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Abstract

Secure coding is crucial for the design of secure and efficient software and computing systems. However, many

programmers avoid secure coding practices for a variety of reasons. Some of these reasons are lack of knowledge of

secure coding standards, negligence, and poor performance of and usability issues with existing code analysis tools.

Therefore, it is essential to create tools that address these issues and concerns. This article features the proposal,

development, and evaluation of a recommender system that uses text mining techniques, coupled with IntelliSense

technology, to recommend fixes for potential vulnerabilities in program code. The resulting systemmines a large code

base of over 1.6 million Java files using the MapReduce methodology, creating a knowledge base for a recommender

system that provides fixes for taint-style vulnerabilities. Formative testing and a usability study determined that

surveyed participants strongly believed that a recommender systemwould help programmers write more secure code.

Keywords: Secure coding, Vulnerability detection, Code analysis, Data mining, Secure systems, Intellisense, Big data,

Knowledge extraction, Software engineering, Cybersecurity

1 Introduction
Data breaches continue to plague organizations across the

globe. The 2017 Cost of Data Breach Study conducted by

the Ponemon Institute shows that the average total cost

of a data breach is US$3.62 million [1]. One of the main

causes of data breaches is code-level vulnerabilities [2, 3].

A 2017 report by Tricentis shows that for 11 months in

2016, news articles reported at least 3 software failures per

month that were caused by code-level vulnerabilities [4].

These statistics emphasize the need for improved secu-

rity analytics techniques. Compounding the problem is

the fact that many developers are skeptical of using exist-

ing code analyzers because of high false-positive rates,

the time required to investigate inactionable alerts, and

usability issues [5, 6]. Further, a significant number of

existing code analysis tools are designed to find bugs or

vulnerabilities in program code, but many of these tools

do not offer mitigation support to help programmers

write secure code. If data breaches and other security-

related issues are to be resolved, it is imperative that

developers have useful and effective tools at their disposal

to help them write secure code.
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To address the secure coding problem, this research

presents a recommender system that detects the presence

of insecure program code and offers live recommenda-

tions that include fixes for vulnerabilities based on com-

mon practices in the security field, to make it easier for

programmers to write more secure code. Recommender

systems are software tools and techniques that provide

suggestions for items that are most likely of interest to

a particular user [7]. Traditionally, recommender systems

have been applied to commodities such as books, CDs,

etc. Ricci et al. [7] noted that the attributes of the items

recommended by classic content-based recommendation

techniques are keywords extracted from the descriptions

of the items [7].

The methodology presented in this work uses source

code mining to extract hand-selected features that are

used to detect vulnerabilities in program code and to

select code examples that mitigate certain vulnerabili-

ties. First, a repository of more than 14,000 open-source

projects is mined, and features are extracted based on

vulnerability descriptions provided in the National Vul-

nerability Database (NVD). Next, using the extracted

features, datasets containing safe, and unsafe exam-

ples are prepared and used as knowledge for a rec-

ommender system, which currently detects and assists
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with mitigating taint-style vulnerabilities. The recom-

mender system was designed by taking into account

input from participants in a knowledge elicitation sur-

vey. The classic recommendation approach is used to

present code examples to the programmer that are

most similar to the code being developed instead

of using generic examples, which is the traditional

practice.

The research question is that a recommender system

built using text-mining techniques can assist program-

mers with detection and mitigation of vulnerabilities as

they type code during development. Targeting and cor-

recting unsafe practices as programmers type code will

help to catch bugs earlier than using traditional static

and dynamic approaches. This work makes the following

major contributions:

• The design, implementation, and evaluation of a

recommender system that uses text mining

techniques, coupled with IntelliSense technology, to

recommend fixes for potential vulnerabilities in

program code. The implemented system uses code

running on Apache Hadoop to extract knowledge

from a large body of open-source projects to provide

features for detecting taint-style vulnerabilities
• The use of a knowledge elicitation survey to

determine the current use of code analyzers among

programmers and to elicit their views on the design

of the proposed system
• A bipartite evaluation (scalability and usability) of the

proposed system along with a discussion on the

statistical significance of the usability results.

The article is organized as follows: related work is

presented in Section 2 followed by an overview of the

approach in Section 3. Section 4 provides a thorough dis-

cussion of modeling and detection. Section 5 discusses

the methods followed to design and implement the pro-

posed system. This section also presents a discussion

on a knowledge elicitation survey that was conducted to

obtain information that affect the design of the system as

well as a usability study that ascertains the usability and

usefulness of recommender systems in helping program-

mers write more secure code. Results and discussion of

the user study and a scalability evaluation are presented

in Section 6 followed by conclusions and future work

in Section 7.

2 Related work
In this section, a discussion is provided on works that are

closely related to this work in the area of automated cod-

ing support, particularly in static analysis, and Dynamic

Application Security Testing (DAST) or dynamic analysis

and auto-fixing of programming errors.

2.1 Static analyzers

2.1.1 Lightweight analyzers

Splint is a heuristics-based tool that finds potential vul-

nerabilities by checking to see that source code is con-

sistent with the properties implied by annotations [8].

Splint is limited to American National Standards Insti-

tute (ANSI) C code and does not offer the function-

alities required in agile and data-driven development

environments.

FindBugs is Java-based static analysis tool that is

intended to find coding defects that developers will want

to review and remedy [9]. The concept is based on bug

patterns that can be found based on Java byte code

[9]. FindSecBugs is a FindBugs plugin, which is geared

towards security audits of Java web applications [10].

Alenezi and Javed proposed the Developer Companion

framework to help developers produce secure web appli-

cations [11]. Developer Companion uses several static

analysis tools to analyze program code, cross-references

the results against the Common Weakness Enumeration

(CWE) and NVD, and presents to developers a recom-

mendation based on the aggregated data [11].

2.1.2 Tools that improve static analysis warnings/alerts

Some researchers have proposed tools and frameworks

to prioritize alerts or vulnerabilities to make it easier for

developers and managers to address the more critical

issues [12, 13].

The tool proposed in [12] is known as Autobugs, which

gathers historic alert data from static analysis tools and

combines the alert-data with complexity metrics to build

a classifier that predicts the actionability of an alert from

data and unit properties [12]. Unfortunately, the author

reported that models based on historic alert data could

potentially mislead developers to believe they have no

security issues [12].

In [13], a vulnerability management strategy, known

as VULCON, is proposed to prioritize vulnerabilities for

patching. Using two metrics (total vulnerability exposure

and time-to-vulnerability remediation), the framework

ingests vulnerability scan reports from code analyzers

such as Nessus [14] and outputs security exposure metrics

and vulnerability management plans to managers, opera-

tors, analysts and engineers, so they can decide on which

vulnerabilities to mediate [13].

2.1.3 Static analyzers based on source codemining

Gopalakrishnan et al. [15] presented a bottom-up

approach that recommends architectural tactics (a

quality-attribute-response) based on topics discovered

from source code projects. They used a classifier in addi-

tion to a recommender system to predict where tactics

should be placed in a programming project to improve the

quality, but not security, of the code.
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In [16], Medeiros et al. presented the DEKANT tool that

automatically detects web-based vulnerabilities using hid-

den Markov models (HMM). First, the tool extracts code

slices from source code and translates these slices into an

intermediate slice language (ISL). It then analyzes the rep-

resentation to determine the presence of vulnerabilities in

code written in PHP.

2.1.4 Vulnerable code pattern recognition usingmachine

learning

In a survey of software vulnerability analysis and discov-

ery using machine learning and data mining techniques,

Ghaffarian and Shahriari categorized approaches into four

main areas [17]. Of these four areas, the area most closely

related to this work is “Vulnerable Code Pattern Recogni-

tion.” Under this category, the work by Yamaguchi et al.

[18] is related. In [18], the authors proposed a method

that assists a security analyst with auditing source code.

Abstract Syntax Trees (ASTs) are extracted form source

code (C-code) and then embedded in a vector space, such

that techniques from machine learning can be applied

to analyze the code. Further, latent semantic analysis is

used to determine dominant directions (structural pat-

terns) in the vector space from which code similar to

a known vulnerability is identified and used to detect

vulnerabilities.

