron based 
alloys that involve both lattice and magnetic degrees 

 

Fig.25. The transformation diagram "under" external 
magnetic field, H=50kOe. The lines A3(1), T0(1), MS(1), 
MS'(1) and A3(2), T0(2), MS(2), MS'(2) correspond to the 
choice of 22 )1()(  sf  or  1)(sf , 

respectively. The dotted lines A3, T0, MS, MS'  
correspond to the absence of external field. 
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of freedom, as well the carbon redistribution, which 
also plays an important role. Besides, the processes of 
transformation involve several spatial scale levels, 
from microscopic (atomistic) to macroscopic (at the 
level of the grain size).  

Starting with a conceptual work by Zener [37], it 
is believed that magnetism plays a crucial role in the 
phase transformations in iron and steels. However, all 
early proposed models are too phenomenological, so 
their correct choice is impossible. In this review we 
have presented recent progress in understanding of 
microscopic mechanisms of phase transformations in 
iron and steel. This progress was possible, on the one 
hand, due to the widely using of ab initio methods for 
calculation of the electronic structure and total energy 
in different structural and magnetic states of iron [7, 8, 
35, 36, 58, 77, 120, 126, 152], and, on the other hand, 
due to applications of the atomistic simulations within 
the phase-field approach [81] to the transformations 
kinetics [9–14, 48, 74, 75, 111, 112].  

The rapid development of computing technology 
offers the prospect for the research of realistic 
transformations kinetics in 3D-models depending on 
cooling rate and concentrations of alloying elements. 
In that connection the task of constructing of the 
consistent ab initio based model of phase 
transformations in steel, describing the shear-diffusion 
transformation kinetics and taking into account the 
magnetic degree of freedom is very relevant. 

The recently proposed model [12–14] agrees well 
with the known experimental data and predicts the 
start temperatures of different transformations (ferrite, 
pearlite, bainite, martensite). It was shown that the 
magnetism provides the main contribution to the 
change of free energy at the γ → α transformation. 
Therefore, the increase of short-range magnetic order 
plays a key role in the change of transformation 
scenarios (from ferrite to martensite) under cooling. 
Phase-field simulation carried out in the framework of 
the proposed model reproduces the typical precipitates 
morphology, including ferrite, twinned martensite, 
and pearlite colonies.  

The ferrite transformation starts at a temperature 
below A3 due to the short-range magnetic order (with 
a possible absence of long-range order) and requires 
the essential relaxation of the elastic stresses. The 
pearlite transformation results in the formation of a 
regular structure due to autocatalytic mechanism, 
which is realized in the absence of thermodynamic 
equilibrium between initial austenite and 
transformation products (ferrite and cementite). Two 
types of autocatalysis were revealed leading to a 
lamellar or globular pearlite structure depending on 
the temperature. Also two types of intermediate 

(bainite) transformations were observed below the 
paraequilibrium temperature T0 in phase-field 
modeling. These are diffusion and shear-controlled 
transformations, which can be associated with upper 
and lower bainite, respectively. The experimental 
curve of the start of martensitic transformation (MT) 
corresponds to the conception of isothermal 
martensite, whereas the classical (athermal) scenario 
of MT is due to the short-range magnetic order in γ-
Fe, which arises at lower temperature. The model 
allows us to consider an effect of external magnetic 
field on the curves of the start of ferritic and bainitic 
transformations in agreement with the Krivoglaz-
Sadovsky concept [145], and reveals inapplicability of 
this concept to a martensitic transformation. 

Despite the significant progress in recent years, a 
number of problems remain unresolved, including 
peculiarities of bainitic microstructure with taking into 
account the cementite formation, the role of elastic 
stresses, and their plastic relaxation in growth kinetics 
of the pearlite and bainite colonies, the effect of 
alloying elements on the thermodynamics and kinetics 
of phase transformations. Also the dimension of 
model (2D or 3D) is essential for the kinetics [28, 29, 
87, 112], so that more realistic simulations should be 
based on 3D models. 

According to modern views [4] the role of plastic 
deformation increases with temperature; this is a 
principal channel of elastic energy relaxation in the 
case of ferrite transformation, while the relaxation of 
elastic energy in the case of martensitic 
transformation is provided by twinning of plates. 
Herewith, plastic deformation causes the bainite 
morphology, since the characteristic size of the 
bainitic subunits is determined by the start condition 
of plastic deformation, disturbing the lattice 
coherency at the interface γ/α.  

