
Towards the Automated Generation of

Consistent, Diverse, Scalable and Realistic

Graph Models
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Abstract. Automated model generation can be highly beneficial for var-
ious application scenarios including software tool certification, validation
of cyber-physical systems or benchmarking graph databases to avoid te-
dious manual synthesis of models. In the paper, we present a long-term
research challenge how to generate graph models specific to a domain
which are consistent, diverse, scalable and realistic at the same time.

We provide foundations for a class of model generators along a refine-
ment relation which operates over partial models with 3-valued repre-
sentation and ensures that subsequently derived partial models preserve
the truth evaluation of well-formedness constraints in the domain. We
formally prove completeness, i.e. any finite instance model of a domain
can be generated by model generator transformations in finite steps and
soundness, i.e. any instance model retrieved as a solution satisfies all
well-formedness constraints. An experimental evaluation is carried out
in the context of a statechart modeling tool to evaluate the trade-off
between different characteristics of model generators.
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1 Introduction

Smart and safe cyber-physical systems [16, 54, 69, 93] are software-intensive au-
tonomous systems that largely depend on the context in which they operate, and
frequently rely upon intelligent algorithms to adapt to new contexts on-the-fly.
However, adaptive techniques are currently avoided in many safety-critical sys-
tems due to major certification issues. Automated synthesis of prototypical test
contexts [58] aims to systematically derive previously unanticipated contexts for
assurance of such smart systems in the form of graph models. Such prototype
contexts need to be consistent, i.e. they need to fulfill certain well-formedness
(consistency) constraints when synthesizing large and realistic environments.



In many design and verification tools used for engineering CPSs, system
models are frequently represented as typed and attributed graphs. There has
been an increasing interest in model generators to be used for validating, testing
or benchmarking design tools with advanced support for queries and transfor-
mations [4, 6, 42, 92]. Qualification of design and verification tools is necessi-
tated by safety standards (like DO-178C [89], or ISO 26262 [43]) in order to
assure that their output results can be trusted in safety-critical applications.
However, tool qualification is extremely costly due to the lack of effective best
practices for validating the design tools themselves. Additionally, design-space
exploration [47,57,66] necessitates to automatically derive different solution can-
didates which are optimal wrt. certain objectives for complex allocation prob-
lems. For testing and DSE purposes, diverse models need to be synthesized where
any pairs of models are structurally very different from each other in order to
achieve high coverage or a diverse solution space.

Outside the systems engineering domain, many performance benchmarks for
advanced relational databases [26], triple stores and graph databases [13,60,80],
or biochemical applications [36,99] also rely on the availability of extremely large
and scalable generators of graph models.

Since real models created by engineers are frequently unavailable due to the
protection of intellectual property rights, there is an increasing need of realistic
models which have similar characteristics to real models. However, these models
should be domain-specific, i.e. graphs of biomedical systems are expected to be
very different from graphs of social networks or software models. An engineer
can easily distinguish an auto-generated model from a manually designed model
by inspecting key attributes (e.g. names), but the same task becomes more chal-
lenging if we abstract from all attributes and inspect only the (typed) graph
structure. While several graph metrics have been proposed [10, 12, 44, 68], the
characterization of realistic models is a major challenge [91].

As a long-term research challenge, we aim at automatically generating domain-
specific graph models which are simultaneously scalable, realistic, consistent and
diverse. In the paper, we precisely formulate the model generation challenge for
the first time (Section 2). Then in Section 3, we revisit the formal foundations of
partial models and well-formedness constraints captured by graph patterns. In
Section 4, we propose a refinement calculus for partial models as theoretical foun-
dation for graph model generation, and a set of specific refinement operations
as novel contributions. Moreover, we precisely formulate certain soundness and
completeness properties of this refinement calculus.5 In addition, we carry out
an experimental evaluation of some existing techniques and tools in Section 5
to assess the trade-off between different characteristics (e.g. diverse vs. realis-
tic, consistent vs. diverse, diverse vs. consistent and consistent vs. scalable) of
model generation. Finally, related work is discussed wrt. the different properties
required for model generation in Section 6.

5 The authors’ copy of this paper is available at https://inf.mit.bme.hu/research/
publications/towards-model-generation together with the proofs of theorems
presented in Section 4.

https://inf.mit.bme.hu/research/publications/towards-model-generation
https://inf.mit.bme.hu/research/publications/towards-model-generation


2 The Graph Model Generation Challenge

A domain specification (or domain-specific language, DSL) is defined by a meta-
model MM which captures the main concepts and relations in a domain, and
specifies the basic graph structure of the models. In addition, a set of well-
formedness constraints WF = {φ1, . . . , φn} may further restrict valid domain
models by extra structural restrictions. Furthermore, we assume that editing
operations of the domain are also defined by a set of rules OP .

Informally, the automated model generation challenge is to derive a set of
instance models where each Mi conforms to a metamodel MM . A model gen-
erator Gen ↦→ {Mi} derives a set (or sequence) of models along a derivation

sequence M0
op1,...,opk
−−−−−−→ Mi starting from (a potentially empty) initial model M0

by applying some operations opj from OP at each step. Ideally, a single model
Mi or a model generator Gen should satisfy the following requirements:

– Consistent (CON): A model Mi is consistent if it satisfies all constraints
in WF (denoted by Mi |= WF ). A model generator Gen is consistent, if it
is sound (i.e. if a model is derivable then it is consistent) and complete (i.e.
all consistent models can be derived).

– Diverse (DIV): The diversity of a model Mi is defined as the number of
(direct) types used from its MM : Mi is more diverse than Mj if more types
of MM are used in Mi than in Mj . A model generator Gen is diverse if
there is a designated distance between each pairs of models Mi and Mj :
dist(Mi,Mj) > D.

– Scalable (SCA): A model generator Gen is scalable in size if the size of
Mi is increasing exponentially #(Mi+1) ≥ 2 ·#(Mi), thus a single model Mi

can be larger than a designated model size #(Mi) > S. A model generator
Gen is scalable in quantity if the generation of Mj (of similar size) does
not take significantly longer than the generation of any previous model Mi:
time(Mj) < max0≤i<j{time(Mi)} · T (for some constant T ).

– Realistic (REA): A generated model is (structurally) realistic if it cannot
be distinguished from the structure of a real model after all text and values
are removed (by considering them irrelevant). A model generator is realistic
wrt. some graph metrics [91] and a set of real models {RMi} if the evaluation
of the metrics for the real and the generated set of models has similar values:
⏐

⏐metr({RMi})−metr({Mi})
⏐

⏐ < R.

Note that we intentionally leave some metrics metr and distance functions
dist open in the current paper as their precise definitions may either be domain-
specific or there are no guidelines which ones are beneficial in practice.

Each property above is interesting in itself, i.e. it has been addressed in nu-
merous papers, and used in at least one industrial application scenario. Moreover,
similar properties might be defined in the future. However, the grand challenge is
to develop an automated model generator which simultaneously satisfies multiple
(ideally, all four) properties. For instance, a model generator for benchmarking
purposes needs to be scalable, realistic and consistent, while a test model gen-
erator needs to be diverse, consistent (or intentionally faulty), and scalable in



quantity. However, existing model generation approaches developed in different
research areas usually support one (or rarely at most two) of these properties.

Such a multi-purpose model generator is out of scope also for the current
paper. In fact, as a novel contribution, we provide precise theoretical foundations
for a graph model generator that is scalable and consistent based on a refinement
calculus. Our specific focus is motivated by a novel empirical evaluation to be
reported in Section 5 which states that consistency is a prerequisite for the
synthesis of both diverse and realistic models.

3 Preliminaries

We illustrate automated model generation in the context of Yakindu Statecharts
Tools [101], which is an industrial DSL developed by Itemis AG for the develop-
ment of reactive, event-driven systems using statecharts captured in a combined
graphical and textual syntax. Yakindu supports validation of WF constraints,
simulation and code generation from statechart models. We first revisit the for-
malization of the partial models and WF-constraints as defined in [85].

3.1 Metamodels and instance models

Formally, a metamodel defines a vocabulary Σ = {C1, . . . , Cn, R1, . . . , Rm,∼}
where a unary predicate symbol Ci (1 ≤ i ≤ n) is defined for each class (node
type), and a binary predicate symbol Rj (1 ≤ j ≤ m) is defined for each reference
(edge type). The index of a predicate symbol refers to the corresponding meta-
model element. The binary ∼ predicate is defined as an equivalence relation over
objects (nodes) to denote if two objects can be merged. For space considerations,
we omit the precise handling of attributes from this paper as none of the four
key properties depend on attributes. For metamodels, we use the notations of
the Eclipse Modeling Framework (EMF) [90], but our concepts could easily be
adapted to other frameworks of typed and attributed graphs such as [21,28].