In addition, Shar and Tan [19] produced a series of

papers [19–22] on vulnerability detection and mitiga-

tion, each improving upon their previous work. The most

related paper in their work is [19]. In [19], 20 static code

attributes based on data-flow analysis of PHP web appli-

cations are proposed for predicting program statements

that are vulnerable to SQL-injection (SQLI) and cross-

site scripting. The authors extracted control-flow (CFG)

and data-flow graphs (DFG) of a given PHP program

and performed backward data-flow analysis on target sink

statements that may reach certain input source state-

ments [17]. The extracted attributes are used to create

vectors, which are coupled with their known vulnerability

status to train classifiers to predict the vulnerability sta-

tus of unseen sink statements [19]. A source refers to an

untrusted data source from which user input is received

and a sink is a security-sensitive function [23].

2.2 Dynamic analyzers

A plethora of tools [24, 25] exist in the dynamic analysis

domain, the majority of which are commercial. Interest-

ingly, a great deal of focus in DAST is devoted to web

applications [26–28]. Huang et al. proposed a crawler that

allows for a black-box, dynamic analysis of web appli-

cations [26]. Using reverse engineering (to identify all

possible points of attack within a web application) and

a fault injection process, the tool attempts to determine

the most vulnerable points within an application [26].

In addition, Petukhov and Kozlov proposed an extended

tainted1 mode model that incorporates the advantages

of penetration testing and dynamic analysis to widen

the scope of the web application being covered during

testing [28].

Since dynamic analysis involves testing application

behavior, some researchers believe it is a more real-

istic approach than static analysis [29]. However, the

main challenge with dynamic tools is identifying the

source of a bug [6]. Bugs often manifest themselves

as program crashes and this makes them difficult to

mitigate.

2.2.1 Dynamic analyzers based on AI/machine learning

In [30], the authors described a tool, known as HACKAR,

that uses an improved version of Java PathFinder (JPF)

to execute Java programs and identify vulnerabilities. The

tool is a dynamic analyzer that formulates a problem using

Satisfiability Modulo Theory (SMT) and uses symbolic

execution to determine program paths that may lead to

vulnerabilities. In addition, HACKAR uses a goal regres-

sion2 technique proposed by [31] to learn the semantics

of tasks based on program traces in order to produce a

knowledge base for providing advice to programmers on

how to fix vulnerabilities.

2.3 Automated code repair and auto-completion

Several works exist in the area of automated code repair

and code completion. In 2009, the first tools, ClearView

[32] and GenProg [33], that perform automated code

repair on real-world programs were demonstrated [34].

Since that time, focus on automated code repair has grown

steadily with several other tools being developed, each

either proposing an improvement on an existing method-

ology or a unique algorithm (e.g., SPR [35], Kali [36],

AE [34], and Prophet [37]). In 34, Weimer et al. catego-

rized existing code repair tools into two categories: those

that use stochastic search or produce multiple candidate

repairs, which are validated using test cases (e.g., Gen-

Prog, PAR [38], AutoFix-E [39], ClearView, Debroy, and

Wong [40]), and techniques that use synthesis (e.g., Sem-

Fix [41]) or constraint solving (and symbolic execution)

to produce a single patch that is correct by construc-

tion (e.g., AFix [42], FUZZBUSTER [43], FUZZBALL, and

FUZZBOMB [44]). Since many of these tools require test

cases to operate, they fit well in the area of dynamic

analysis.

Raychev et al. proposed an approach that learns a prob-

abilistic model from existing annotated program data and

uses this model to predict properties of new, unseen

programs [45]. The authors also created a scalable pre-

diction engine called JSNICE that predicts names of iden-

tifiers and type annotations of variables. That is, given

an optimized minified JavaScript code, JSNICE generates
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JavaScript code that is annotated with types and identifier

names.

In 46, Gupta et al. proposed the DeepFix algorithm

that uses a multi-layered sequence-to-sequence neural

network to fix common programming errors (e.g., miss-

ing declarations or statements, missing identifiers, and

undeclared variables) in C code [46]. The neural network

comprises an encoder recurrent neural network (RNN) to

process the input and a decoder RNN with attention that

generates fixes using an iterative process [46].

There are also linters3 (e.g., SonarLint [47]), code qual-

ity analyzers (e.g., ASIDE [48] and code-clone detection

tools (XIAO [49]) that attempt to improve the quality of

code within integrated development environments (IDEs).

XIAO is a tool that helps to deal with the issue of code-

cloning where programmers may have repetitious code

within their coding project. The premise is that detect-

ing code clones can be useful in finding similar security

bugs and also improves the quality of code through refac-

toring of code clones [49]. Baset and Denning showed

that SonarLint and many existing IDE-based tools (e.g.,

ESVD [50]) present short description of common pro-

gramming errors, but do not provide example fixes for

security-related vulnerabilities [51].

In [52], Raychev et al. presented an approach to code

completion based on a novel combination of program

analysis with statistical language models. Given a code-

base, their system first extracts abstract histories in the

form of sentences from the data. Then, these sentences

are fed to a language model such as an n-gram model or

recurrent neural network model that learns probabilities

for each sentence.

Also, in [53], the authors described an architecture

that allows library developers to introduce interactive

and highly specialized code generation interfaces, called

palettes, directly into the editor. Both of these code com-

pletion approaches are based on system design and sen-

tence suggestion and have not been applied to vulnerabil-

ity detection and mitigation.

2.4 Difference between the proposed approach and

existing approaches

The methodology proposed and implemented in this

research couples text mining algorithms and IntelliSense

techniques to analyze program code as the programmer

types, compares the user’s code with a knowledge base of

unsafe practices to determine the presence of unsafe code

and recommends fixes by providing ranked example code

to the programmer during development. IntelliSense, also

known as code-completion or code-hinting, refers to pro-

ductivity features that help programmers learn about their

code by keeping track of parameters and providing the

ability to add properties to code during development.

While [30] uses goal regression to learn about the user

program, it requires that the program be symbolically

executed in order to find vulnerabilities. As discussed

in the literature [54], symbolic execution suffers from

path explosion, path divergence and challenges with com-

plex path constraints, especially on real world problems.

This presents challenges with the generalizabilty of the

solution, as confirmed by the authors [30].

In [16], an intermediate language is required to annotate

tainted functions in the code. In contrast, the proposed

model in this research works directly with the parse tree of

the source code to detect patterns for automatic detection

and classification of vulnerabilities based on descriptions

and fixes recommended by the NVD. Further, the pro-

posed approach mines a large code base and uses the safe

examples to provide not only advice but also example fixes

to the programmer.

The proposed approach differs significantly from the

generate-and-path approaches discussed in the preced-

ing section because patches often work for a given set

of test cases, but fail to generalize to other programming

projects. For example, in 36, Qi et al. analyzed reported

patches for GenProg, RSRepair, and AE, and found that

the overwhelming majority of reported patches did not

produce correct outputs even for the inputs in the valida-

tion test suite [36]. GenProg was reported to find patches

for 37 out of 55 defects in a validation suite. However,

the researchers found that patches did not produce cor-

rect output. Likewise, AE was reported to find patches

for 27 out of 54 defects, but did not produce correct

outputs in the evaluation conducted by Qi et al. Fur-

ther reruns by the authors confirmed that GenProg found

correct patches for only 2 out of 105 defects. Qi et al.

attributed the poor performance of these tools to weak

proxies (bad acceptance tests), poor search spaces that do

not contain correct patches, and random genetic search

that does not have a smooth gradient for the genetic

search to traverse to find a solution [36]. These weak-

nesses highlight the challenge with generate-and-patch or

generate-and-validate approaches.