Thus, the essential contours of an ab initio based 
theory of phase transformations in iron and steel are 
formed. The further development of the theory and its 
applications to complex alloyed steels at various 
cooling regimes should lead to practical applications 
that are significant for metallurgical production.  

The research was carried out within the state 
assignment of FASO of Russia (theme “Magnet” 
№01201463328).  

REFERENCES 
1. Kwon O. What's new in steel? // Nature Materials. 2007. 

V.6. P.713 
2. Kurdjumov G.V., Utevski L.M., Entin R.I. Transformation 

in iron and steel. Moscow: Nauka, 1977. 239 pp. [In 
Russian] 



 

 

 

24 

3. Schastlivtsev V.M., Mirzaev D.A., Yakovleva I.L. Pearlite 
in Carbon Steels. Ekaterinburg: Ural. Otd. Ross. Akad. 
Nauk, 2006. 311 pp. [In Russian] 

4. Bhadeshia H.K.D.H. Bainite in steels. London: IOM 
Communications Ltd, 2001. 460 pp. 

5. Leslie W.C., Hornbogen E. Physical metallurgy of steels, 
in Physical Metallurgy. V. 2. Ed. by Cahn R.W., 
Haasen P. Elsevier, 1996. P.1555–1620 

6. Bhadeshia H.K.D.H., Honeycombe R.W.K. Steels: 
Microstructure and Properties. Ed.3. Oxford: 
Butterworth–Heinemann, 1995. 360 pp. 

7. Okatov S.V., Kuznetsov A.R., Gornostyrev Yu.N., Urtsev 
V.N., Katsnelson M.I. Effect of magnetic state on the γ-
α transition in iron: First-principles calculations of the 
Bain transformation path. // Phys. Rev. B. 2009. V.79. 
094111 (4 pp) 

8. Okatov S.V., Gornostyrev Yu.N., Lichtenstein A.I., 
Katsnelson M.I. Magnetoelastic coupling in γ-iron //  
Phys. Rev. B. 2011. V.84. 214422 (8 pp) 

9. Rasmussen K.Ø., Lookman T.,  Saxena A., Bishop A.R., 
Albers R.C., Shenoy S.R. Three-Dimensional Elastic 
Compatibility and Varieties of Twins in Martensites //  
Phys. Rev. Lett. 2001. V.87. №5. 055704 (4 pp) 

10. Bouville M., Ahluwalia R.  Interplay between Diffusive 
and Displacive Phase Transformations: Time-
Temperature-Transformation Diagrams and 
Microstructures // Phys. Rev. Lett. 2006. V.97. 055701 
(4 pp) 

11. Shenoy S.R., Lookman T., Saxena A., Bishop A.R. 
Martensitic textures: Multiscale consequences of 
elastic compatibility. // Phys. Rev. B. 1999. V.60. 
№18. R12. P.537–541 

12. Razumov I.K., Gornostyrev Yu.N., Katsnelson 
M.I. Effect of magnetism on kinetics of γ–
α transformation and pattern formation in iron. // J. of 
Physics: Cond. Mat. 2013. V.25. №13. 135401 

13. Razumov I.K., Boukhvalov D.V., Petrik M.V., Urtsev 
V.N., Shmakov A.V., Katsnelson M.I., Gornostyrev 
Yu.N. Role of magnetic degrees of freedom in a 
scenario of phase transformations in steel // Phys. Rev. 
B. 2014. V.90. 094101 (8 pp) 

14. Razumov I.K., Gornostyrev Yu.N., Katsnelson M.I. 
Autocatalytic mechanism of pearlite transformation. 
Submitted in Phys. Rev. Applied. 

15. Bernshtein M.L., Kurdjumov G.V., Mes'kin V.S., Popov 
A.A, Sadovsky V.D., Skakov Yu.A., Schastlivtsev V.M., 
Taran Yu.N., Utevsky L.M.,Entin R.I. The Iron-Carbon. 
/In.: Metallurgy and Heat Treatment of steel and cast 
iron, V.3, Eds. Rakhshtadt A.G., Kaputkina L.M., 
Prokoshkin S.D., Supov A.V. Intermet Engineering, 
Мoscow, 2005 [In Russian] 

16. Okamoto H. The C-Fe (Carbon-Iron) System. // J. of 
Phase Equilibria. 1992. V.13. N5. P.543–565 
Eisenhüttenw. 1961. V.32. P.251–260 

17. Kaufman L., Radcliffe S.V., Cohen M. //In: 
Decomposition of Austenite by Diffusional Processes. 
Ed. by Zackay V.F. and Aaronson H.I. AIME, New 
York: Interscience Publishers, 1962. 