An instance model is a 2-valued logic structure M = ⟨ObjM , IM ⟩ over Σ
where ObjM = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in
the model (where #(M) = |ObjM | = n denotes the size of the model) and IM
is a 2-valued interpretation of predicate symbols in Σ defined as follows (where
ok and ol are objects from ObjM with 1 ≤ k, l ≤ n):

– Type predicates: the 2-valued interpretation of a predicate symbol Ci in
M (formally, IM (Ci) : ObjM → {1, 0}) evaluates to 1 if object ok is instance

of class Ci (denoted by [[Ci(ok)]]
M

= 1), and evaluates to 0 otherwise.
– Reference predicates: the 2-valued interpretation of a predicate symbol

Rj in M (formally, IM (Rj) : ObjM ×ObjM → {1, 0}) evaluates to 1 if there

exists an edge (link) of type Rj from ok to ol in M denoted as [[Rj(ok, ol)]]
M

=
1, and evaluates to 0 otherwise.

– Equivalence predicate: the 2-valued interpretation of a predicate symbol
∼ in M (formally, IM (∼) : ObjM ×ObjM → {1, 0}) evaluates to 1 for any



object ok, i.e. [[ok ∼ ok]]
M

= 1, and evaluates to 0 for any different pairs of

objects, i.e. [[ok ∼ ol]]
M

= 0, if ok ̸= ol. This equivalence predicate is rather
trivial for instance models but it will be more relevant for partial models.

3.2 Partial models

Partial models [31,46] represent uncertain (possible) elements in instance models,
where one partial model represents a set of concrete instance models. In this
paper, 3-valued logic [48] is used to explicitly represent unspecified or unknown
properties of graph models with a third 1/2 value (beside 1 and 0 which stand
for true and false) in accordance with [76,85].

A partial model is a 3-valued logic structure P = ⟨ObjP , IP ⟩ of Σ where
ObjP = {o1, . . . , on} (n ∈ Z

+) is a finite set of individuals (objects) in the
model, and IP is a 3-valued interpretation for all predicate symbols in Σ defined
below. The 3-valued truth evaluation of the predicates in a partial model P will
be denoted respectively as [[Ci(ok)]]

P
, [[Rj(ok, ol)]]

P
, [[ok ∼ ol]]

P
.

– Type predicates: IP gives a 3-valued interpretation for each class symbol
Ci in Σ: IP (Ci) : ObjP → {1, 0, 1/2}, where 1, 0 and 1/2 means that it is true,
false or unspecified whether an object is an instance of a class Ci.

– Reference predicates: IP gives a 3-valued interpretation for each reference
symbol Rj in Σ: IP (Rj) : ObjP ×ObjP → {1, 0, 1/2}, where 1, 0 and 1/2
means that it is true, false or unspecified whether there is a reference of type
Rj between two objects.

– Equivalence predicate: IP gives a 3-valued interpretation for the ∼ rela-
tion between the objects IP (∼) : ObjP ×ObjP → {1, 0, 1/2}.
A predicate ok ∼ ol between two objects ok and ol is interpreted as follows:
• If [[ok ∼ ol]]

P
= 1 then ok and ol are equal and they can be merged;

• If [[ok ∼ ol]]
P
= 1/2 then ok and ol may be equal and may be merged;

• If [[ok ∼ ol]]
P

= 0 then ok and ol are different objects in the instance
model, thus they cannot be merged.

A predicate ok ∼ ok for any object ok (as a self-edge) means the following:

• If [[ok ∼ ok]]
P
= 1 then ok is a final object which cannot be further split

to multiple objects;
• If [[ok ∼ ok]]

P
= 1/2 then ok is a multi-object which may represent a set

of objects.
The traditional properties of the equivalence relation ∼ are interpreted as:
• ∼ is a symmetric relation: [[ok ∼ ol]]

P
= [[ol ∼ ok]]

P
;

• ∼ is a reflexive relation: [[ok ∼ ok]]
P
> 0;

• ∼ is a transitive relation: [[ok ∼ ol ∧ ol ∼ om ⇒ ok ∼ om]]
P

> 0 which

prevents that [[ok ∼ ol]]
P
= 1, [[ol ∼ om]]

P
= 1 but [[ol ∼ om]]

P
= 0.

Informally, this definition of partial models is very general, i.e. it does not
impose any further restriction imposed by a particular underlying metamodeling
technique. For instance, in case of EMF, each object may have a single direct type
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Fig. 1: Metamodel extract of Yakindu statecharts
Fig. 2: Partial models

and needs to be arranged into a strict containment hierarchy while graphs of the
semantic web may be flat and nodes may have multiple types. Such restrictions
will be introduced later as structural constraints. Mathematically, partial models
show close resemblance with graph shapes [75,76].

If a 3-valued partial model P only contains 1 and 0 values, and there is no
∼ relation between different objects (i.e. all equivalent nodes are merged), then
P also represents a concrete instance model M .

Example 1. Figure 1 shows a metamodel extracted from Yakindu statecharts
where Regions contain Vertexes and Transitions (leading from a source ver-
tex to a target vertex). An abstract state Vertex is further refined into States

and Entry states where States are further refined into Regions.
Figure 2 illustrates two partial models: P4, P12 (to be derived by the refine-

ment approach in Section 4). The truth value of the type predicates are denoted
by labels on the nodes, where 0 values are omitted. Reference predicate values
1 and 1/2 are visually represented by edges with solid and dashed lines, respec-
tively, while missing edges between two objects represent 0 values for a predicate.
Finally, uncertain 1/2 equivalences are marked by dashed lines with an ∼ symbol,
while certain equivalence self-loops on objects are omitted.

Partial model P4 contains one (concrete) Region r, one State s, and some
other objects collectively represented by a single node new3. Object s is both
of type State and Vertex, while new3 represents objects with multiple possible
types. Object s is linked from r via a vertices edge, and there are other possible
references between r and new3. Partial model P12, which is a refinement of P4,
has no uncertain elements, thus it is also a concrete instance model M .

3.3 Graph patterns as well-formedness constraints

In many industrial modeling tools, complex structural WF constraints are cap-
tured either by OCL constraints [70] or by graph patterns (GP) [11,49,67]. Here,
we use a tool-independent first-order graph logic representation (which was in-



[[C(v)]]P
Z
:=IP (C)(Z(v))

[[R(v1, v2)]]
P

Z
:=IP (R)(Z(v1), Z(v2))

[[v1 ∼ v2]]
P

Z
:=IP (∼)(Z(v1), Z(v2))

[[ϕ1 ∧ ϕ2]]
P

Z
:=min([[ϕ1]]

P

Z
, [[ϕ2]]

P

Z
)

[[ϕ1 ∨ ϕ2]]
P

Z
:=max ([[ϕ1]]

P

Z
, [[ϕ2]]

P

Z
)

[[¬ϕ]]P
Z
:=1− [[ϕ]]P

Z

[[∃v : ϕ]]P
Z
:=max{[[ϕ]]P

Z,v ↦→x
: x ∈ ObjP }

[[∀v : ϕ]]P
Z
:=min{[[ϕ]]P

Z,v ↦→x
: x ∈ ObjP }

Fig. 3: Semantics of graph patterns (predicates) Fig. 4: Malformed model

fluenced by [76,98] and is similar to [85]) that covers the key features of several
existing graph pattern languages and a first-order logic (FOL) fragment of OCL.

Syntax. A graph pattern (or formula) is a first order logic (FOL) formula
ϕ(v1, . . . , vn) over (object) variables. A graph pattern ϕ can be inductively
constructed (see Figure 3) by using atomic predicates of partial models: C(v),
R(v1, v2), v1 ∼ v2, standard FOL connectives ¬, ∨, ∧, and quantifiers ∃ and ∀.
A simple graph pattern only contains (a conjunction of) atomic predicates.

Semantics. A graph pattern ϕ(v1, . . . , vn) can be evaluated on partial model P
along a variable binding Z, which is a mapping Z : {v1, . . . , vn} → ObjP from
variables to objects in P . The truth value of ϕ can be evaluated over a partial
model P and mapping Z (denoted by [[ϕ(v1, . . . , vn)]]

P

Z ) in accordance with the
semantic rules defined in Figure 3. Note that min and max takes the numeric
minimum and maximum values of 0, 1/2 and 1 with 0 ≤ 1/2 ≤ 1, and the rules
follow 3-valued interpretation of standard FOL formulae as defined in [76,85].

A variable binding Z is called a match if the pattern ϕ is evaluated to 1 over
P , formally [[ϕ(v1, . . . , vn)]]

P

Z = 1. If there exists such a variable binding Z, then

we may shortly write [[ϕ]]
P
= 1. Open formulae (with one or more unbound vari-

ables) are treated by introducing an (implicit) existential quantifier over unbound
variables to handle them similarly to graph formulae for regular instance models.
Thus, in the sequel, [[ϕ(v1, . . . , vn)]]

P

Z = 1 if [[∃v1, . . . , ∃vn : ϕ(v1, . . . , vn)]]
P

= 1
where the latter is now a closed formula without unbound variables. Simi-
larly, [[ϕ]]

P
= 1/2 means that there is a potential match where ϕ evaluates

to 1/2, i.e. [[∃v1, . . . , ∃vn : ϕ(v1, . . . , vn)]]
P

= 1/2, but there is no match with

[[ϕ(v1, . . . , vn)]]
P

Z = 1. Finally, [[ϕ]]
P
= 0 means that there is surely no match, i.e.