Further, unlike the works that propose stand-alone static

analysis tools [18, 19], the proposed work augments static

analysis with IntelliSense to drive the mitigation process

within IDEs as the programmer types code. As discussed

in the literature [5, 55] and confirmed by the knowledge

elicitation survey conducted in this work (see Section 5.2),

a majority of developers surveyed do not take advantage

of stand-alone static analysis tools. Even though these

tools may perform well, they require the extra time of

going outside of the development environment to per-

form scans and explore mitigation approaches. However,

this new proposed methodology of coupling vulnerabil-

ity scanning with IntelliSense provides live scanning and

mitigation without significantly affecting the developer’s

coding experience. In addition, by using a recommender
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system, this work shows that providing the programmer

with a ranked set of examples that are most similar to the

code being developed allows the programmer to better

understand vulnerabilities as they relate to their projects.

Other auto-fixing approaches (e.g., DeepFix and generate-

and-patch) that automatically transform program code do

not provide the programmer with examples that are very

similar to the code being developed. Moreover, the unique

presentation of information in the form of recommenda-

tions has the added benefit of educating programmers on

how to avoid certain vulnerabilities in future projects.

3 Proposed approach
The approach consists of two main phases (modeling and

application) and two main components (the data analyzer

and the recommender system) as shown in Fig. 1. Here,

each component is described. A more thorough discus-

sion of the modeling phase is provided in Section 4 while

Section 5 covers the application phase (system design and

implementation).

The first phase in the proposed approach is the mod-

eling phase. This phase involves analyzing data collected

from the National Vulnerability Database (NVD) in addi-

tion to open-source programs to identify features for

detecting a set of vulnerabilities. These features are then

used by a data analyzer to process program code using

simple and effective, data-driven vulnerability detectors to

detect each vulnerability. The approach currently focuses

on the Java programming language but is general enough

to apply to other programming languages.

The second phase involves capturing code as the pro-

grammer types and transferring it to the recommender

system that executes vulnerability detectors, which in turn

categorizes the program code based on the knowledge of

the recommender system and outputs recommendations

that include examples for fixing each vulnerability.

3.1 The data analyzer

The data analyzer consists of feature extractors that are

designed based on vulnerability descriptions and fixes

from the NVD. The analyzer accepts as input open-source

program code and outputs feature sets for detecting a set

of vulnerabilities. Open-source projects are mined and

source code is categorized in order to provide knowledge

to the recommender system for detecting and mitigating

each vulnerability. Recommender systems require suffi-

cient data in order to effectively provide useful recom-

mendations to users. Therefore, a distributed framework

such as MapReduce is proposed to extract features from

a large collection of code repositories to drive the data

labeling process. Labeled datasets are used to train the

recommender system to provide to the programmer safe

code examples that fix a set of vulnerabilities.

3.2 The recommender system

The recommender system incorporates vulnerability

detectors that are designed using key insights about vul-

nerabilities based on data provided by NVD and CWE. It

accepts the user’s code and utilizes the data analyzer to

create a feature set/data object from the given program

code. The feature set is used to determine the classifi-

cation of the data object. If the data object is unsafe, a

recommendation that includes a warning that contains

a list of unsafe method(s) and variable(s) found in the

Fig. 1 System architecture
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user’s code is displayed to the user. The recommenda-

tion will also include ranked fixes for each vulnerability.

Fixes are ranked using text similarity schemes in order to

display a list of examples that resemble the code being

developed. IntelliSense technology is used to initiate the

recommender system as the programmer types in order to

help the programmer mitigate potential vulnerabilities as

soon as possible.

4 Modeling and detection
This section discusses the modeling and vulnerability

detection phase of the work. It provides a detailed expla-

nation on data representation and feature extraction.

Included is a discussion on the feature extraction algo-

rithms and the steps followed to prepare the knowledge

base for the recommender system.

4.1 Datasets

Two main datasets (The National Vulnerability

Database/Common Vulnerabilities and Exposures

(NVD/CVE) and Sourcerer 2011) are used in this work

to provide vulnerability descriptions that are important

for feature extraction and source code from which feature

sets and mitigation examples can be extracted.

The National Vulnerabilities Database (NVD/CVE)

CVE is a dictionary of common identifiers for publicly

known cybersecurity vulnerabilities, which is hosted by

the MITRE Corporation[56]. CVE submissions are made

after vulnerabilities are identified in widely used soft-

ware applications. Each submission is reviewed by a team

of experts and is assigned a unique identifier (CVE ID)

by a CVE Numbering Authority (CNA), a description,

and references. The US National Vulnerability Database

is a “comprehensive cybersecurity vulnerability database

that integrates all publicly available US Government vul-

nerability resources and provides references to industry

resources” [56]. NVD is provided by the National Institute

of Standards and Technology (NIST). NVD enhances the

information in CVE to deliver more details for each CVE

entry such as fix information, severity scores, and impact

ratings according to a Common Vulnerability Scoring

System (CVSS)[57].

The Sourcerer 2011 The Sourcerer 2011 dataset is a

collection of artifacts based on over 70,000 Java projects

and approximately 100,000 Java ARchive (jar) files that

were collected from Apache, Google Code and Source-

forge in 2011 [58]. The dataset is divided into four tar

archives, identified as aa to ad. Each of these archives

contains varying numbers of projects, which are num-

bered in a sequential manner. Each project is then

organized into a cache of important files, the con-

tent, which follows the organization system used by

the developers, and a project.properties file, which con-

tains information such as the repo URL and author.

The Java files are processed and used to create the

ground-truth for classification and to provide mitigation

examples.

4.2 Data representation

Each Java file used in this work is modeled as an Abstract

Syntax Tree. An Abstract Syntax tree is an hierarchical

intermediate representation of a program that presents

source code structure according to the grammar of a given

programming language [59]. It is a reduced parse tree in

which nodes are connected through parent-child relation-

ships. The construction of an AST begins with a node

that represents the entire translation/compilation unit fol-

lowed by a number of intermediate levels, then simple

language constructs such as type name, identifier name,

or operator as the leaf nodes [59].

The JavaParser library is used to construct and traverse

an AST from Java source code. JavaParser is an open-

source library that allows native Java interaction with an

AST generated from Java source code [60].

4.3 Feature extraction

Features for detecting vulnerabilities were identified after

careful manual analysis of vulnerability descriptions pro-

vided by the NVD/CVE. Apache Hadoop was utilized

as a MapReduce environment running custom code to

process the Sourcerer dataset in order to extract fea-

tures for detecting the vulnerabilities. MapReduce is a

programming model and an associated implementation

for processing and generating large datasets [61]. The

Apache Hadoop software library is one of the most popu-

lar implementations of the MapReduce methodology that

allows for the distributed processing of large data sets

across clusters of computers using a simple programming

model [62].

4.3.1 MapReduce algorithm for feature extraction

The MapReduce algorithm that was implemented for

execution in Apache Hadoop is shown in Algorithm 1.

Based on the structure of the Sourcerer dataset, it was

necessary that the repository be organized before pro-

cessing using Hadoop. Bash scripts were used to parse

each project.properties within each project in the reposi-

tory to extract information about each project in order to

create a more uniform file structure. Java files were reor-

ganized such that there is one directory for each project.

The filenames were later used as keys for the MapReduce

framework. Since Hadoop splits data files according to a

default block size, a custom record reader was employed,

as shown in the algorithm (line 3), to read each Java file

without splitting it. This enabled complete and accurate

creation of an AST from each file. Moreover, each vul-

nerability requires a different buildFeatureSet procedure

(shown on line 16 of the algorithm). This procedure is
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discussed below for each of the vulnerabilities evaluated

in this work.

Algorithm 1: MapReduce algorithm for mining

features from Java code

input : repository_path: path to repository dataset

output: a set of features for a certain vulnerability

1 foreach project ∈ repository_path do

2 javaDataFiles = selectJavaFiles()

3 createCustomRecordReader() // record
reader to read full java
program file

4

5 foreach javaFile ∈ javaDataFiles do

6 Function map(javaFile):
7 key = getFileName(javaFile)

8 value = extractText(javaFile)

// using
customRecordReader

9 addToIntermediateList(key, value)

10 emit(intermediateList)

11 return

/* each reduce is a
vulnerability detector that
emits a set of features for
identifying a certain
vulnerability */

12 Function reduce(intermediateList):
13 foreach pair ∈ intermediateList do

14 outkey = intermediateList.key

15 inValue = intermediateList.value

16 outValue =

buildFeatureSet(inValue)

// based on abstract
syntax tree

17 emitFinal(outKey, outValue)

18 end

19 return

20 end

21 end

4.3.2 Extracting features for detecting taint-style

vulnerabilities

This work uses two taint-style vulnerabilities (SQL Injec-

tion and Command Injection) to evaluate the proposed

methodology. These vulnerabilities were chosen due to

their high CWE severity score and frequency in the 2017

version of the NVD as shown in Fig. 2. Taint-style vulner-

abilities are caused by the lack of input/output validation

and are traditionally modeled as source-sink problems.