18. Liu C., Zao Z., Northwood D.O., Liu Y. A new 
empirical formula for the calculation of MS 

temperatures in pure iron and super-low carbon alloy 
steels // J. Mater. Process. Technol. 2001, V.113, 
P.556–562 

19. Fielding L.C.D. The Bainite Controversy. // Mat.Sci. 
and Technology. 2013. V.29. №4. P.383–399 

20. Bhadeshia H.K.D.H., Svensson L.-E. Modelling the 
Evolution of Microstructure in Steel Weld Metal. /in: 
Mathematical Modelling of Weld Phenomena, eds. 
Cerjak H., Eastering K.E. London: Institute of 
Materials, 1993. P.109–182 

21. Zener C. Kinetics of Decomposition of an Austenite // 
Trans. AIME. 1946. V.167. P.550–595 

22. Kurdjumov G.V. Non-diffusional (martensitic) 
transitions in alloys // Doklady AN SSSR 1948. V.60. 
№9. P.1543–1546 

23. Cohen M., Machlin E.S., Paranjpe V.G. 
Thermodynamics of the Martensitic Transformation // 
in: Thermodynamics in Physical Metallurgy. Am. Soc. 
Metals, Cleveland, 1950. 242 pp. 

24. Shih C.H., Averbach B.H., Cohen M. Some 
Characteristics of the Isothermal Martensitic 
Transformation // Trans. AIME. 1955. V.203. P.183 

25. Cech R.E., Turnbull D.J. Heterogeneous nucleation of 
the martensite transformation // Trans. AIME. 1956. 
V.206. P.124–132 

26. Bein E.C. The nature of martensite // Trans. AIMME. 
1924. V.70. P.25–46 

27. Kurdjumov G.V., Sachs G. Over the mechanisms of 
steel hardering // Z. Phys. 1930. V.64. P.325–343 

28. Barsch G.R., Krumhansl J.A. Twin Boundaries in 
Ferroelastic Media without Interface Dislocations //  
Phys. Rev. Lett. 1984. V.53. №11. 1069–1072.   

29. Krumhansl J.A., Gooding R.J. Structural phase 
transitions with little phonon softering and first-order 
character // Phys. Rev. B. 1989. V.39. №5. P.3047–
3056 

30. Hume-Rothery W. Properties and Conditions of 
Formation of Intermetallic Compounds // J. Inst. Met. 
1926. V.35. P.295–361 

31. Katsnelson M.I., Naumov I., Trefilov A.V. Singularities 
of the electronic structure and premartensitic anomalies 
of lattice properties in beta-phases of metals and alloys 
// Phase Transitions. 1994. V.49. P.143–191 

32. De Fontaine D, Kikuchi R. Bragg-Williams and Other 
Models of the Omega Phase Transformation // Acta 
Metall. 1974. V.22. P.1139–1146 

33. Cook H.E. On First-Order Structural Phase Transitions 
// Acta Metall. 1975. V.23. P.1027–1054 

34. Neuhaus J., Petry W., Krimmel A. Phonon softening and 
martensitic transformation in α-Fe // Physica B. 1997. 
V.234-236. P.897–899 

35. Leonov I., Poteryaev A.I., Anisimov V.I., Vollhardt D. 
Calculated phonon spectra of paramagnetic iron at the 
α-γ phase transition // Phys. Rev. B. 2012. V.85. 
020401 (4 pp) 

36. Körmann F., Dick A., Grabovski B., Hickel T., 
Neugebauer J. Atomic forces at finite magnetic 
temperatures: Phonons in paramagnetic iron // Phys. 
Rev. B. 2012. V.85. 125104 (5 pp) 

http://poppy.ifmlrs.uran.ru/db/view.php?journal=3084


 

 

 

25 

37. Zener C. Elasticity and Anelasticity of Metals. Chicago: 
University of Chicago Press, 1948 

38. Kaufman L., Clougherty E.V., Weiss R.J. Lattice 
stability of metals. 3. Iron. // Acta Metall. 1963. 
V.11. P.323–335 

39. Hasegawa H., Pettifor D.G. Microscopic Theory of the 
Temperature - Pressure Phase Diagram of Iron // Phys. 
Rev. Lett. 1983. V.50. P.130–133 

40. Boukhvalov D.W., Gornostyrev Yu.N., Katsnelson M.I., 
Lichtenstein A.I. Magnetism and Local Distortions near 
Carbon Impurity in γ-Iron // Phys. Rev. Lett. 2007. 
V.99. 247205 (4 pp) 