[[∃v1, . . . , ∃vn : ϕ(v1, . . . , vn)]]
P
= 0 for all variable bindings. Here ∃v1, . . . , ∃vn :

ϕ(v1, . . . , vn) abbreviates ∃v1 : (. . . , ∃vn : ϕ(v1, . . . , vn)).
The formal semantics of graph patterns defined in Figure 3 can also be eval-

uated on regular instance models with closed world assumption. Moreover, if a
partial model is also a concrete instance model, the 3-valued and 2-valued truth
evaluation of a graph pattern is unsurprisingly the same, as shown in [85].



Proposition 1. Let P be a partial model which is simultaneously an instance
model, i.e. P = M . Then the 3-valued evaluation of any ϕ on P and its 2-valued
evaluation on M is identical, i.e. [[ϕ]]

P

Z = [[ϕ]]
M

Z along any variable binding Z.

Graph patterns as WF constraints. Graph patterns are frequently used for defin-
ing complex structural WF constraints and validation rules [96]. Those con-
straints are derived from two sources: the metamodel (or type graph) defines core
structural constraints, and additional constraints of a domain can be defined by
using nested graph conditions [40], OCL [70] or graph pattern languages [96].

When specifying a WF constraint φ by a graph pattern ϕ, pattern ϕ cap-
tures the malformed case by negating φ, i.e. ϕ = ¬φ. Thus a graph pattern match
detects a constraint violation. Given a set of graph patterns {ϕ1, . . . , ϕn} con-
structed that way, a consistent instance model requires that no graph pattern
ϕi has a match in M . Thus any match Z for any pattern ϕi with [[ϕi]]

M

Z = 1 is a
proof of inconsistency. In accordance with the consistency definition M |= WF
of Section 2, WF can defined by graph patterns as WF = ¬ϕ1 ∧ . . . ∧ ¬ϕn.

Note that consistency is defined above only for instance models, but not for
partial models. The refinement calculus to be introduced in Section 4 ensures
that, by evaluating those graph patterns over partial models, the model genera-
tion will gradually converge towards a consistent instance model.

Example 2. The violating cases of two WF constraints checked by the Yakindu
tool can be captured by graph patterns as follows:

– incomingToEntry(v) : Entry(v) ∧ ∃t : target(t, v)
– noEntryInRegion(r) : Region(r) ∧ ∀v : ¬(vertices(r, v) ∧ Entry(v))

Both constraints are satisfied in instance model P12 as the corresponding
graph patterns have no matches, thus P12 is a consistent result of model gener-
ation. On the other hand, P10 in Figure 4 is a malformed instance model that
violates constraint incomingToEntry(v) along object e:

[[incomingToEntry(v)]]
P10

v ↦→e = 1 and [[noEntryInRegion(r)]]
P10 = 0

While graph patterns can be easily evaluated on concrete instance models,
checking them over a partial model is a challenging task, because one partial
model may represent multiple concretizations. It is shown in [85] how a graph
pattern ϕ can be evaluated on a partial model P with 3- valued logic and open-
world semantics using a regular graph query engine by proposing a constraint
rewriting technique. Alternatively, a SAT-solver based approach can be used as
in [24,31] or the general or initial satisfaction can be defined for positive nested
graph constraints as in [41,82].

4 Refinement and Concretization of Partial Models

Model generation is intended to be carried out by a sequence of refinement
steps which starts from a generic initial partial model and gradually derives a



concrete instance model. Since our focus is to derive consistent models, we aim
at continuously ensuring that each intermediate partial model can potentially
be refined into a consistent model, thus a partial model should be immediately
excluded if it cannot be extended to a well-formed instance model.

4.1 A refinement relation for partial model generation

In our model generation, the level of uncertainty is aimed to be reduced step by
step along a refinement relation which results in partial models that represent
a fewer number of concrete instance models than before. In a refinement step,
predicates with 1/2 values can be refined to either 0 or 1, but predicates already
fixed to 1 or 0 cannot be changed any more. This imposes an information ordering
relation X ⊑ Y where either X = 1/2 and Y takes a more specific 1 or 0, or values
of X and Y remain equal: X ⊑ Y := (X = 1/2) ∨ (X = Y ).

Refinement from partial model P to Q (denoted by P ⊑ Q) is defined as a
function refine : ObjP → 2ObjQ which maps each object of a partial model P to
a non-empty set of objects in the refined partial model Q. Refinement respects
the information ordering of type, reference and equivalence predicates for each
p1, p2 ∈ ObjP and any q1, q2 ∈ ObjQ with q1 ∈ refine(p1), q2 ∈ refine(p2):

– for each class Ci: [[Ci(p1)]]
P
⊑ [[Ci(q1)]]

Q
;

– for each reference Rj : [[Rj(p1, p2)]]
P
⊑ [[Rj(q1, q2)]]

Q
;

– [[p1 ∼ p2]]
P
⊑ [[q1 ∼ q2]]

Q
.

At any stage during refinement, a partial model P can be concretized into an
instance model M by rewriting all class type and reference predicates of value
1/2 to either 1 or 0, and setting all equivalence predicates with 1/2 to 0 between
different objects, and to 1 on a single object. But any concrete instance model
will still remain a partial model as well.

Example 3. Figure 5 depicts two sequences of partial model refinement steps
deriving two instance models P10 (identical to Figure 4) and P12 (bottom of
Figure 2): P0 ⊑ P4 ⊑ P5 ⊑ P6 ⊑ P7 ⊑ P8 ⊑ P9 ⊑ P10 and P0 ⊑ P4 ⊑ P5 ⊑ P6 ⊑
P7 ⊑ P8 ⊑ P11 ⊑ P12.

Taking refinement step P4 ⊑ P5 as an illustration, object new3 (in P4) is

refined into e and new4 (in P5) where [[e ∼ new4]]
P5 = 0 to represent two different

objects in the concrete instance models. Moreover, all incoming and outgoing
edges of new3 are copied in e and new4. The final refinement step P11 ⊑ P12

concretizes uncertain source and target references into concrete references.

A model generation process can be initiated from an initial partial model
provided by the user, or from the most generic partial model P0 from which
all possible instance models can be derived via refinement. Informally, this P0 is
more abstract than regular metamodels or type graphs as it only contains a single
node as top-level class. P0 contains one abstract object where all predicates are
undefined, i.e. P0 = ⟨ObjP0

, IP0
⟩ where ObjP0

= {new} and IP0
is defined as:



Fig. 5: Refinement of partial models

1. for all class predicates Ci: [[Ci(new)]]
P0 = 1/2;

2. for all reference predicates Rj : [[Rj(new ,new)]]
P0 = 1/2.

3. [[new ∼ new ]]
P0 = 1/2 to represent multiple objects of any instance model;

Our refinement relation ensures that if a predicate is evaluated to either 1 or
0 then its value will no longer change during further refinements as captured by
the following approximation theorem.

Theorem 1. Let P,Q be partial models with P ⊑ Q and ϕ be a graph pattern.

– If [[ϕ]]
P

= 1 then [[ϕ]]
Q

= 1; if [[ϕ]]
P

= 0 then [[ϕ]]
Q

= 0 (called under-

approximation).

– If [[ϕ]]
Q

= 0 then [[ϕ]]
P

≤ 1/2; if [[ϕ]]
Q

= 1 then [[ϕ]]
P

≥ 1/2 (called over-

approximation).

If model generation is started from P0 where all (atomic) graph patterns
evaluate to 1/2, this theorem ensures that if a WF constraint ϕ is violated in a
partial model P then it can never be completed to a consistent instance model.
Thus the model generation can terminate along this path and a new refinement
can be explored after backtracking. This theorem also ensures that if we evaluate
a constraint ϕ on a partial model P and on its refinement Q, the latter will be
more precise. In other terms, if [[ϕ]]

P
= 1 (or 0) in a partial model P along



some sequence of refinement steps, then under-approximation ensures that its
evaluation will never change again along that (forward) refinement sequence, i.e.

[[ϕ]]
Q

= 1 (or 0). Similarly, when proceeding backwards in a refinement chain,
over-approximation ensures monotonicity of the 3-valued constraint evaluation
along the entire chain. Altogether, we gradually converge to the 2-valued truth
evaluation of the constraint on an instance model where less and less constraints
take the 1/2 value. However, a refinement step does not guarantee in itself that
exploration is progressing towards a consistent model, i.e. there may be infinite
chains of refinement steps which never derive a concrete instance model.

4.2 Refinement operations for partial models

We define refinement operations Op to refine partial models by simultaneously
growing the size of the models while reducing uncertainty in a way that each
finite and consistent instance model is guaranteed to be derived in finite steps.