CWE-89—improper neutralization of special ele-

ments used in an SQL command (‘SQL injection’). An

SQL injection (SQLI) attack is one that occurs when an

attacker provides specially crafted input to an applica-

tion that employs database services such that the pro-

vided input results in a different database request than

was intended by the application programmer [63]. SQLI

has been a common vulnerability for many years, secur-

ing position number one on the Open Web Application

Security Project (OWASP) 2010 [64], 2017 [65], and the

CWE 2011 [66] lists. Applications (e.g., web-apps) gen-

erally accept user input, which are then used in execut-

ing database requests. These requests are typically SQL

statements.

SQLI is a serious vulnerability because it could lead

to unauthorized access to sensitive data, cause severe

updates to or deletions from a database, and even result in

devastating shell command execution [67]. Listing 1 fea-

tures sample code that could potentially result in SQLI.

This is because the programmer is incorporating unsani-

tized variables in the creation of a query string.

The use of the PreparedStatement class from Java

Database Connectivity (JDBC) or Java Enterprise Edi-

tion (J2EE) is often recommended as a fix for SQL

injection [68]. This class allows for the use of a place-

holder (“?” character) to create a parametric query that

escapes potentially tainted user input. Using these clear

descriptions of the vulnerability and how it can be

mitigated, six main hand-selected features for detect-

ing and classifying SQLI can be identified. These fea-

tures are described in Table 1, and the algorithm used

to build the feature set is presented as Algorithm 2.

A list of known Java sources and sinks was obtained

from online resources [69–71]. These known sources

and sinks are used as a point of reference along with

static dataflow analysis of the user program to iden-

tify potentially tainted variables. A variable is consid-

ered potentially_sanitized if it is passed to a function

that is not in the list of known tainted sources. Three

techniques are used to check for potential sanitization

throughout a given program file: inline (sanitization done

during the creation of a query string), in-method (san-

itization done as soon as a parameter is passed to

a method), and before-use (sanitization of parameters

before they are passed to methods that invoke query

functions). By using the list of generated features, a data

instance in the dataset is automatically labeled as safe if

the boolean feature quoted_variables_found is false, the

incoming variables are potentially_sanitized, and param-

eterized queries are used to create the SQL statements.

Contrariwise, it is labeled as unsafe. A random sam-

ple of 100 labeled instances was tested and no errors

were found, giving a 99% confidence, which indicates

the effectiveness of the selected features. Live detection
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Fig. 2 Number of vulnerabilities in the NVD 2017 List that were caused by the top 10 SANS/CWE of 2011. The plot also shows the CWE severity score

for each CWE

of SQLI is done in conjunction with Algorithm 2 as

follows:

1 Create an AST from the Java program file.

2 Extract import statements, SQL statements, method

calls, sources, and sinks from the AST.

3 For all SQL statements in the program, check if

variables are potentially sanitized using static

dataflow analysis by comparing the sources and sinks

in the program with a knowledge base of known

sources and sinks and checking if apostrophes and/or

parameterized queries are properly used.

4 If these checks show that data is not properly

sanitized and parameterized queries are not properly

used, then consider the program susceptible to SQLI

and use the recommender system to recommend the

most appropriate fix that is most similar to the

project being developed.

Listing 1 Example Java code that could potentially lead to SQL

injection

import java.sql.*;

class Login {
public boolean doLogin(String username, String

pwd) {
String sqlString = "SELECT * FROM

db_user WHERE username = ’" +
→֒ username + "’ AND password = ’"

+ pwd + "’";
Statement stmt = connection.

createStatement();
ResultSet rs = stmt.executeQuery(

sqlString);
}

}

CWE-78—improper neutralization of special ele-

ments used in an operating system (OS) command (‘OS

command injection’). Command injection is an attack

in which the goal of the attacker is to execute arbitrary

commands on the host operating system via a vulnerable

application [72]. As the name suggests, these commands

are typically targeted to the command shell, which is

a software program that provides direct communication

between the user and the operating system [73]. The com-

mands supplied by the attacker are usually executed with

the same privileges of the vulnerable application.

In Java applications, calls to the Runtime.exec(...)
method could be exploited to allow an attacker to run

arbitrary commands on the host operating system. List-

ing 2 shows example code that is vulnerable to com-

mand injection. This is because it utilizes the Windows

command shell (cmd.exe) to execute the dir com-

mand without proper sanitization. After careful analysis

of this vulnerability, four main features have been man-

ually selected for detection and classification. Table 2

describes each feature while Algorithm 3 outlines the

buildFeatureSet procedure. From the feature set, the fol-

lowing heuristic can be used to automatically categorize

the dataset for command injection: if shell commands are

present and unsanitized, arguments/variables are used in

the command string or any faulty characters are used in

the command string, label the data instance as unsafe.

Otherwise, label the instance as safe. A random sample of

100 labeled instances was also tested, showing no errors

(99% confidence) in the labels assigned to the command

injection dataset.
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Algorithm 2: Procedure for building the feature

set for detecting SQL injection

input : ast: abstract syntax tree of Java code

output: a set of features for detecting SQL

Injection

1 Procedure buildFeatureSet(ast)
2 Initialize featureSet parameters as safe

3 imports = Get list of ImportDeclaration from

ast

4 sqlStatements = Extract all statements

containing SQL Commands from ast

5 methodCalls = Get list of MethodCallExpr

from ast

6 sources = Get list of all tainted sources from

imports

7 sinks = Get list of all sinks from methodCalls

8 Set feature sources = sources

9 Set feature sinks = sinks

10 foreach sqlStatement ∈ sqlStatements do

11 if sqlStatement is concatenated string then

12 Create stmtArray from sqlStatement

13 foreach item ∈ stmtArray do

14 if item is functionCallExpr && item

∈ taints then

15 Set feature

potentially_sanitized = false

16 end

17 if item is variable && item not

passed to potential sanitizer

function then

18 Set feature

potentially_sanitized = false

19 end

20 if item is string && item contains

apostrophes then

21 Set feature

quoted_variables_found = true

22 end

23 end

24 end

25 end

26 if all sqlStatements parameterized then

27 Set feature all_queries_parameterized =

true

28 end

29 if preparedStatement class found ∈ imports

then

30 Set feature prepared_statement_imported

= true

31 end

Listing 2 Example of unsafe Java code that uses runtime exec

import java.io.*;
class ChangeDir {

public static void main(String[] args) {

Runtime runtime = Runtime.getRuntime();
String[] cmd = new String[3];
cmd[0] = "cmd.exe" ;
cmd[1] = "/C";
cmd[2] = "dir " + args[0];
Process proc = runtime.exec(cmd);

}
}

Algorithm 3: Procedure for building the feature

set for detecting command injection

input : ast: abstract syntax tree of Java code

output: a set of features for detecting Command

Injection

1 Procedure buildFeatureSet(ast)
2 Find (all ExpressionStatements ∋ the exec

method) ∈ ast

3 foreach cmd parameter ∈ exec statement do

// the cmd parameter is the
1st parameter based on the
exec method signature

4 if cmd parameter is concatenated string

then

5 updateFeatureSet (cmd)

6 else

7 Find all occurrences of cmd variable

in ast

8 if any occurrence is string then

9 updateFeatureSet
(cmdOccurrence)