41. Hultrgen A. Isothermal transformation of austenite. 
Trans. ASM. 1947. V.39. P.915–1005 

42. Hillert M. Paraequilibrium. Technical report, Swedish 
Institute for Metals Research, Stockholm, Sweden, 
1953 

43. Klier E.P., Lyman T. The bainite reaction in 
hypoeutectoid steels // Trans. AIMME. Met. Technol. 
1944. P. 395–422 

44. Ko T., Cottrell S.A. The formation of bainite // J. Iron. 
Steel Inst. 1952. V.172. P.307–313 

45. Hillert M. The growth of ferrite, bainite and martensite. 
Internal report, Swedish Institute for Metals Research, 
Stockholm, Sweden, 1960 

46. Hultgren J. // J. Iron. Steel Inst. 1926. V.114. P.421–
422 

47. Christian J.W. The origins of surface relief effects in 
phase transformations. //In: Decomposition of 
Austenite by Diffusional Processes. Ed. by Zackay 
V.F. and Aaronson H.I. AIME, New York, 
Interscience, 1962. P.371–386 

48. Hillert M., Hoglund L., Agren J. Role of carbon and 
alloying elements in the formation of bainitic ferrite. // 
Metall. Mater. Trans. A. 2004. V.35. P.3693–3700 

49. Aaronson H.I. The Mechanism of Phase 
Transformations in Crystalline Solids. London: The 
Institute of Metals, 1969. 270 pp. 

50. Ling F.-W., Laughlin D.E. The Kinetics of 
Transformation in Zn-Al Superplastic Alloys // 
Met.Trans. A. 1979. V.10A. P.921–928 

51. Adorno A.T., Benedetti A.V., Da Silva R.A.G., Blanco 
M. Influence of the Al content on the phse 
transformation in Cu-Al-Ag alloys. // Ecletica 
Quimica. 2003. V.28. №1. P.33–38 

52. Das A., Gust W., Mittemeijer E.J. Eutectoid 
transformation in Au-39 at.%In. // J. Mat.Sci and Tech. 
2000. V.16. P.593–598   

53. Abbaschian R., Abbaschian L., Reed-Hill R. Physical 
Metallurgy Principles. SI Version. Stamford, CT: 
Cengage Learning, 2009. 750 pp. 

54. Kral M.V., Mangan M.A., Spanos G. Three-dimensional 
analysis of microstructures. // Materials 
Characterisation. 2000. V.45. P.17–23 

55. Graef M.D., Kral M.V., Hillert M. A modern 3D view 
of an old perlite colony. // J. Metals. 2006. V.58. P.25–
28 

56. Cahn J.W., Hilliard J.E. Free energy of a nonuniform 
system. I. Interfacial free energy // J.Chem.Phys. 1958. 
V.28. P.258–267 

57. Bhadeshia H.K.D.H. Carbon–Carbon Interactions in 
Iron. // J. Mat. Sci. 2004. V.39. P.3949–3955 

58. Ponomareva A.V., Gornostyrev Yu.N., Abrikosov I.A. 
Energy of interaction between carbon impurities in 
paramagnetic γ - iron // JETP. 2015. V.120. №4. 
P.716–724 

59. Hillert M. Solid State Phase Transformation // 
Jemkontorets Annaler. 1957. V.141. №11. P.757–790 

60. Turnbull D. Theory of cellular precipitation. // Acta 
Metall. 1955. V.3. №1. P.55–63 

61. Sundquist B.E. The edgewise growth of pearlite // Acta 
Metall. 1968. V.16. №12. P.1413–1422 

62. Vaks V.G., Stroev A.Yu. Kinetics of the eutectoid colony 
growth in a solid solution for simple alloy models // 
JETP. 2008. V.107. №1. P.90–101 

63. Vaks V.G., Stroev A.Y., Urtsev V.N., Shmakov A.V. 
Experimental and theoretical study of the formation 
and growth of pearlite colonies in eutectoid steels // 
JEPT. 2011. V.112. №6. P.961–978 

64. Yamanaka A., Yamamoto T., Takaki T., Tomita Y. 
Multi-Phase-Field Study for Pearlite Transformation 
with Grain Boundary Diffusion. IV International 
Conference Multiscale Materials Modeling 
(MMM2008) (October 27-31, 2008, Florida, USA) 

65. Ankit K., Choudhury A., Qin C., Schulz S., McDaniel 
M., Nestler B. Theoretical and numerical study of 
lamellar eutectoid growth influenced by volume 
diffusion. // Acta Mater. 2003. V.61. P.4245–4253 