– concretize(p, val): if the atomic predicate p (which is either Ci(o), Rj(ok, ol)
or ok ∼ ol) has a 1/2 value in the pre-state partial model P , then it can be
refined in the post-state Q to val which is either a 1 or 0 value. As an effect
of the rule, the level of uncertainty will be reduced.

– splitAndConnect(o,mode): if o is an object with [[o ∼ o]]
P

= 1/2 in the pre-
state, then a new object new is introduced in the post state by splitting o
in accordance with the semantics defined by the following two modes:

• at-least-two: [[new ∼ new]]
Q
= 1/2, [[o ∼ o]]

Q
= 1/2, [[new ∼ o]]

Q
= 0;

• at-most-two: [[new ∼ new]]
Q
= 1, [[o ∼ o]]

Q
= 1, [[new ∼ o]]

Q
= 1/2;

In each case, ObjQ = ObjP ∪{new}, and we copy all incoming and outgoing
binary relations of o to new in Q by keeping their original values in P .
Furthermore, all class predicates remain unaltered.

On the technical level, these refinement operations could be easily captured
by means of algebraic graph transformation rules [28] over typed graphs. How-
ever, for efficiency reasons, several elementary operations may need to be com-
bined into compound rules. Thererfore, specifying refinement operations by graph
transformation rules will be investigated in a future paper.

Example 4. Refinement P4 ⊑ P5 (in Figure 5) is a result of applying refinement
operation splitAndConnect(o,mode) on object new3 and in at-least-two mode,
splitting new3 to e and new4 copying all incoming and outgoing references. Next,
in P6, the type of object e is refined to Entry and Vertex, the 1/2 equivalence
is refined to 1, and references incompatible with Entry or Vertex are refined
to 0. Note that in P6 it is ensured that Region r has an Entry, thus satisfying
WF constraint noEntryInRegion. In P7 the type of object new4 is refined to
Transition, the incompatible references are removed similarly, but the 1/2 self
equivalence remain unchanged. Therefore, in P8 object new4 can split into two
separate Transitions: t1 and t2 with the same source and target options. Re-
finement P8 ⊑ P9 ⊑ P10 denotes a possible refinement path, where the target of



t1 is directed to an Entry, thus violating WF constraint incomingToEntry . Note
that this violation can be detected earlier in an unfinished partial model P9. Re-
finement P11 ⊑ P12 denotes the consecutive application of six concretize(p, val)
operations on uncertain source and target edges leading out of t1 and t2 in
P11, resulting in a valid model.

Note that these refinement operations may result in a partial model that is
unsatisfiable. For instance, if all class predicates evaluate to 0 for an object o of
the partial model P , i.e. [[C(o)]]

P
= 0, then no instance models will correspond

to it as most metamodeling techniques require that each element has exactly or
at least one type. Similarly, if we violate the reflexivity of ∼, i.e. [[o ∼ o]]

P
= 0,

then the partial model cannot be concretized into a valid instance model. But at
least, one can show that these refinement operations ensure a refinement relation
between the partial models of its pre-state and post-state.

Theorem 2 (Refinement operations ensure refinement).
Let P be a partial model and op be a refinement operation. If Q is the partial

model obtained by executing op on P (formally, P
op
−→ Q) then P ⊑ Q.

4.3 Consistency of model generation by refinement operations

Next we formulate and prove the consistency of model generation when it is
carried out by a sequence of refinement steps from the most generic partial model
P0 using the previous refinement operations. We aim to show soundness (i.e. if a
model is derivable along an open derivation sequence then it is consistent), finite
completeness (i.e. each finite consistent model can be derived along some open
derivation sequence), and a concept of incrementality.

Many tableaux based theorem provers build on the concept of closed branches
with a contradictory set of formulae. We adapt an analogous concept for closed
derivation sequences over graph derivations in [28]. Informally, refinement is not
worth being continued as a WF constraint is surely violated due to a match
of a graph pattern in case of a closed derivation sequence. Consequently, all
consistent instance models will be derived along open derivation sequences.

Definition 1 (Closed vs. open derivation sequence). A finite derivation
sequence of refinement operations op1; . . . ; opk leading from the most generic

partial model P0 to the partial model Pk (denoted as P0
op1;...;opk
−−−−−−→ Pk) is closed

wrt. a graph predicate ϕ if ϕ has a match in Pk, formally, [[ϕ]]
Pk = 1.

A derivation sequence is open if it is not closed, i.e. Pk is a partial model

derived by a finite derivation sequence P0
op1;...;opk
−−−−−−→ Pk with [[ϕ]]

Pk ≤ 1/2.

Note that a single match of ϕ makes a derivation sequence to be closed,
while an open derivation sequence requires that [[ϕ]]

Pk ≤ 1/2 which, by definition,

disallows a match with [[ϕ]]
Pk ≤ 1.

Example 5. Derivation sequence P0
...
−→ P9 depicted in Figure 5 is closed for

ϕ = incomingToEntry(v) as the corresponding graph pattern has a match in P9,



i.e. [[incomingToEntry(v)]]
P9

v ↦→e = 1. Therefore, P10 can be avoided as the same
match would still exist. On the other hand, derivation sequence P0

...
−→ P11 is

open for ϕ = incomingToEntry(v) as incomingToEntry(v) is evaluated to 1/2 in
all partial models P0, . . . , P11.

As a consequence of Theorem 1, an open derivation sequence ensures that
any prefix of the same derivation sequence is also open.

Corollary 1. Let P0
op1;...;opk
−−−−−−→ Pk be an open derivation sequence of refinement

operations wrt. ϕ. Then for each 0 ≤ i ≤ k, [[ϕ]]
Pi ≤ 1/2.

The soundness of model generation informally states that if a concrete model
M is derived along an open derivation sequence then M is consistent, i.e. no
graph predicate of WF constraints has a match.

Corollary 2 (Soundness of model generation). Let P0
op1;...;opk
−−−−−−→ Pk be a

finite and open derivation sequence of refinement operations wrt. ϕ. If Pk is a
concrete instance model M (i.e. Pk = M) then M is consistent (i.e. [[ϕ]]

M
= 0).

Effectively, once a concrete instance model M is reached during model gen-
eration along an open derivation sequence, checking the WF constraints on M
by using traditional (2-valued) graph pattern matching techniques ensures the
soundness of model generation as 3-valued and 2-valued evaluation of the same
graph pattern should coincide due to Proposition 1 and Theorem 1.

Next, we show that any finite instance model can be derived by a finite
derivation sequence.

Theorem 3 (Finiteness of model generation). For any finite instance model

M , there exists a finite derivation sequence P0
op1;...;opk
−−−−−−→ Pk of refinement oper-

ations starting from the most generic partial model P0 leading to Pk = M .

Our completeness theorem states that any consistent instance model is deriv-
able along open derivation sequences where no constraints are violated (under-
approximation). Thus it allows to eliminate all derivation sequences where an
graph predicate ϕ evaluates to 1 on any intermediate partial model Pi as such
partial model cannot be further refined to a well-formed concrete instance model
due to the properties of under-approximation. Moreover, a derivation sequence
leading to a consistent model needs to be open wrt. all constraints, i.e. refinement
can be terminated if any graph pattern has a match.

Theorem 4 (Completeness of model generation). For any finite and con-

sistent instance model M with [[ϕ]]
M

= 0, there exists a finite open derivation

sequence P0
op1;...;opk
−−−−−−→ Pk of refinement operations wrt. ϕ starting from the most

generic partial model P0 and leading to Pk = M .

Unsurprisingly, graph model generation still remains undecidable in general
as there is no guarantee that a derivation sequence leading to Pk where [[ϕ]]

Pk =
1/2 can be refined later to a consistent instance model M . However, the graph



model finding problem is decidable for a finite scope, which is an a priori upper
bound on the size of the model. Informally, since the size of partial models is
gradually growing during refinement, we can stop if the size of a partial model
exceeds the target scope or if a constraint is already violated.

Theorem 5 (Decidability of model generation in finite scope). Given
a graph predicate ϕ and a scope n ∈ N, it is decidable to check if a concrete
instance model M exists with |ObjM | ≤ n where [[ϕ]]

M
= 0.

This finite decidability theorem is analogous with formal guarantees provided
by the Alloy Analyzer [94] that is used by many mapping-based model generation
approaches (see Section 6). Alloy aims to synthesize small counterexamples for
a relational specification, while our refinement calculus provides the same for
typed graphs without parallel edges for the given refinement operations.

However, our construction has extra benefits compared to Alloy (and other
SAT-solver based techniques) when exceeding the target scope. First, all candi-
date partial models (with constraints evaluated to 1/2) derived up to a certain
scope are reusable for finding consistent models of a larger scope, thus search
can be incrementally continued. Moreover, if a constraint violation is found with
a given scope, then no consistent models exist at all.

Corollary 3 (Incrementality of model generation). Let us assume that no
consistent models Mn exist for scope n, but there exists a larger consistent model

Mm of size m (where m > n) with [[ϕ]]
Mm

= 0. Then Mm is derivable by a finite

derivation sequence Pn
i

opi+1;...;opk
−−−−−−−−→ Pm

k where Pm
k = Mm starting from a partial

model Pn
i of size n.