10 end

11 end

12 end

13 Function updateFeatureSet(cmdString):
14 if concatenated variables ∈ cmdString ¬

potentially sanitized then

15 Set feature unsanitized_args_processed =

true

16 end

17 if cmdString ∋ a call to a shell command then

18 Set feature shell_command_present = true

19 end

20 return

4.3.3 Results of the text-mining process

To prepare data for the knowledge base within the rec-

ommender system, the MapReduce algorithm was imple-

mented in Java and executed in Apache Hadoop. The
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Table 1 Features for detecting SQL injection

Feature Data type Possible values Description

Sources Multi-valued {getPathInfo, getResource, getName, getServletPath,
getRemoteHost, getLocalAddr, getParameterMap,
getRealPath, getServerName, getPathTranslated,
getInitParameterNames, getHeader, getCookies,
getPath, getComment, getParameter,
getParameterValues, getRequestURL, getHeaders,
getRequestURI, getResourceAsStream,
getRequestDispatcher, getQueryString,
getResourcePaths, getDomain, getValue,
getLocalName, getInitParameter, getRemoteUser,
getHeaderNames, getContentType,
getParameterNames, concatenateWhere,
getNamedDispatcher}

The method that accepts or
processes potentially tainted user
input

Sinks Multi-valued {executeLargeUpdate, updateWithOnConflict,
setGrouping, queryForList, batchUpdate, update,
buildQuery, prepareStatement, delete,
buildUnionSubQuery, queryWithFactory,
rawQueryWithFactory, nativeSQL, queryForInt,
blobFileDescriptorForQuery, longForQuery,
sqlRestriction, newQuery, executeInsert, createQuery,
queryForMap, queryForLong, apply, execSQL,
queryForRowSet, query, stringForQuery,
buildQueryString, <init>, addBatch, execute,
executeQuery, createSQLQuery, createNativeQuery,
setFilter, appendWhere, queryForObject,
newPreparedStatementCreator, as,
compileStatement, createDbFromSqlStatements,
buildUnionQuery, rawQuery, executeUpdate,
prepareCall}

The method that creates, modifies,
or executes a SQL query

Quoted_variables_found Boolean {True, false} Tells whether explicit apostrophes
were used to formulate an SQL
query string

Potentially_sanitized Boolean {True, false} Tells whether user inputs were
passed to untainted functions
before being used in SQL strings

Prepared_statement_imported Boolean {True, false} Specifies whether the
recommended prepared statement
class was imported

All_queries_parameterized Boolean {True, false} Specifies whether the question-
mark wildcard was used as variable
placeholders in query strings

Metadata String – Data (encoded in base 64)
containing SQL statements and
methods found in each Java file to
assist with verification of
classification

Class Binary {Safe, unsafe} The target variable

data in Part aa of the Sourcerer 2011 dataset was

used to create the knowledge base. Table 3 summa-

rizes the distribution of the projects within the sub-

set of the dataset that was analyzed. Specifically, the

Sourceforge projects and Google Code projects were pro-

cessed to create training data and test data, respectively.

Table 4 shows the breakdown of the training and testing

samples.

5 Methods
This section describes the methods followed in design-

ing and implementing the system. First, initial ideas on

the requirements and design of a useful and effective

code analysis tool are delineated. Next, the steps involv-

ing a knowledge elicitation survey that was conducted

to empirically ascertain the current use of code analyz-

ers among programmers and to elicit their views on the

design of the proposed system are presented. Finally, a dis-

cussion on the impact of the survey on the final design of

the system is provided.

5.1 Initial system design

Due to the observation that many programmers are

skeptical of using existing code analyzers, the following



Nembhard et al. EURASIP Journal on Information Security          (2019) 2019:9 Page 11 of 24

Table 2 Features for detecting OS command injection

Feature Data type Possible values Description

Shell_command_present Boolean {True, false} Tells whether a shell command is supplied to runtime.exec.
Shell commands include command.com, cmd.exe, /bin/sh
/bin/csh, /bin/ksh, /bin/bash, /bin/tcsh, /bin/zsh, /bin/rc,
/bin/es

Unsanitized_args_processed Boolean {True, false} Specifies whether the programmer passes potentially tainted
user arguments to the runtime.exec method

Faulty_characters_present Boolean {True, false} Specifies whether faulty characters are present in the
command passed to the runtime.exec method

File_permission_imported Boolean {True, false} Tells whether the recommended Java File permission class is
imported to prevent command injection

Metadata String – A field containing runtime examples and methods found in
each Java file

Class Binary {Safe, unsafe} The target variable

requirements are worth considering during the design of

a new system:

• The system must be a part of the IDE to enable

effective scanning and mediation
• The warnings should be brief and actionable (links to

more detailed information should be provided for

interested users)
• Emphasis should be placed on fixing the potential

vulnerabilities and encouraging good programming

practice
• The fixes should not be generic but as specific as

possible to the project being developed
• Scanning of vulnerabilities should be done such that

the programmer’s productivity is not negatively

impacted

By using this inexhaustive list of requirements, a

mockup of the proposed system was created (see Fig. 3).

The proposed tool is called VulIntel, short for Vulnera-

bility IntelliSensor. The tool is intended to be part of the

IDE and uses IntelliSense technology to scan code as the

programmer types. A list is populated with the names/IDs

of potential vulnerabilities. Clicking on a vulnerability in

the list displays a brief description of the vulnerability

including a reference to the unsafe method and variables

involved. Further, a ranked list of examples is presented to

the user to help with mitigation.

Table 3 Distribution of projects in part “aa” of the Sourcerer

dataset

Repository Number of projects Number of java files

Google Code 6865 605809

Sourceforge 7511 1015732

Miscellaneous — 625302

Total 14376 2246843

5.2 Knowledge elicitation survey

It is important to solicit feedback for any system design to

satisfy usability requirements as well as to answer ques-

tions that will assist with development. Consequently,

an online knowledge elicitation survey was conducted

with the main goal of obtaining formative feedback on

the design of the proposed interface and the views of

programmers about a tool that utilizes IntelliSense tech-

nology to find vulnerabilities in program code and pro-

vides recommended fixes for detected vulnerabilities.

Approval4 to conduct the study was obtained from the

Institutional Review Board at Florida Institute of technol-

ogy. The results from the survey are summarized below

and the survey questions are included in Appendix A.1.

5.2.1 Participants

To recruit a diverse population of participants, invitation

emails with a link to the survey were sent to individuals of

various experience levels in industry and academia. The

list consisted of more than 10 organizations from coun-

tries that included the USA, Brazil, Germany, and the UK.

The main criteria for participants was that they have at

Table 4 Breakdown of data within the knowledge base of the

recommender system

Knowledge base

SQLI corpus

Repository Safe Unsafe Total

Google Code 6164 1629 7793

Sourceforge 9459 2584 12043

Total 15623 4213 19836

Command injection corpus

Google Code 482 19 501

Sourceforge 2250 70 2320

Total 2732 89 2821
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Fig. 3Mockup of proposed system as incorporated in an IDE

least 3 years experience with an object-oriented program-

ming language such as Java, C#, or C++. A total of 104

participants completed the survey (44 graduate students,

39 industry professionals, 11 undergraduate students, 7

professors, and 3 others).

5.2.2 Familiarity with programming languages and IDEs

Participants were asked to select their familiarity with a

set of programming languages from a list that uses a 5-

point Likert scale5. Participants’s main language of choice

was the Java Programming language, with 40% indicating

that they are “very familiar” with it and 25% claiming to

be “experts” (see Fig. 5). The IDE that scored the highest

in use frequency (84.62%) among participants was Eclipse.

This was followed by Visual Studio with 73.08% and Net-

beans with 61.52%. The results are summarized in Figs. 4

and 5.

5.2.3 Results and discussion

The answers to four overarching questions that the survey

was designed to address are discussed below along with a

summary of themes that emerged from the survey.

(1) To what extent are programmers using code ana-

lyzers? To answer this question, participants were asked

whether they performed static and/or dynamic analysis

on their code and how useful they found the given rec-

ommendations. 13.46% of the participants stated that they

used a static analyzer such as FindBugs, 3.85% used a

dynamic analyzer such as Java PathFinder, 9.62% used

both dynamic and static analyzers, and 56.73% reported

that they did not scan their code for vulnerabilities.