66. Mehl R.F., Dubé A. The eutectoid reaction. / in: Phase 
Transformation in Solids. Ed. by Mayer J.E. 
Smoluchowski R. and Weyl W.A. New York: John 
Wiley and Sons, Inc., 1951. P. 545–582 

67. Smith G.V., Mehl R.F. Lattice relationships in 
decomposition of austenite to pearlite, bainite and 
martensite. // Trans. AIME. 1942. V.150. P.211–226 

68. Nicholson M.E. On the nucleation of pearlite. // Journal 
of Metals. 1954. V.6. P.1071–1074 

69. Tu K.N., Turnbull D. Morphology and structure of tin 
lamellae formed by cellular precipitation // Acta 
Metall. 1969. V.17. P.1263–1279 

70. Hillert M. The formation of pearlite / in: Decomposition 
of Austenite by Diffusional Processes.  Ed. by Zackay 
V.F. and Aaronson H.I. New York: Interscience, 1962. 
P.197–237 

71. Pandit A.S., Bhadeshia H.K.D.H. Divorced pearlite in 
Steels. // Proceedings of the Royal Society A. 2012. 
V.468. №2145. P.2767–2778 

72. Verhoeven J.D., Gibson E.D. The divorced eutectoid 
transformation in steel. // Metallurgical and Materials 
Transactions A. 1998. V.29. №4. P.1181–1189 

73. Oyama T., Sherby O.D., Wadworth J., Walser B. 
Application of the divorced eutectoid transformation to 
the development of fine-grained, spheroidized 
structures in ultrahigh carbon steels. // Scripta Metall. 
1984. V.18. P.799–804 

74. Ankit K., Mukherjee R., Mittnacht T., Nestler B. 
Deviations from cooperative growth mode during 
eutectoid transformation: insights from phase field 
approach. // Acta Mater. 2014. V.81. P.204–209 



 

 

 

26 

75. Ankit K., Mukherjee R., Nestler B. Deviations from 
cooperative growth mode during eutectoid 
transformation: Mechanisms of polycrystalline 
eutectoid evolution in Fe-C steels. // Acta Mater. 2015. 
V.97. P.316–324 

76. Vaks V.G., Khromov K.Yu. On the theory of austenite-
cementite phase equilibria in steels // JETP. 2008. 
V.106. №2. P.265–279 

77. Zhang X., Hickel T., Rogal J., Fähler S., Drautz R., 
Neugebauer J. Structural transformations among 
austenite, ferrite and cementite in Fe-C alloys: A 
unified theory based on ab initio simulations //Acta 
Mater., 2015. V.99. P.281–289 

78. Aaronson H.I. Atomic machanisms of diffusional 
nucleation and growth and comparisons with their 
counterparts in shear transformations // Metall. Trans. 
A. 1993. 24A. 241–276 

79. Ali A., Bhadeshia H.K.D.H. Nucleation of 
Widmanstätten Ferrite. // Mater.Sci.Technol. 1990. 
V.6. P.781–784 

80. Yamanaka A., Takaki T., Tomita Y. Phase-Field 
Simulation of Austenite to Ferrite Transformation and 
Widmanstätten Ferrite Formation in Fe-C Alloy. // 
Materials Transactions. 2006. V.47. №11. P.2725–
2731 

81. Chen L.Q., Khachaturyan A.G. Dynamics of 
simultaneous ordering and phase-separation and effect 
of long-range. // PRL. 1993. V.70. P.1477–1480 

82. Allen S.M., Cahn J.W. Mechanisms of Phase 
Transformations within the Miscibility Gap of Fe-Rich 
Fe-Al Alloys // Acta Metall. 1976. V.24. P.425–437 

83. Bray A.J. Theory of phase-ordering kinetics. //Advances 
in Physics. 1994. V.43. №3. P.357–459 

84. Falk F. Model free-energy, mechanics and 
thermodynamics of shape-memory alloys // Acta 
Metall. 1980. V.28. P.1773–1780 

85. Onuki A.  Pretransitional Effects at Structural Phase 
Transitions // J. Phys. Soc. Jpn. 1999. V.68. P.5–8 

86. Kartha S., Krumhansl J.A., Sethna J.P., Wickham L.K. 
Disorder-driven pretransitional tweed pattern in 
martensitic transformations // Phys. Rev. B. 1995. 
V.52. №2. P. 803–822 

87. Baus M., Lovett R. Generalization of the stress tensor to 
nonuniform fluids and solids and its relation to Saint-
Venant's strain compatibility conditions // Phys.Rev. 
Lett. 1990. V.65. №14. P.1781–1783 