Corollary 4 (Completeness of refutation). If all derivation sequences are
closed for a given scope n, but no consistent model Mn exists for scope n for

which [[ϕ]]
Mn

= 0, then no consistent models exist at all.

While these theorems aim to establish the theoretical foundations of a model
generator framework, it provides no direct practical insight on the exploration
itself, i.e. how to efficiently provide derivation sequences that likely lead to con-
sistent models. Nevertheless, we have an initial prototype implementation of such
a model generator which is also used as part of the experimental evaluation.

5 Evaluation

As existing model generators have been dominantly focusing on a single challenge
of Section 2, we carried out an initial experimental evaluation to investigate how
popular strategies excelling in one challenge perform with respect to another
challenge. More specifically, we carried out this evaluation in the domain of
Yakindu statecharts to address four research questions:

RQ1 Diverse vs. Realistic: How realistic are the models which are derived by
random generators that promise diversity?



RQ2 Consistent vs. Realistic: How realistic are the models which are derived by
logic solvers that guarantee consistency?

RQ3 Diverse vs. Consistent: How consistent are the models which are derived by
random generators?

RQ4 Consistent vs. Scalable: How scalable is it to evaluate consistency constraints
on partial models?

Addressing these questions may help advancing future model generators by
identifying some strength and weaknesses of different strategies.

5.1 Setup of experiments

Target domain We conducted measurements in the context of Yakindu state-
charts, see [2] for the complete measurement data. For that purpose, we ex-
tracted the statechart metamodel of Figure 1 directly from the original Yakindu
metamodel. Ten WF constraints were formalized as graph patterns based on the
real validation rules of the Yakindu Statechart development environment.

Model generator approaches For addressing RQ1-3, we used two different model
generation approaches: (1) the popular relational model finder Alloy Analyzer
[94] which uses Sat4j [53] as a back-end SAT-solver, and (2) the Viatra Solver,
graph-based model generator which uses the refinement calculus presented in the
paper. We selected Alloy Analyzer as the primary target platform as it has been
widely used in mapping based generators of consistent models (see Section 6).

We operated these solvers in two modes: in consistent mode (WF), all de-
rived models need to satisfy all WF constraints of Yakindu statecharts, while in
metamodel-only mode (MM), generated models need to be metamodel compli-
ant, but then model elements are selected randomly. As such, we expect that this
set of models is diverse, but the fulfillment of WF constraints is not guaranteed.
To enforce diversity, we explicitly check that derived models are non-isomorphic.

Since mapping based approaches typically compile WF constraints into logic
formulae in order to evaluate them on partial models, we set up a simple mea-
surement to address RQ4 which did not involve model generation but only con-
straint checking on existing instance models. This is a well-known setup for
assessing scalability of graph query techniques used in a series of benchmark-
ing papers [92, 98]. So in our case, we encoded instance models as fully defined
Alloy specifications using the mapping of [86], and checked if the constraints
are satisfied (without extending or modifying the statechart). As a baseline of
comparison, we checked the runtime of evaluating the same WF constraints on
the same models using an industrial graph query engine [97] which is known to
scale well for validation problems [92, 98]. All measurements were executed on
an average desktop computer6.

6 CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 10 Pro.



Real instance models To evaluate how realistic the synthetic model generators
are in case ofRQ1-2, we took 1253 statecharts as real models created by un-
dergraduate students for a homework assignment. While they had to solve the
same modeling problem, the size of their models varied from 50 to 200 objects.
For RQ4, we randomly selected 300 statecharts from the homework assignments,
and evaluated the original validation constraints. Real models were filtered by
removing inverse edges that introduce significant noise to the metrics [91].

Generated instance models To obtain comparable results, we generated four sets
of statechart models with a timeout of 1 minute for each model but without any
manual domain-specific fine-tuning of the different solvers. We also check that
the generated models are non-isomorphic to assure sufficient diversity.

– Alloy (MM): 100 metamodel-compliant models with 50 objects using Alloy.
– Alloy (WF): 100 metamodel- and WF-compliant models with 50 objects

using Alloy (which was unable to synthesize larger models within 1 minute).
– Viatra Solver (MM): 100 metamodel-compliant instance models with 100

objects using Viatra Solver.
– Viatra Solver (WF): 100 Metamodel- and WF-compliant instance models

with 100 objects using Viatra Solver.

Two multi-dimensional graph metrics are used to evaluate how realistic a
model generator is: (1) the multiplex participation coefficient (MPC) measures
how the edges of nodes are distributed along the different edge types, while (2)
pairwise multiplexity (Q) captures how often two different types of edges meet in
an object. These metrics were recommended in [91] out of over 20 different graph
metrics after a multi-domain experimental evaluation, for formal definitions of
the metrics, see [91]. Moreover, we calculate the (3) number of WF constraints
violated by a model as a numeric value to measure the degree of (in)consistency
of a model (which value is zero in case of consistent models).

5.2 Evaluation of measurement results

We plot the distribution functions of the multiple participation coefficient metric
in Figure 6, and the pairwise multiplexity metric in Figure 7. Each line depicts
the characteristics of a single model and model sets (e.g. “Alloy (MM)”, “Viatra

Solver (WF)”) are grouped together in one of the facets including the characteris-
tics of the real model set. For instance, the former metric tells that approximately
65% of nodes in real statechart models (right facet in Figure 6) have only one
or two types of incoming and outgoing edges while the remaining 35% of nodes
have edges more evenly distributed among different types.

Comparison of distribution functions. We use visual data analytics techniques
and the Kolmogorov-Smirnov statistic (KS ) [55] as a distance measure of models
(used in [91]) to judge how realistic an auto-generated model is by comparing
the whole distributions of values (and not only their descriptive summary like
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Fig. 6: Measurement results: Multiplex participation coefficient (MPC)

mean or variance) in different cases to the characteristics of real models. The
KS statistics quantifies the maximal difference between the distribution function
lines at a given value. It is sensitive to both shape and location differences: it
takes a 0 value only if the distributions are identical, while it is 1 if the values of
models are in disjunct ranges (even if their shapes are identical). For comparing
model generation techniques A and B we took the average value of the KS
statistics between each (A,B) pair of models that were generated by technique
A and B, respectively. The average KS values are shown in Figure 9,7 where a
lower value denotes a more realistic model set.

Diverse vs. Realistic: For the models that are only metamodel-compliant, the
characteristics of the metrics for “Viatra Solver (MM)” are much closer to the
“Real” model set than those of the “Alloy (MM)” model set, for both graph
metrics (KS value of 0.27 vs. 0.95 for MPC and 0.38 vs. 0.88 for Q), thus more
realistic results were generated in the “Viatra Solver (MM)” case. However,
these plots also highlight that the set of auto-generated metamodel-compliant
models can be more easily distinguished from the set of real models as the plots
of the latter show higher variability. Since the diversity of each model generation
case is enforced (i.e. non-isomorphic models are dropped), we can draw as a
conclusion that a diverse metamodel-compliant model generator does not provide
any guarantees in itself on the realistic nature of the output model set. In fact,
model generators that simultaneously ensure diversity and consistency always
outperformed the random model generators for both solvers.

7 Due to the excessive amount of homework models, we took a uniform random sample
of 100 models from that model set.
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Fig. 7: Measurement results: Pairwise multiplexity (Q)
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model set MPC Q
Alloy (MM) 0.95 0.88
Alloy (WF) 0.74 0.60
Viatra Solver (MM) 0.27 0.37
Viatra Solver (WF) 0.24 0.30

Fig. 9: Average Kolmogorov-Smirnov
statistics between the real and generated
model sets.

Consistent vs. Realistic: In case
of models satisfying WF constraints
“Viatra Solver (WF)” generated
more realistic results than “Alloy
(WF)”according to both metrics. The
plots show mixed results for differen-
tiating between generated and realis-
tic models. On the positive side, the
shape of the plot of auto-generated
models is very close to that of real
models in case of the MPC metric
(Figure 6) – statistically, they have a
relatively low average KS value of 0.24. However, for the Q metric (Figure 7), real



models are still substantially different from generated ones (average KS value
of 0.3). Thus further research is needed to investigate how to make consistent
models more realistic.

Diverse vs. Consistent: We also calculated the average number of WF constraint
violations, which was 3.1 for the “Alloy (MM)” case and 9.75 for the “Viatra

Solver (MM)” case, while only 0.07 for real models. We observe that a diverse
set of randomly generated metamodel-compliant instance models do not yield
consistent models as some constraints will always be violated – which is not the
case for real statechart models. In other terms, the number of WF constraint
violations is also an important characteristic of realistic models which is often
overseen in practice. As a conclusion, amodel generator should ensure consistency
prior to focusing on increasing diversity. Since humans dominantly come up with
consistent models, ensuring consistency for realistic models is a key prerequisite.