(2) How useful are the advice/recommendations pro-

vided by existing tools? This question was presented to

participants who indicated that they currently take advan-

tage of existing code analyzers. 25.81% of this group of

participants described as “helpful” the recommendations

they received from the scanners they used and 67.74%

reported that the advice given was “somewhat helpful” in

fixing vulnerabilities.

(3) Would programmers utilize a tool that uses Intel-

liSense technology to find and suggest fixes for vulner-

abilities? Participants were first asked if they currently

take advantage of IntelliSense technology. Sixty-eight par-

ticipants (68%) reported that they currently utilize the

technology while 32 (32%) did not; 4 participants skipped

the question. In addition, the participants were asked their

opinion about the application of IntelliSense technology
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Fig. 4 Participants’ familiarity with IDEs

to vulnerability detection. 87 of the participants (87%)

intimated that they would appreciate a system that can

scan their code for vulnerabilities as they code; 10 (10%)

were not interested in the technology, but believe other

programmers may be interested; 3 participants did not

believe it would be a good idea to apply IntelliSense to

vulnerability detection, and 4 skipped the question.

(4) What are the design criteria and expectations for

a tool that scans code for vulnerabilities and presents

fixes to the user? The participants were then shown

the mockup (see Fig. 3) of the proposed tool and asked

in what situations and for what types of projects they

would utilize it. The responses are summarized in Figs. 6

and 7. Moreover, they were asked their opinion about

Fig. 5 Participants’ familiarity with programming languages
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Fig. 6 Situations under which programmers would use the proposed plugin

what they (dis)liked about the interface and what types of

vulnerabilities they would like to detect using the tool.

Themes that emerged from the survey

Several important themes stood out in the responses

provided by participants in the knowledge elicitation sur-

vey as evaluated using the grounded theory approach [74].

From the list of vulnerabilities provided by the partici-

pants, SQL injection, buffer overflows, and the OWASP

list of vulnerabilities are well-known and important to

programmers. However, there are other vulnerabilities

that are often overlooked by programmers but could

pose significant risks. For example, Fig. 2 shows that

hard-coded credentials (CWE-789) and missing encryp-

tion (CWE-311) account for dozens of vulnerabilities in

the 2017 NVD release, yet these vulnerabilities were not

mentioned by any participant.

Three main themes emerged from the open-ended

responses that were provided by the participants:

Theme 1: usability Some participants were concerned

about the number of objects on the proposed UI. They

suggested that while updates are important, the “news

updates” panel adds clutter to the interface and should be

minimized if possible.

Theme 2: performance While some participants were

in favor of scanning being done in the background, a few

of them were concerned about the impact this may have

on the code editor. For example, one participant

submitted the following response:

“I like that it tells you security vulnerabilities as you

type. I am a little concerned about how efficient

Fig. 7 Types of projects for which programmers would use the proposed plugin
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scanning for these vulnerabilities might be. I would

most likely stop using it if it slowed down my editor.”

Theme 3: fixing vulnerabilities A number of partic-

ipants commented on the plugin’s proposed ability to

provide fixes for the vulnerabilities that it finds. One

participant provided the following feedback:

“Really helpful as it provides you with multiple fixes

and examples and visually appealing.”

5.3 Final system design

The aforementioned themes were used to influence the

design of the final system. For example, the theme of

usability helped to declutter the interface. First, the knowl-

edge base within the recommender system was updated

with knowledge from open-source projects as discussed in

Section 4.3. The model was serialized and imported into

an Eclipse plugin. The Eclipse IDE was chosen because

of its familiarity among surveyed programmers as dis-

cussed earlier. Figure 8 shows a screenshot of the final

system as an Eclipse plugin. The design of the plugin was

influenced by the responses received in the knowledge

elicitation survey. IntellliSense technology was utilized by

extending the Eclipse Code Recommenders [75] system,

which is a fundamental component within the Eclipse

intelligent code completion framework. The IntelliSense

system was programmed to initiate the scanner after the

user enters or removes at least five characters, exclud-

ing spaces. This behavior was chosen after experimenting

with options such as after method completion or after

entering or removing at least 10 characters.

5.4 Recommending fixes for vulnerabilities

It is of interest to use the vulnerability-safe (negative)

examples from the labeled corpora to provide recommen-

dations to help programmers fix the detected vulnerabil-

ities. Several questions arise in determining a similarity

scheme that finds code that is similar to the user’s code

but is safe against the vulnerabilities found in the user’s

code. For example, what is the best trade-off between the

time taken to find similar code that is not only syntac-

tically relevant but also semantically helpful to the user?

To answer this and other questions, experiments were

conducted using three text similarity schemes (cosine sim-

ilarity, MinHash, and SimHash) in order to select one that

takes the least amount of time to find relevant examples.

The cosine similarity between two vectors (or two pro-

grams) is a measure that calculates the cosine of the angle

between them irrespective of the magnitude of the vec-

tors. In this work, the vectors represent the term frequen-

cies of terms that are common between two programs

(methods). The vectors were created by using Apache

Fig. 8 Screenshot of the final design of the plugin as incorporated in the Eclipse environment
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Lucene [76] to tokenize the Java code and remove Java

keywords and other English stop words from the code.

Minhash is a Locality Sensitive Hashing (LSH) tech-

nique based on the min-wise independent permutations

of sets. The goal of MinHash is to estimate the Jaccard

similarity quickly without explicitly computing the inter-

section and union of the sets. Jaccard is the ratio of the

number of elements in the intersection of two sets to the

number of elements in the union.

SimHash is also a LSH for the cosine similarity measure

that maps high-dimensional vectors to small fingerprints

[77]. It is based on the concept of Signed Random Pro-

jections (SRP) that transforms a multi-dimensional vector

into a binary string and stores only the sign of the random

projection values.

Figure 9 presents the results from an experiment that

compares the three similarity approaches. First, the figure

shows a sample user code that is vulnerable to SQLI.

Next, the most similar code that fixes the vulnerability, as

returned by each algorithm, is presented. The figure also

shows the similarity score and the time taken to search

a dataset of 18,842 safe instances for code that is simi-

lar to the user’s code. As can be seen from the results, all

three algorithms finished the search in under 2 s. More-

over, the returned samples suggest that cosine similarity

produced a more semantically similar piece of code to the

user’s code.

5.5 Usability study

The study6 followed the A/B testing format where partic-

ipants used two tools to complete two tasks and provide

feedback based on the experience they had while using

both tools. While A/B tests are traditionally used to com-

pare the performance of or user preferences regarding two

different versions of a particular tool or design, it is used in

this work to compare two different tools with two different

Fig. 9 Finding safe code that is most similar to the user’s code
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interfaces geared towards vulnerability detection and mit-

igation. The proposed tool uses an IntelliSense approach

to detect vulnerabilities while the second tool (FindBugs)

does not use IntelliSense. FindBugs was chosen as the

second tool due to its coverage in the literature [78, 79],

its adoption by major companies such as Google [80], its

open-source nature, and its target language being Java.

First, the goal of the study is outlined, followed by the

methodology, which includes a description of the partici-

pants, the apparatus and materials used, and the methods

employed in the study. The results of the study are then

presented along with a discussion on their significance.

5.5.1 Study goal

The overall goal of the study was to ascertain the useful-

ness and usability of a recommender system in helping

programmers write more secure code.

5.5.2 Participants

Fourteen participants completed the study (1 professor,

1 industry professional, 4 researchers, 3 undergraduate

students, 1 master’s student, and 4 PhD students). These

participants were recruited using a combination of con-

venience and snowball sampling via email and word of

mouth. Nine subjects were in the age group 18–29, four

between 30–49, and one between 50–64. Participants

ranged in coding experience with 13 people having at

least 3 years experience and 1 person between 0–2 years.

Subjects were asked to select their primary programming

languages and 9 of them selected Java and Python as their

languages of choice.

5.5.3 Apparatus andmaterials

All participants used a Dell Latitude 3550 laptop (Intel

Core i3 - 1.70 GHz CPU, 64-bit, 8 GB of RAM) to com-

plete the tasks. The study took place in a classroom in the

Harris Institute for Assured Information at Florida Insti-

tute of Technology, with one participant and one exper-

imenter per interview; each session lasted 30 to 45 min.