88. Khachaturyan A.G. Theory of Structural 
Transformations in Solids. New York: Dover, 2008. 
592 pp. 

89. De’Bell K., MacIsaac A.B., Whitehead J.P. Dipolar 
effects in magnetic thin films and quasi-two-
dimensional systems // Rev. Mod. Phys. 2000. V.72. 
P.225–257 

90. Schmalian J., Wolynes P.G. Stripe Glasses: Self-
Generated Randomness in a Uniformly Frustrated 
System // Phys. Rev. Lett. 2000. V.85. P.836–839 

91. Jagla E.A. Numerical simulations of two-dimensional 
magnetic domain patterns // Phys. Rev. E. 2004. V.70. 

№4. 046204 (7 pp) 

92. Emery V.J., Kivelson S.A. Frustrated electronic phase 
separation and high-temperature superconductors // 
Physica C. 1993. V.209. P.597–621 

93. Kivelson D., Kivelson S.A., Zhao X., Nussinov Z., Tarjus 
G. Statistical Mechanics and its Applications // Physica 
A. 1995. V.219. P.27–38 

94. Nussinov Z., Rudnick J., Kivelson S.A., Chayes L.N. 
Avoided Critical Behavior in O(n) Systems // Phys. 
Rev. Lett. 1999. V.83. №3. P.472–475 

95. Prudkovskii P.A., Rubtsov A.N., Katsnelson M.I. 
Topological defects, pattern evolution, and hysteresis 
in thin magnetic films // Europhys. Lett. 2006. V.73. 
P.104–109 

96. Razumov I.K., Gornostyrev Yu.N., Katsnelson M.I. 
Intrinsic nanoscale inhomogeneity in ordering systems 
due to elastic-mediated interactions // Europhys. Lett. 
2007. V.80. 66001 (5 pp) 

97. Bručas R., Hafermann H., Katsnelson M.I., Soroka I.L., 
Eriksson O., Hjörvarsson B. Magnetization and 
domain structure of bcc Fe81Ni19/Co(001) // Phys. Rev. 
B. 2004. 69. №6. 064411 (11 pp) 

98. Landau L.D., Lifschitz E.M. Theory of Elasticity. 3rd 
Edition. Oxford: Pergamon, 1986. 195 pp 

99. Barsch G.R., Krumhansl J.A. Nonlinear and nonlocal 
continuum model of transformation precursors in 
martensites. // Metall. Trans. A. 1988. V.19. P.761–775 

100. Jiang E., Carter E.A.  Carbon dissolution and 
diffusion in ferrite and austenite from first principles // 
Phys. Rev. B. 2003. V.67. 214103 (11 pp) 

101. Lobo J.A., Geiger G.H. Thermodynamics of carbon in 
austenite and Fe-Mo austenite // Met. Trans. A. 1976. 
V.7. №8. P.1359–1364 

102. Mogutnov B.M., Tomilin I.A., Shvartsman L.A. 
Thermodynamics of carbon-iron alloys. Moscow.: 
Metallurgy, 1972. 328 p. [In Russian] 

103. Kurz W., Fisher D.J. Fundamentals of Solidification, 
3rd. ed., Trans Tech Publications, Aedermannsdorf, 
Switzerland, 1992. 293 pp. 

104. Hecht U., Granasy L., Pusztai T. et al. Multiphase 
solidification in multicomponent alloys // Mater. Sci. 
Eng. R 2004. V.46. P.1–49 

105. Folch R., Plapp M. Quantitative phase-field modeling 
of two-phase growth // Phys. Rev. E. 2005. V.72. 
011602 (27 pp) 

106. Nestler B., Wheeler A.A. A multi-phase-field model of 
eutectic and peritectic alloys: numerical simulation of 
growth structures // Physica D. 2000. V.138. P.114–
133 

107. Boettinger W.J., Warren J.A., Beckermann C., Karma 
A. Phase-field simulation of solidification // Annu. 
Rev. Mater. 2002. V.32. P.163–194 

108. Elder K.R., Drolet F., Kosterlitz J.M., Grant M. 
Stochastic Eutectic Growth. // PRL. 1994. V.72. №5. 
P.677–680 

109. Drolet F., Elder K.R., Grant M., Kosterlitz J.M. Phase-
field modeling of eutectic growth. // Phys. Rev. E. 
2000. V.61. №6. P.6705–6720 

110. Greenwood M., Ofori-Opoku N., Rottler J., Provatas 
N. Modeling structural transformations in binary alloys 



 

 

 

27 

with phase field crystals. // Phys. Rev. B. 2011. V.84. 
0641104 (10 pp.) 