Consistent vs. Scalable: The soundness of consistent model generation inherently
requires the evaluation of the WF constraints at least once for a candidate solu-
tion. Figure 8 depicts the validation time of randomly selected homework models
using Alloy and the VIATRA graph query engine wrt. the size of the instance
model (i.e. the number of the objects). For each model, the two validation tech-
niques made the same judgment (as a test for their correctness). Surprisingly, the
diagram shows that the Alloy Analyzer scales poorly for evaluating constraints
on medium-size graphs, which makes it unsuitable for generating larger models.
The runtime of the graph query engine was negligible at this scale as we expected
based on detailed previous benchmarks for regular graph pattern matching and
initial experiments for matching constraints over partial models [85].

While many existing performance benchmarks claim that they generate re-
alistic models, most of them ignore WF constraints of the domain. According to
our measurements, it is a major drawback since real models dominantly satisfy
WF constraints while randomly generated models always violate some constraint.
This way, those model generators can hardly be considered realistic.

Threats to validity We carried out experiments only in the domain of stat-
echarts which limits the generalizability of our results. Since statecharts are a
behavioral modeling language, the characteristics of models (and thus the graph
metrics) would likely differ from e.g. static architectural DSLs. However, since
many of our experimental results are negative, it is unlikely that the Alloy gen-
erator would behave any better for other domains. It is a major finding that
while Alloy has been used as a back-end for mapping-based model generator
approaches, its use is not justified from a scalability perspective due to the lack
of efficient evaluation for complex structural graph constraints. It is also unlikely
that randomly generated metamodel-compliant models would be more realistic,
or more consistent in any other domains.

Concerning our real models, we included all the statecharts created by stu-
dents, which may be a bias since students who obtained better grades likely



Logic Random Network Performance Real
Solvers Generators Graphs Benchmarks Dataset

C
O
N Model + − − + +

Complete 0 − − − −

D
IV

Model − + − − −
Set − + − − −

S
C
A In Size − + + + +

In Quantity − ? + + −

R
E
A Model - - - - +

Set − − − 0 +

Table 1: Characteristics of model generation approaches; +: feature provided, −:
feature not provided, 0: feature provided in some tools / cases

produced better quality models. Thus, the variability of real statechart models
created by engineers may actually be smaller. But this would actually increase
the relative quality of models derived by Viatra Solver which currently differs
from real models by providing a lower level of diversity (i.e. plots of pairwise
multiplicity are thicker for real models).

6 Related work

We assess and compare how existing approaches address each challenge (Table 1).

Consistent model generators (CON): Consistent models can be synthesized as a
side effect of a verification process when aiming to prove the consistency of a DSL
specification. The metamodel and a set of WF constraints are captured in a high-
level DSL and logic formulae are generated as input to back-end logic solvers.
Approaches differ in the language used for WF constraints, OCL [18–20, 23, 35,
50–52,73,87,100], graph constraints [84,86], Java predicates [14] or custom DSLs
like Formula [46], Clafer [8] or Alloy [45]. They also differ in the solver used in the
background : graph transformation engines as in [100], SAT-solvers [53] are used
in [51,52], model finders like Kodkod [94] are target formalisms in [5,23,50,87],
first-order logic formulae are derived for SMT-solvers [65] in [73,84] while CSP-
solvers like [1] are targeted in [18,19] or other techniques [59,74].

Solver-based approaches excel in finding inconsistencies in specifications,
while the generated model is a proof of consistency. While SAT solvers can
handle specifications with millions of Boolean variables, all these mapping-based
techniques still suffer from severe scalability issues as the generated graphs may
contain less than 50-100 nodes. This is partly due to the fact that a Boolean
variable needs to be introduced for each potential edge in the generated model,
which blows up the complexity. Moreover, the output models are highly similar
to each other and lack diversity, thus they cannot directly be applied for testing
or benchmarking purposes.



Diverse model generators (DIV): Diverse models play a key role in testing model
transformations and code generators. Mutation-based approaches [6,25,61] take
existing models and make random changes on them by applying mutation rules.
A similar random model generator is used for experimentation purposes in [9].
Other automated techniques [15, 29] generate models that only conform to the
metamodel. While these techniques scale well for larger models, there is no guar-
antee whether the mutated models satisfy WF constraints.

There is a wide set of model generation techniques which provide certain
promises for test effectiveness. White-box approaches [37, 38, 62, 83] rely on
the implementation of the transformation and dominantly use back-end logic
solvers, which lack scalability when deriving graph models. Black-box approaches
[17,34,39,56,63] can only exploit the specification of the language or the trans-
formation, so they frequently rely upon contracts or model fragments. As a com-
mon theme, these techniques may generate a set of simple models, and while
certain diversity can be achieved by using symmetry-breaking predicates, they
fail to scale for larger model sizes. In fact, the effective diversity of models is
also questionable since corresponding safety standards prescribe much stricter
test coverage criteria for software certification and tool qualification than those
currently offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [47] applies stochas-
tic random sampling of output to achieve a diverse set of generated models by
taking exactly one element from each equivalence class defined by graph isomor-
phism, which can be too restrictive for coverage purposes. Stochastic simulation
is proposed for graph transformation systems in [95], where rule application is
stochastic (and not the properties of models), but fulfillment of WF constraints
can only be assured by a carefully constructed rule set.

Realistic model generators (REA): The igraph library [22] contains a set of
randomized graph generators that produce one-dimensional (untyped) graphs
that follow a particular distribution (e.g. Erdős-Rényi, Watts-Strogatz). The
authors of [64] use Boltzmann samplers [27] to ensure efficient generation of
uniform models. GSCALER [102] takes a graph as its input and generates a
similar graph with a certain number of vertices and edges.

Scalable model generators (SCA): Several database benchmarks provide scalable
graph generators with some degree of well-formedness or realism. The Berlin
SPARQL Benchmark (BSBM) [13] uses a single dataset that scales in model size
(10 million–150 billion tuples), but does not vary in structure. SP2Bench [80]
uses a data set, which is synthetically generated based on the real-world DBLP
bibliography. This way, instance models of different sizes reflect the structure
and complexity of the original real-world dataset.

The Linked Data Benchmark Council (LDBC) recently developed the So-
cial Network Benchmark [30], which contains a social network generator mod-
ule [88]. The generator is based on the S3G2 approach [72] that aims to generate
non-uniform value distributions and structural correlations. gMark [7] generates



graphs driven by a pre-defined schema that allows users to specify vertex/edge
types and degree distributions in the graph, which provides some level of realism.

The Train Benchmark [92] uses a domain-specific generator that is able to
generate railway networks, scalable in size and satisfying a set of well-formedness
constraints. The generator is also able to inject errors to the models during
generation (thus intentionally violating the WF property).

Transformations of Partial Models Uncertain models [31] document semantic
variation points generically by annotations on a regular instance model. Poten-
tial concrete models compliant with an uncertain model can be synthesized by
the Alloy Analyzer and its back-end SAT solvers [78, 79], or refined by graph
transformation rules [77].

Transformations over partial models [32, 33] analyse possible matches and
executions of model transformation rules on partial models by using a SAT
solver (MathSAT4) or by automated graph approximation called “lifting”, which
inspects possible partitions of a finite concrete model, i.e. regular graph trans-
formation rules are lifted, while in this paper, we attempt to introduce model
generator rules directly on the level of partial models.

Regular graph transformation rules are used for model generation is carried
out in [29,100] where output models are metamodel compliant, but they do not
fulfill extra WF constraints of the domain [29] or (a restricted set of) constraints
need to be translated first to rule application conditions [100].

Symbolic Model Generation Certain techniques use abstract (or symbolic) graphs
for analysis purposes. A tableau-based reasoning method is proposed for graph
properties [3,71,81], which automatically refine solutions based on well-formedness
constraints, and handle state space in the form of a resolution tree. As a key dif-
ference, our approach refines possible solutions in the form of partial models,
while [71, 81] resolves the graph constraints to a concrete solution.

7 Conclusion and Future Work

In this paper, we presented the challenge of automated graph model generation
where models are consistent, diverse, scalable and realistic at the same time. In
an experimental evaluation, we found that traditional model generation tech-
niques which excel in one aspect perform poorly with respect to another aspect.
Furthermore, consistent models turn out to be a prerequisite both for the real-
istic and diverse cases. As the main conceptual contribution of this paper, we
presented a refinement calculus based on 3-valued logic evaluation of graph pat-
terns that could drive the automated synthesis of consistent models. We proved
soundness and completeness for this refinement approach, which also enables
to incrementally generate instance models of a larger scope by reusing partial
models traversed in a previous scope. As such, it offers stronger consistency
guarantees than the popular Alloy Analyzer used as a back-end solver for many
mapping-based model generation approaches.



While an initial version of a model generator operating that way was included
in our experimental evaluation, our main ongoing work is to gradually address
several model generation challenges at the same time. For instance, model gen-
erators which are simultaneously consistent, diverse and realistic could help in
the systematic testing of the Viatra transformation framework [97] or other
industrial DSL tools.
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A Further Definitions and Proofs

First, we show that the information ordering relation (⊑) ensures the under- and
over-approximation rules for any 3-valued truth value.