The Eclipse IDE (version Oxygen.3a 4.7.3) was installed

on the computer beforehand. The VulIntel plugin and the

FindBugs plugin (version 3.0.1) were also installed before

the study started. To have a fair comparison of tools,

FindBugs, which includes the FindSecBugs plugin, was

configured to target only security Bugs. This was done to

minimize the effect of unrelated issues on the scanning

time or presentation of errors to the participants because

FindBugs is able to find bugs related to bad practice, cor-

rectness, performance, etc., while VulIntel currently scans

for security-related vulnerabilities.

5.5.4 Methods

First, the experimenter presented the participant with an

Informed Consent Form. The experimenter reviewed the

contents of the form and gave participants a randomly

assigned ID that was used to refer to the participant

throughout the study. After reviewing the contents of the

consent form and the required tasks for the study, the par-

ticipant was given the option to withdraw or to proceed

by signing the form. The study then began with a short

demographic-style questionnaire (see Appendix A.2.1)

that was designed using Google Forms. After signing the

consent form, the interviewer told the participant the

order of the tools they would be using. Tool order was

alternated to avoid learning bias (i.e., 7 participants used

FindBugs first before using VulIntel while 7 used VulIntel

before using FindBugs). The interviewer then explained to

participants how to use the first tool to scan their code

for vulnerabilities and how to use the information the

tool provided to fix any potential vulnerabilities. Partici-

pants were told that they should use only the information

provided by the tool, and no other resources, to fix any

reported vulnerabilities.

Next, the experimenter activated screen-capturing (and

audio-recording) software, stepped aside, and allowed the

participant to complete the two tasks using the first tool.

After completing the tasks using the first tool, the partici-

pant was then given a questionnaire (see Appendix A.2.2)

followed by an interview (see Appendix A.2.3) based

on their experience using the tool to scan and fix the

given code of potential vulnerabilities. If a participant was

unable to fix the vulnerabilities using the tool, the exper-

imenter allowed the participant to proceed with the next

tool. The screen-capturing software was closed and the

same experiment was given for the second tool.

Tasks Each participant was given two tasks related to

the top two taint-style vulnerabilities discussed earlier

(see Section 4.3.2). Each task consisted of the user typ-

ing preselected sample code into the text editor of the

Eclipse IDE while the code scanner window was open and

the scanner activated. Two Java classes containing sam-

ple methods were created prior to the experiment with

vulnerable portions of the code removed, so the partici-

pant could type, observe the behavior of the scanner, and

use the information provided by the scanner to fix the

vulnerability.

The code used for Task 1 (SQL injection) is a modified

version of an example provided by the Software Engi-

neering Institute at the Carnegie Mellon University [81]

while the code used for Task 2 (Command Injection) was

obtained from the OWASP website [82].

6 Results and discussion
This section presents the results and discussion of the

usability study and scalability analysis of the proposed

tool.

Figure 10 provides a frequency summary of participants’

responses to four main questions asked on the question-
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Fig. 10 Summary of participants’ responses to four main questions

naire (see Appendix A.2.2) for each tool after participants

completed the tasks. All four questions were presented

using a 5-point Likert scale7. As can be seen from the

Fig. 10, more people agreed with VulIntel satisfying these

questions positively than those who agreed that FindBugs

did the same. If the Likert scale is collapsed into two

categories (agree and disagree) by removing the neutral

responses, the following can be concluded:

• Fourteen participants agreed that VulIntel provided

helpful information including fixes for the two tasks

given whereas only 1 participant agreed that

FindBugs provided the same.
• Fourteen participants agreed that the VulIntel

interface was usable whereas only 6 agreed that the

FindBugs interface was usable.
• Thirteen participants indicated that they think

VulIntel would help them write more secure code

while only 4 participants think that FindBugs would

help them to write more secure code.
• All participants stated that they would use the

VulIntel system when coding while only 3

participants would use FindBugs.

6.1 Scalability

While the goal of this work is to couple text mining tech-

niques with IntelliSense technology to create a recom-

mender system that detects and mitigates vulnerabilities

in user programs, it is also of interest to determine the

scalability of the proposed methodology on projects of

various sizes. To do so, a random sample of 10 Google

Code projects in the dataset was selected and processed

for SQL injection. Table 5 shows the time taken to classify

these projects for SQLI by using a Macbook Pro laptop

(16GB of RAM, 3 GHz Intel Corei7 processor). The exper-

iment was done while other processes were running on

Table 5 Time taken to detect SQLI in various open-source projects

Repository name Number of java files Total LLOC Total classification time (Sec) SQLI found

gwtspeechbubble.googlecode.com 3 82294 0.009 FALSE

ov2java.googlecode.com 4 133122 0.010 FALSE

xmlui.googlecode.com 4 110426 0.044 FALSE

permutationcombination.googlecode.com 12 327806 0.043 FALSE

org2hash.googlecode.com 26 434457 0.136 FALSE

teknoatolye.googlecode.com 39 666449 0.147 FALSE

grimwepa.googlecode.com 43 1315067 0.668 TRUE

lambdacore.googlecode.com 56 969340 0.177 FALSE

gracedm.googlecode.com 266 5951640 2.544 FALSE

oxygensoftwarelibrary.googlecode.com 545 4534779 7.173 FALSE
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the machine in order to mimic the environment of a typ-

ical developer/programmer. The table also provides other

information on the experiment such as the total LLOC

(logical lines of code) for each project and the number

of files in each one. LLOC was computed by counting

the expression statements (an expression followed by a

semicolon) in each AST.

The results show that the approach scales very well

by being able to scan a project of over 4.5 million

lines of code for SQLI in under 8 s while projects of

up to 1 million lines of code take under a second.

Even though the experiment was only done for one

vulnerability, the scanning process can be parallelized

through the use of threads to maintain this performance

while scanning for other vulnerabilities. This paralleliza-

tion is feasible since threads are already being used by

the tool to find similar example code that mitigates

vulnerabilities.

6.2 Discussion

Statistical significance Four paired sample t tests and

analysis of variance (ANOVA) tests were conducted for

the four questions discussed previously. t tests are used to

determine whether the mean difference between two sets

of observations is equal to zero (that there is no differ-

ence between the groups being explored). ANOVA tests

were done to check whether the choices of participants

depended on the order of the tools presented during the

study (i.e., whether there is interaction between tool-order

and participants’ agreement). To obtain numeric data for

carrying out the tests, the Likert scale was converted to an

ordinal scale8. All t tests were two-tailed and defined as

follows: (H0 : μd = 0 and H1 : μd �= 0). The results are

summarized in Table 6.

As can be seen from the table, the p values are statis-

tically significant for the paired-sample t tests on all four

factors regarding participants’ agreement. Therefore, the

null hypotheses are rejected and the conclusion that the

proposed tool was more usable and helpful than FindBugs

in helping programmers write more secure code are sup-

ported. Additionally, the p values for the ANOVA tests

show that the null hypothesis that states that there is no

interaction between tool order and participants’ agree-

ment cannot be rejected. Therefore, the conclusion is that

tool order did not affect the choices of participants. These

results confirm the hypothesis that surveyed participants

strongly believe that a recommender system built using

text mining techniques can help programmers write more

secure code.

6.2.1 Study limitations

The convenience sampling done for the usability study

conducted in this work poses a few limitations.

Sample size The number of participants, which were

limited to professional code developers, though relatively

diverse in experience, was small (N = 14). There is the

potential of obtaining different results with a larger sam-

ple. However, since it is typical in the usability commu-

nity to conduct studies with focus groups between 6 and

10 participants [83], the results presented in this initial

study are acceptable. Further, the statistical significance

reported helps to strengthen the conclusions.

Gap between tool age The gap between the age of both

tools is also worth mentioning. FindBugs was originally

released in 2006, with its most recent release in 2015. The

proposed tool in this study has not yet been released to the

public. Therefore, age difference between the two tools

may have some effect on the results.