111. Kundin J., Raabe D., Emmerich H. A phase-field 
model for incoherent martensitic transformations 
including plastic accomodation processes in the 
austenite. // J. Mech. Phys. Solids. 2011. V.59. P.2082–
2102 

112. Malik A., Yeddu H.K., Amberg G., Borgenstam A., 
Ågren J. Three dimensional elasto-plastic phase field 
simulation of martensitic transformation in polycrystal 
// Mat.Sci.Eng. A. 2012. V.556. P.221–232 

113. Yeddu H.K., Borgenstam A., Ågren J. Stress-assisted 
martensitic transformations in steels: A 3-D phase-field 
study // Acta Mater. 2013. V.61. P.2595–2606 

114. Levitas V.I., Javanbakht M. Interaction between phase 
transformations and dislocations at the nanoscale. // J. 
Mech. Phys. Solids. 2015. V.82. P.287–319 

115. Roitburd A.L., Temkin D.E. Plastic deformation and 
thermodynamic hysteresis at phase transformation in 
solids // Sov. Phys. Solid State. 1986. V.28. P.432–443 

116. Kaganova I.M., Roitburd A.L. Effect of plastic 
deformation on the equilibrium shape of a new phase 
inclusion and thermodynamic hysteresis // Sov. Phys. 
Solid State. 1989. V.31. P.545–550 

117. Levitas V.I., Idesman A.V., Olson G.B., Stein E. 
Numerical Modeling of Martensite Growth in 
Elastoplastic Material // Philos. Mag. A. 2002. V.82. 
P.429–462 

118. Fisher F.D., Reisner G. A criterion for the martensitic 
transformation of a microregion in an elastic-plastic 
material // Acta Mater. 1998. V.46. №6. P.2095–2102 

119. Smart J.S. Effective field theories of magnetism. 
Saunders, 1968. 188 pp. 

120. Körmann F., Dick A., Grabowski B., Hallstedt B., 
Hickel T., Neugebauer J. Free energy of bcc iron: 
Integrated ab initio derivation of vibrational, electronic, 
and magnetic contributions // Phys. Rev. B. 2008. 
V.78. №3. 033102 (4 pp) 

121. Ziman J.M. Models of Disorder. Cambridge University 
Press, 1979. 542 pp. 

122. Smith W.F., Hashemi J. Foundations of Materials 
Science and Engineering. McGraw-Hill, Allas, USA, 
ed.4, 2005. 1056 pp. 

123. Lavrentiev M.Yu., Nguyen-Manh D., Dudarev S.L. 
Magnetic cluster expansion model for bcc-fcc 
transitions in Fe and Fe-Cr alloys // Phys. Rev. B. 
2010. V.81. №18. 184202 (6 pp) 

124. Chen Q., Sundman B. Modeling of Thermodynamic 
Properties for Bcc, Fcc, Liquid, and Amourphous Iron 
// Journal of Phase Equilibria. 2001. V.22. №6. P.631–
643 

125. Darken J.S., Gurry R.W. Free Energy of Formation of 
Cementite and the Solubility of Cementite in Austenite 
// Trans. AIME. 1951. V.191. P.1015–1018 

126. Dick A., Körmann F., Hickel T., Neugebauer J. Ab 
initio based determination of thermodynamic 
properties of cementite including vibronic, magnetic, 
and electronic excitations // Phys. Rev. B. 2011. V.84. 
125101 ( pp.) 

127. Battezzati L., Baricco M., Curiotto S. Non-
stoichiometric cementite by rapid solidification of cast 
iron. // Acta Mater. 2005. V.53. P.1849–1856 

128. Mehrer H. (Ed.): Landolt-Börnstein, Numerical Data 
and Functional Relationships in Science and 
Technology, New Series, Group III: Crystal and Solid 
State Physics, V. 26, Diffusion in Metals and Alloys, 
Springer-Verlag, Berlin, 1990. 747 pp. 