Lemma 1 (Information order vs Under- and over-approximation).
If X and Y are 3-valued logic values with X ⊑ Y , then (X = 1) ⇒ (Y = 1) and
(Y = 1) ⇒ (X ≥ 1/2).

Proof. First, if X = 1 then according to the definition of information ordering,
(1 = 1/2) ∨ (Y = 1) thus Y = 1.
Now if Y = 1 then similarly (X = 1/2) ∨ (X = 1) thus X ≥ 1/2. ⊓⊔

Selected mathematical operations respect the information ordering:

Lemma 2 (Information order vs Mathematical operations).
If X1 ⊑ Y1, . . . , Xn ⊑ Yn then

1. 1−X1 ⊑ 1− Y1

2. min{X1, . . . , Xn} ⊑ min{Y1, . . . , Yn}
3. max{X1, . . . , Xn} ⊑ max{Y1, . . . , Yn}

Proof. 1. Since X1 ⊑ Y1 then either X1 = Y1 or X1 = 1/2. If X1 = Y1, then
1−X1 = 1−Y1 and therefore 1−X1 ⊑ 1−Y1 is true. Otherwise, if X1 = 1/2,
then 1−X1 = 1/2 and 1/2 ⊑ Y1 holds for any Y1.

2. If someXi = 0 then Yi = 0. Thusmin{X1, . . . , Xn} = 0 andmin{Y1, . . . , Yn} =
0, and 0 ⊑ 0 holds. Otherwise, if all Xi = 1 then all Yi = 1, therefore
min{X1, . . . , Xn} = min{Y1, . . . , Yn} = 1, and 1 ⊑ 1 is satisfied. Finally, if
there is no Xi with Xi = 0 but some Xj = 1/2 then min{X1, . . . , Xn} = 1/2,
and 1/2 ⊑ min{Y1, . . . , Yn} holds for any Y1, . . . , Yn values.

3. If there is an Xi = 1, then Yi = 1. Thus max{X1, . . . , Xn} = 1 and
max{Y1, . . . , Yn} = 1, and 1 ⊑ 1 holds. Otherwise, if all Xi = 0 then all
Yi = 0, therefore max{X1, . . . , Xn} = max{Y1, . . . , Yn} = 0, and 0 ⊑ 0 is
satisfied. Finally, if there is no Xi with Xi = 1, but some Xj = 1/2 then
max{X1, . . . , Xn} = 1/2, and 1/2 ⊑ max{Y1, . . . , Yn} holds for any Y1, . . . , Yn

values. ⊓⊔

Our the refinement relation respects information ordering for each formula ϕ.

Theorem 1. Let P,Q be partial models with P ⊑ Q and ϕ be a graph pattern.

– If [[ϕ]]
P

= 1 then [[ϕ]]
Q

= 1; if [[ϕ]]
P

= 0 then [[ϕ]]
Q

= 0 (called under-

approximation).

– If [[ϕ]]
Q

= 0 then [[ϕ]]
P

≤ 1/2; if [[ϕ]]
Q

= 1 then [[ϕ]]
P

≥ 1/2 (called over-

approximation).

Proof (Correctness of under- and over-approximation). Let ϕ be a graph pattern
formula, and let P and Q be two partial models where P ⊑ Q with a refinement
function refine : ObjP → 2ObjQ .

First, based on the definition of refinement, for each p1, p2 ∈ ObjP and q1 ∈
refine(p1), q2 ∈ refine(p2), the following statements hold for atomic predicates:



– [[C(v)]]
P

v ↦→p1
⊑ [[C(v)]]

Q

v ↦→q1

– [[R(v1, v2)]]
P

v1 ↦→p1,v2 ↦→p2
⊑ [[R(v1, v2)]]

Q

v1 ↦→q1,v2 ↦→q2

– [[v1 ∼ v2]]
P

v1 ↦→p1,v2 ↦→p2
⊑ [[v1 ∼ v2]]

Q

v1 ↦→q1,v2 ↦→q2

Next, let ϕ1 and ϕ2 be two formulae, and let ZP
1 , ZP

2 , ZQ
1 and ZQ

2 be variable
bindings with:

– [[ϕ1]]
P

ZP
1
⊑ [[ϕ1]]

Q

Z
Q
1

and [[ϕ2]]
P

ZP
2
⊑ [[ϕ2]]

Q

Z
Q
2

,

– ZP
1 and ZQ

1 maps each variables of ϕ1 to ObjP and ObjQ
– ZP

2 and ZQ
2 maps each variables of ϕ2 to ObjP and ObjQ

– for all variables v in ϕ1: Z
Q
1 (v) ∈ refine(ZP

1 (v))

– for all variables v in ϕ2: Z
Q
2 (v) ∈ refine(ZP

2 (v))

Then the following refinements of formulae hold due to Lemma 2:

– [[¬ϕ1]]
P

ZP
1
= 1− [[ϕ1]]

P

ZP
1
⊑ 1− [[ϕ1]]

Q

Z
Q
1

= [[¬ϕ1]]
Q

Z
Q
1

– [[ϕ1 ∧ ϕ2]]
P

ZP
1
∪ZP

1
= min{[[ϕ1]]

P

ZP
1
, [[ϕ2]]

P

ZP
2
} ⊑ min{[[ϕ1]]

Q

Z
Q
1

, [[ϕ2]]
Q

Z
Q
2

} = [[ϕ1 ∧ ϕ2]]
Q

Z
Q
1
∪Z

Q
2

– [[ϕ1 ∨ ϕ2]]
P

ZP
1
∪ZP

1
= max{[[ϕ1]]

P

ZP
1
, [[ϕ2]]

P

ZP
2
} ⊑ max{[[ϕ1]]

Q

Z
Q
1

, [[ϕ2]]
Q

Z
Q
2

} = [[ϕ1 ∨ ϕ2]]
Q

Z
Q
1
∪Z

Q
2

– [[∃v : ϕ1]]
P

ZP
1

= max{[[ϕ]]
P

ZP
1
∪v ↦→p

: p ∈ ObjP } ⊑ max{[[ϕ]]
Q

Z
Q
1
∪v ↦→q

: q ∈

refine(p)} = [[∃v : ϕ1]]
Q

Z
Q
1

– [[∀v : ϕ1]]
P

ZP
1

= min{[[ϕ]]
P

ZP
1
∪v ↦→p

: p ∈ ObjP } ⊑ min{[[ϕ]]
Q

Z
Q
1
∪v ↦→q

: q ∈

refine(p)} = [[∀v : ϕ1]]
Q

Z
Q
1

Since all these refinement relations hold, the statement of the theorem is now a
direct consequence of Lemma 1. ⊓⊔

Theorem 2 (Refinement operations ensure refinement). Let P be a par-
tial model and op be a refinement operation. If Q is the partial model obtained

by executing op on P (formally, P
op
−→ Q) then P ⊑ Q.

Proof. We split the proof cases along the refinement operations. We investigate
changes in the truth evaluation of different predicates implied by executing these
operations, since each partial model is a refinement of itself if no changes occur.

– In case of concretize(p, val):
• For each class predicate p = Ci(o), only operation concretize(p, val) can

potentially change its value to 1 (or 0) if [[Ci(o)]]
P

= 1/2. But then

[[C(o)]]
P
= 1/2 ⊑ [[C(o)]]

Q
= 1 (or [[C(o)]]

Q
= 0), which satisfies the refine-

ment relation.
• Reasoning is identical for each reference predicate R(o1, o2).
• An equivalence predicate o1 ∼ o2 can be manipulated by operation
concretize(p, val) to set an 1/2 value to 1 (for self-loop equivalence predi-
cates) or to either 1 or 0 (for non-self loops). In this case, the refinement
conditions are trivally satisfied.



– When splitAndConnect(o,mode) is applied then two o1 and o2 nodes of Q
will be derived from a single node o in P .
• At-least-two mode:
Since [[o ∼ o]]

P
= 1/2 and both [[o1 ∼ o1]]

Q
= 1/2 and [[o2 ∼ o2]]

Q
= 1/2,

but [[o1 ∼ o2]]
Q
= 0, the refinement condition is satisfied.

• At-most-two mode:
Since [[o ∼ o]]

P
= 1/2 and both [[o1 ∼ o1]]

Q
= 1 and [[o2 ∼ o2]]

Q
= 1 while

[[o1 ∼ o2]]
Q
= 1/2, the refinement condition is satisfied.

⊓⊔

Corollary 1. Let P0
op1;...;opk
−−−−−−→ Pk be an open derivation sequence of refinement

operations wrt. ϕ. Then for each 0 ≤ i ≤ k, [[ϕ]]
Pi ≤ 1/2.

Proof. This is a direct consequence of Theorem 1. If we indirectly assume that
[[ϕ]]

Pk ≤ 1/2 but [[ϕ]]
Pi = 1 for some Pi along the derivation sequence, then all

subsequent partial models Pj derived from Pi (j > i) should be [[ϕ]]
Pi = 1 which

contradicts our assumption for j = k.