Experimenter demand effects Demand effects could

also pose a limitation. However, this limitation may be

very minimal, since none of the participants involved in

the study has ever seen or worked with the featured tools

and tool order was alternated during the study.

7 Conclusions and future work
In this work, a methodology is proposed, designed, and

evaluated to help programmers fix potential vulnerabili-

Table 6 Results from paired-sample t-tests and one-way ANOVA tests for four tool factors. A/B test represents participants who used

FindBugs before using VulIntel whereas B/A test represents the opposite

Paired sample t-Test One-way ANOVA test based on tool order

A/B test B/A Test

Tool factor t statistic DF p value 95% confidence interval F value Pr(>F) F value Pr(>F)

Helpfulness (Q1) 10.3333 13 1.228e-07 [1.7514, 2.6772] 0.1200 0.735 1.0909 0.3169

Usability (Q2) 6.5655 13 1.81e-05 [1.0064, 1.9936] 2.7000 0.1263 0.2500 0.6261

Secure coding ability (Q3) 7.3202 13 5.83e-06 [1.3091, 2.4052] 1.1707 0.3005 0.0000 1.0000

Adoption (Q4) 6.1085 13 3.729e-05 [1.3389, 2.8040] 2.0769 0.1751 0.2500 0.6261
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ties as they type code during development. The proposed

methodology employs the use of text mining techniques

to extract features from code repositories in order to cat-

egorize code and use data-driven vulnerability detectors

to detect vulnerabilities. The vulnerability detectors work

in unison with a recommender system to provide the pro-

grammer during development with ranked code examples

that resemble the project being developed in order to mit-

igate a set of vulnerabilities. This work advocates the use

of a recommender system that uses similarity metrics to

recommend a set of example fixes instead of using the tra-

ditional approach of automatically fixing the user’s code.

Providing the user a set of similar examples that are safer

than the code being developed not only allows the user to

fix vulnerabilities but also educates the program on how

to avoid the errors that lead to vulnerabilities in future

projects.

A usability study showed that all 14 participants

involved agreed that the proposed systemwasmore usable

than the FindBugs system, and it provided more help-

ful advice including fixes for the tasks they completed

using the system. In addition, all but one participant

indicated that the proposed system would help them

to write more secure code. The results were statisti-

cally evaluated, and paired sample t tests and ANOVA

suggest that there is statistical significance, confirm-

ing the applicability of recommender systems to secure

coding.

7.1 Future work

Future directions for this work include the following:

• The use of deep learning and other methods to

determine the features for detecting vulnerabilities

instead of using hand-selected features. While the

features proposed in this work are engineered to a

degree, they provide the ability to ensure data

correctness and to create the end-to-end processing

framework. This is an essential step in creating

datasets that are verifiably correct and provides a

baseline on which to judge the performance of the

methodology. Automatic extraction of features will

allow for the addition of machine learning algorithms

to the methodology.
• Expanding the work by detecting and correcting

more vulnerabilities/weaknesses in the SANS/CWE

2011 list of Most Dangerous Software Errors. The

analysis in this work showed that by correcting the

two featured vulnerabilities, 1300 out of 1500

vulnerabilities in the 2017 NVD release could be

avoided.
• Further improving the user interface based on the

responses received from participants in the usability

study

• Expanding the tool to support more programming

languages and IDEs
• Collecting reports from users on their awareness

about secure coding based on tool usage and tracking

error reduction based on recommendations provided

by the tool
• Performing A/B testing of the features within the

proposed tool

Endnotes
1Data that is unchecked or unsanitized
2A backward-reasoning style proof theory for plan syn-

thesis that considers an action that would achieve a goal

under some specified circumstances and tries to find a

way to achieve the goal by performing the action [84].
3A code analyzer that flags code based on programming

errors, bugs, stylistic errors, and suspicious constructs
4 IRB#: 18-006
5 “None,” “somewhat familiar,” “familiar,” “very familiar,”

“expert”
6 IRB#:18-006
7 “Strongly disagree,” “disagree,” “neutral,” “agree,”

“strongly agree”
8 “Strongly disagree”: 1, “disagree” : 2, “neutral” : 3,

“agree” : 4, “strongly agree” : 5

Appendix A: Appendices
A.1 Knowledge elicitation survey questions

1 What is your occupation? (a) Undergraduate student

(b) Graduate Student (c) Professor (d) Industry

Expert (e) Freelancer (f) Other

2 How would you describe your level of familiarity with

the following programming languages? Use the

Likert Scale: (“None”, “Somewhat familiar”,

“Familiar”, “Very familiar”, “Expert”) (1) Java (2) C#

(3) Visual Basic (4) C (5)C++ (6)Python (7) JavaScript

(8) PHP (9) Perl

3 Please indicate your familiarity with the following

source code editors and/or integrated development

environments (IDEs) using the same Likert scale for

the question above. (1) Eclipse (2) Netbeans

(3)IntelliJ IDEA (4) Visual Studio (5) Emacs (6)

Vi/Vim (7) Other (please specify)

4 How important or unimportant is it for you to

develop secure code? (a) Very important (b)

Important (c) Unimportant (d) Very unimportant

5 How do you currently scan your code for weaknesses

(vulnerabilities) or unsafe practices? (a) I use a static

analyzer such as FindBugs (b) I use a dynamic

analyzer such as Java PathFinder (c) I use both static

and dynamic analyzers (d) I write code and another
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party scans it for vulnerabilities (e) I currently do not

scan my code for vulnerabilities (f) Other

6 If you answered (a) - (c) in question 5, how helpful do

you find the warnings/advice provided by the

selected scanner? (a) The advice is very helpful in

fixing vulnerabilities (b) The advice given is

somewhat helpful in fixing vulnerabilities (c) The

advice provided does not help in fixing vulnerabilities

7 Do you currently utilize IntelliSense technology (also

known as “code completion” or “code hinting” during

coding? (a) Yes (b) No

8 What is your opinion about detecting vulnerabilities

using IntelliSense technology? (a)I would appreciate

a system that can scan my code for vulnerabilities as I

code (b) I do not care about such technology, but I

believe other programmers would appreciate a

system that utilizes this technology (c) I do not think

this would be a good idea

We will now show you a mockup (See Fig. 3) of a tool

we are developing that is designed to help

programmers find and fix vulnerabilities as they

code. The tool will be created using machine learning

techniques and implemented as a plugin in common

IDEs such as Eclipse.

9 Consider situations where you are writing code. In

what situations would you utilize this plugin? (a)

Before code release (b) During a nightly build (c) As I

type code (d) When I finish a module (e) When I

finish a class (f) Other

10 What do you like or dislike about the plugin featured

in the mockup?

11 For what types of project would you use this plugin?

(multiple responses can be selected) (a) work projects

(b) school projects (c) While freelancing (d)Fun

projects (e) Open-source projects (f) Other

A.2 Usability study questions

A.2.1 Pre-task completion questionnaire

1 What is your age group? (a) 18-29 years old (b) 30-49

years old (c) 50-64 years old (d) 65 years and over

2 What is your occupation?

3 Select your primary programming languages (1) Java

(2) C# (3) Visual Basic (4) C (5)C++ (6)Python (7)

JavaScript (8) PHP (9) Perl (10) Other

4 How many years of coding experience do you have?

(a) 0-2 (b) 3-5 (c) 6-8 (d) 9-11 (e) 12-14 (f) 15-20 (g)

Over 20 years

A.2.2 Post-task completion questionnaire

The following Likert scale was used for the following ques-

tions: “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”,

“Strongly Agree”

1 provided me with helpful information including

examples on how to fix vulnerabilities

2 Overall, the interface was usable

3 I think the system will help me to write

more secure code

4 I would use the system when coding

5 I think using the system will allow me to fix

vulnerabilities faster than other tools

6 It is easier for me to fix vulnerabilities based on a

deeper understanding of the vulnerabilities rather

than examples of other fixes.

A.2.3 Post-task completion interview

1 Were you able to complete all the tasks given to you

on the system ? Why or why not?

2 What did you like about using the code analyzer on

the system?

3 What did you dislike about using the code analyzer

on the system?
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