129. Ozturk B. The diffusion coefficient of carbon in 
cementite, Fe3C, at 4500C. //Solid State Ionics. 1984. 
V.12. P.145–151 

130. Hultgren A. Isothermal transformation of austenite. // 
Trans. ASM. 1947. V.39. P.915–1005. 

131. Aranda M.M., Rementeria R.,  Capdevila C.,  
Hackenberg R.E. Can Pearlite form Outside of the 
Hultgren Extrapolation of the Ae3 and Acm Phase 
Boundaries? // Met. Mat. Trans. A. 2016. V.47. P.649–
660 

132. Christian J.W. Thermodynamics and kinetics of 
martensite. // In: Intern. Conf. on Martensitic 
Transformations, ICOMAT' 79. Ed. by Olson G.B., 
Cohen M. Boston, USA. P.220–234 

133. Lobodyuk V.A., Estrin E.I. Isothermal martensitic 
transformations. // Physics-Uspekhi. 2005. V.48. N7. 
P.713–732. 

134. Manna I., Pabi S.K,  Gust W. Discontinuous Reaction 
in Solids // Inter. Mater. Rev. 2001. V.46. P.53–91 

135. Bensaada S., Mazouz H., Bouziane M.T. 
Discontinuous Precipitation and Dissolution in Cu-
4.6at.% In Alloy under Effect of Plastic Deformation 
and the Temperature // Mat. Sci. App. 2011. V.2. 
P.1471–1479 

136. Hornbogen E. Systematics of cellular precipitation 
reactions. // Met. Mat. Trans. B. 1972. V.3. №11. 
P.2717–2727 

137. Ramanarayan H., Abinandanan T. Grain boundary 
effects on spinodal decomposition. II Discontinuous 
microstructures // Acta Mat. 2004. V.52. P.921–930 

138. Razumov I.K. The Simulation of the Growth of 
Colonies in the Spinodal Decomposition of Metastable 
Phases. // Russian Journal of Physical Chemistry A. 
2009. V.83. №10. P.1682–1688 

139. Razumov I.K. Influence of lattice relaxation on the 
kinetics of spinodal decomposition of solid solutions. 
//JEPTER. 2009. V.82. №4. P.635–641 

140. Smith C. S. Microstructure. // Trans. Am. Soc. Metals. 
1953. V.45. P.533–575 

141. Sadovskii V.D., Rodigin N.M., Smirnov L.V., Filonchik 
G.M., Fakidov I.G. On magnetic field effect on 
martensitic transformation in steel // 
Fiz.Metal.Metalloved. 1961. V.12. P.302–304 

142. Fokina E.A., Zawadskii E.A. The effect of magnetic 
field on martensitic transformation in steel // Fiz. 
Metal. Metalloved. 1963. V.16. №2. P.311-313 

143. Sadovskii V.D., Smirnov L.V., Fokina E.A. Steel 
Quenching in Magnetic Field // Fiz. Metal. Metalloved. 
1967. V.24. №5. P.918–939 

144. Malinen P.A., Sadovskii V.D., Smirnov L.V., Fokina 
E.A. On principles of the pulsed magnetic field effect 



 

 

 

28 

on martensitic transformations in steel and alloys // Fiz. 
Met. Metalloved. 1967. V.23. P. 535–542 

145. Krivoglaz M.A., Sadovskii V.D., Smirnov L.V., Fokina 
E.A. Steel Quenching in Magnetic Field. Moscow: 
Nauka, 1977 [In Russian] 

146. Estrin E.I. Magnetic field effect on martensitic 
transformation // Fiz. Met. Metalloved. 1965. V.19. P. 
929-932 

147. Shimotomai M., Maruta K. Aligned two-phase 
structures in Fe-C alloys. // Scripta Mater. 2000. V.42. 
№5. P.499–503 

148. Shimotomai M., Maruta K., Mine K., Matsui M. 
Formation of aligned two-phase microstructures by 
applying a magnetic field during the austenite to ferrite 
transformation in steels // Acta Mater. 2003. V.51. 
№10. P.2921–2932 

149. Zhang Y.D., Gey N., He C.S., Zhao X., Zuo L., Esling 
C. High temperature tempering behaviors in a 
structural steel under high magnetic field // Acta Mater. 
2004. V.52. №12. P.3467–3474 

150. Zhang Y.D., Esling C., Zhao X., Zuo L. Solid State 
Phase Transformations under High Magnetic Fields in 
a Medium Carbon Steel // Mat.Sci.Forum. 2005. 
V.495–497. P.1131–1140 

151. Krivoglaz M.A., Sadovskii V.D. On strong magnetic 
field effect on phase transformations //  Fiz. Met. 
Metalloved. 1964. V.18. №4. P.502–505 

152. Abrikosov I.A., Ponomareva A.V, Steneteg P., 
Barannikova S.A., Alling B. Recent progress in 
simulations of the paramagnetic state of magnetic 
materials. // Current Opinion in Solid State and 
Materials Science. 2016. V.20. P.85–106. 

          
 
 
 