Corollary 2 (Soundness of model generation). Let P0
op1;...;opk
−−−−−−→ Pk be a

finite and open derivation sequence of refinement operations wrt. ϕ. If Pk is a
concrete instance model M (i.e. Pk = M) then M is consistent (i.e. [[ϕ]]

M
= 0).

Proof. We require that [[ϕ]]
Pi ≤ 1/2 for each i which includes the last partial

model Pk. Since Pk is a concrete instance model, thus the 2-valued and 3-valued
evaluation of ϕ must be identical (due to Proposition 1). Therefore [[ϕ]]

M
= 1 or

[[ϕ]]
M

= 0, but only the latter case satisfies our assumption that [[ϕ]]
Pk ≤ 1/2. ⊓⊔

Theorem 3 (Finiteness of model generation). For any finite instance model

M , there exists a finite derivation sequence P0
op1;...;opk
−−−−−−→ Pk of refinement oper-

ations starting from the most generic partial model P0 leading to Pk = M .

Proof (Sketch).
An instance model can always be generated:

1. Assume that M contains exactly n objects. Since P0 consists of a single
object, we need to create n− 1 new objects as part of the construction.

2. Execute action splitAndConnect(o,mode) in at-least-two mode for n − 1
times, thus n (uncertain) objects will be available.

3. Concretize all [[o ∼ o]]
Pn−1 = 1 and [[o1 ∼ o2]]

Pn−1 = 0 (where o1 ̸= o2).
4. Concretize all class and reference predicates in accordance with M by set-

ting appropriate values in concretize(p, val) to 1 or 0. As a result, Pn−1 is
gradually refined into a Pk which no longer contains an 1/2 value, thus it is
an instance model.

Model generation is always finite:

1. First, note that only splitAndConnect(o,mode) actions are able to create new
objects, concretize(p, val) operations only fix values. Moreover, there are only
finite number of uncertain values of p which still needs to be concretized.



2. The only recursive (thus potentially infinite) computation is carried out when
action splitAndConnect(o,mode) is executed in at-least-two mode.

3. Assume that in our computation, splitAndConnect(o,mode) has been applied
in at-least-two mode n times, thus Pn contains at least n+ 1 objects, while
our instance model has only n objects. We claim that this is a dead end
derivation, thus we can cut it off and backtrack.

4. Due to the specification of the at-least-two model, all these objects are non-
equivalent to each other, i.e. [[o1 ∼ o2]]

Pn = 0 for o1 ̸= o2, thus they can never
be merged during concretization. Now any consistent concretization of Pn

will contain at least n + 1 different objects, which contradicts our indirect
assumption that M has exactly n objects.

⊓⊔

Theorem 4 (Completeness of model generation). For any finite and con-

sistent instance model M with [[ϕ]]
M

= 0, there exists a finite open derivation

sequence P0
op1;...;opk
−−−−−−→ Pk of refinement operations wrt. ϕ starting from the most

generic partial model P0 and leading to Pk = M .

Proof. First, M is derivable by a finite derivation sequence due to Corollary 3.
Now, for an indirect proof, let us assume that [[ϕ]]

M
= 0 yet there exist some par-

tial model Pi along the finite derivation sequence P0
op1;...;opi
−−−−−−→ Pi

opi+1;...;opk
−−−−−−−−→ Pk

where [[ϕ]]
Pi = 1. However, the properties of under-approximation (in Theorem 1)

imply that for all refinements Pj of Pi, [[ϕ]]
Pj = 1. But since M is also a refine-

ment of Pj (as each refinement operation ensures refinement, see Theorem 2),

[[ϕ]]
M

= 1, which is a contradiction to our indirect assumption, thus it concludes
the proof. ⊓⊔

Theorem 5 (Decidability of model generation in finite scope). Given
a graph predicate ϕ and a scope n ∈ N, it is decidable to check if a concrete
instance model M exists with |ObjM | ≤ n where [[ϕ]]

M
= 0.

Proof (Sketch). While Theorem 4 ensures that there exists one finite derivation
path, this does not directly guarantee that model generation would terminate
along all derivation paths. Fortunately, the designated target scope n for the
instance model implies an upper bound (i.e. scope) for the length of operation
sequences that derive instance models of size n.

For any model M with n nodes and r edges, one can derive an operation
sequences with n splitAndConnect operations followed by r · n2 concretize oper-
ations. Our refinement operations ensure that any derivation longer than n+r·n2

can be terminated as even smallest concrete instance model will exceed the target
model scope n.

Corollary 3 (Incrementality of model generation). Let us assume that no
consistent models Mn exist for scope n, but there exists a larger consistent model

Mm of size m (where m > n) with [[ϕ]]
Mm

= 0. Then Mm is derivable by a finite

derivation sequence Pn
i

opi+1;...;opk
−−−−−−−−→ Pm

k where Pm
k = Mm starting from a partial

model Pn
i of size n.



Proof. As an indirect proof, let us assume that there exists a consistent model
Mm of size m while there are no consistent models Mn up to scope n, but no

derivation sequence Pn
i

opi+1;...;opk
−−−−−−−−→ Pm

k exists which would yield Mm = Pm
k

starting from a partial model Pn
i of size n.

Since Mm is consistent and finite, it is derivable thanks to the completeness

theorem (Theorem 4) along some other derivation sequence P0
op1;...;opl
−−−−−−→ Pm

k

where Pm
k = Mm. Since each refinement operation used in op1; . . . ; opl increases

the size of Pi with at least one, the derivation sequence should reach a partial
model Pn

j of size n.
With the trivial concretization (of turning all 1/2 values to 1 for all class and

reference predicates and to 0 for equivalence predicates), Pn
j can be turned into

an instance model Mn
j which is also exactly of size n. Now if Mn

j is consistent,
then our assumption is violated that no consistent models exist for scope n

Otherwise, the tail of Pn
j

opj ;...;opl

−−−−−−→ Pm
k is a designated derivation sequence,

which is a contradiction to our indirect assumption. ⊓⊔

Corollary 4 (Completeness of refutation). If all derivation sequences are
closed for a given scope n, but no consistent model Mn exists for scope n for

which [[ϕ]]
Mn

= 0, then no consistent models exist at all.

Proof. As an indirect proof, let us assume that a consistent model Mm exists
for some scope m > n, while all derivation sequences are closed for a given scope
n and no consistent models Mn exist for that scope.

Since Mm is consistent and finite, then there shall be a derivation sequence

P0
op1;...;opm
−−−−−−−→ Pm where Pm = Mm. However, all derivation sequences are closed

for a given scope n, which holds for the prefix of this derivation sequence as well.
Thus there shall be an intermediate partial model Pk along that sequence where
(1) either no further refinement operations are executable or (2) ϕ has a match in

Pk i.e. [[ϕ]]
Pk = 1. In the former case, Pm would not be reachable by refinement

operations. In the latter case, all refinements of Pk (including Pm = Mm) would
have a match of ϕ due to Theorem 1. This is a contradiction which concludes
our proof. ⊓⊔

A.1 Multidimensional graph metrics

We use two graph metrics to show how realistic a model is, also used in our
previous work on model analysis [91].

MPC The multiplex participation coefficient (MPC ) [10] measures whether the
references of an object a ∈ Obj are uniformly distributed among reference types
R1, . . . , Rm:

MPC (a) =
|Obj |

|Obj | − 1

⎡

⎣1−
∑

a∈Obj

(

Degree(a, {Ri})

Degree(a, {R1, . . . , Rm})

)2
⎤

⎦ ,



where Degree(a, {R1, . . . , Rm}) denotes the total number of outgoing/incoming
references of type R1, . . . , Rm from/to object a.

MPC (a) takes values in [0, 1], equalling to 0 if all references of a belong to
a single reference type, and to 1 if a has exactly the same number of references
on each of reference types Ri.

Q Pairwise multiplexity (Q) [68] is defined for a pair of references typed Ri, Rj ∈
R1, . . . , Rm, where 1 ≤ i, j ≤ m. Its value determines the ratio of objects from
the model, which have reference instances in both references types Ri and Rj .
Intuitively, the more mutual objects the two reference types have, the higher
their pairwise multiplexity is.

The node activity binary vector NAa (a ∈ Obj ) is defined as:

NAa =
{

NA[R1]
a ,NA[R2]

a , . . . ,NA[Rm]
a

}

,where NA[Ri]
a = ∃o : Ri(a, o) ∨ Ri(o, a),

Using this vector, the pairwise multiplexity metric is:

Q(Ri, Rj) =
1

|Obj |

∑

a∈Obj

NA[Ri]
a NA[Rj ]

a .

Q(Ri, Rj) takes values from the [0, 1] interval, and equals to 1 if the activity

vectors NA[Ri]
a and NA[Rj ]

a are identical, i.e. when Ri and Rj belong to the same
nodes.
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