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�edesign of a patient-speci�c virtual tumour is an important step towards PersonalizedMedicine.However this requires to capture
the description of many key events of tumour development, including angiogenesis, matrix remodelling, hypoxia, and cell state
heterogeneity that will all in	uence the tumour growth kinetics and degree of tumour invasiveness. To that end, an integrated
hybrid and multiscale approach has been developed based on data acquired on a preclinical mouse model as a proof of concept.
Fluorescence imaging is exploited to build case-speci�c virtual tumours. Numerical simulations show that the virtual tumour
matches the characteristics and spatiotemporal evolution of its real counterpart. We achieved this by combining image analysis
and physiological modelling to accurately described the evolution of di
erent tumour cases over a month. �e development of
such models is essential since a dedicated virtual tumour would be the perfect tool to identify the optimum therapeutic strategies
that would make Personalized Medicine truly reachable and achievable.

1. Introduction

At the State of the Union address 2015, President Obama
launched the Precision Medicine Initiative (https://www
.whitehouse.gov/precision-medicine) with cancer and dia-
betes as the main targets [1]. Precision medicine is an inno-
vative approach that takes into account patient variability so
that treatments are tailored to patient-speci�c characteristics,
mainly the genetic pro�le. �is aims to signi�cantly improve
the treatment e�cacy and chances of survival. Precision
medicine, not to be confused with Personalized Medicine, is
thus based on the identi�cation of common characteristics in
patient subpopulations.�atmeans that treatment is adapted
to speci�c subclasses but cannot be, per se, individualized
as Personalized Medicine aims it to be [2]. Classi�cation of
subgroups of patients relies on processing a large amount
of data, big enough to be reliable and to help in con�dent
decisionmaking.�e rise of big data over the recent years has
paved the path for this type of approach and its application to

medicine [3–6]. Although we can expect signi�cant progress
from it, it still has some severe drawbacks already pointed
out by Mi et al., (2010) [7]. First, precision medicine, in the
current stage of research, mostly relies on genetic pro�ling.
However, it is now clear that genetic knowledge alone is
not su�cient to predict the evolution of a disease such
as cancer for which environmental conditions can a
ect
genetics indirectly by modifying epigenetic factors from the
cell to the tissue scale [8, 9]. Second, data analysis performed
for genetic pro�ling is essentially a correlative process that
brings very little insights for the reasons why treatment is
(or would be) e�cient or not. Finally, cancer is an evolutive
and very heterogeneous disease with many di
erent stages
involving temporal variability on the tumour dynamic and
on the patient state that cannot be easily predicted. �is
requires the development of pathophysiological models that
integrate the underlying keymechanisms precisely describing
the evolution of the disease for predicting and understanding
its behaviour and its response to treatment [10–14].
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To that end, we developed a computational model that
integrates key pathophysiological mechanisms to describe
the growth of real tumours observed in a mouse pinna, so
as to build an avatar or virtual tumour for each observed
case. In order to build an accurate virtual clone, the exper-
imental mouse model was chosen in a way to provide
su�ciently detailed microscopic information on the tumour
evolution and on its vascular environment. We chose to
use immunode�cient nude mice to ensure the growth of
the tumour and also in order to neglect the interplay with
the immune system. �is allows us to simplify the elements
to integrate in the computational model in this �rst stage
towards the development of a mouse-speci�c virtual tumour.
As proof of the concept, the virtual tumour evolution should
mimic its real life evolution. �e growth of seven di
erent
tumour cases were virtually described with a good accuracy
over a month. Moreover the model was able to capture
a characteristic event in the experimental growth process
corresponding to the well-known angiogenic switch [15]
and that we described as an angiogenic bottleneck. �is
marks the progressive transition between avascular and
vascular tumour growth at a speci�c time. �is study shows
that the virtualization of a patient’s tumour is achievable
using medical imaging techniques for the measurements
of pathophysiological parameters (i.e., tumour size, shape,
density, and vascular con�guration) to be able to de�ne,
in a near future, truly personalized and optimized treat-
ments.

2. Materials and Methods

2.1. 
e Experimental Model

2.1.1. Animal Model. We used a mouse ear tumour model
which consists in the injection of tumour cells in the dermis
of mice pinna [16]. �is minimally invasive model allows
following the development of the tumour and of its vas-
culature over a long time period. In accordance with the
policy of Clinatec and the French legislation, experiments
were done in compliance with the European Parliament and
the Council of the European Union Directive of September
22, 2010 (2010/63/EU). �e research involving animals was
authorized by the Ministère de l’Enseignement Supérieur et
de la Recherche. For the experiments, female athymic Nude-
Foxn1nu mice were used. Mice were housed in ventilated
cages with food and water ad libitum in a 12 h light/dark
cycle at 26 ± 1∘C. For in vivo imaging or injections, mice
were anaesthetized using iso	urane (5% for induction and
2% during the experiment) in a 80% air and 20% O2 gas
mixture.

2.1.2. Cell Culture. �e U87-MG cell line (primary human
glioma) was obtained from the American Type Culture
Collection (ATCC HTB-14) where cell line authentication
and species identi�cation was conducted. �e cells were
transfected with the Green Fluorescence Protein (GFP). �e
cells were grown in Dulbecco’s modi�ed Eagle’s medium
(DMEM) containing 10% heat-inactivated foetal bovine

serum, 2% L-glutamine, penicillin (100 IU/mL), and strepto-
mycin (100 �g/mL). �e cells were kept in standard culture
conditions (100% relative humidity, 95% air, and 5% CO2).
�e culture medium was changed twice weekly.

2.1.3. Tumour Generation. Tumour was generated by inject-
ing a 2�L solution of 2⋅105U87-GFPMGcells inHCMatrigel
(Corning, New York, United States) in mouse ear dermis.
During thewhole injection procedure, cells and cells/matrigel
solution were kept on ice. Prior to injection, anaesthesia
was performed and ears were taped to a conical tube for
easy injection of the tumour cells using a 26-gauge custom
needle mounted on a RN-701 Hamilton syringe. Immediately
a�er injection the presence of tumour cells was controlled by
	uorescence microscopy.

2.1.4. Experimental Setup. �e ear was gently placed in a
custom-built ear holder and immobilized under a coverslip
with ultrasonic gel in between the ear and the coverslip.
Body temperature was monitored with a rectal probe and
maintained at 36∘C during the whole imaging session using
a heating pad with feedback. Acquisitions were performed
only when body temperature reached 36∘C in order to avoid
hypothermia and vascular constriction during anaesthesia.

2.1.5. Microscopy. Tumour imaging was performed twice
a week during one month using a Nikon AZ100 multi-
zoom microscope (Nikon France, Champigny-sur-Marne,
France), equipped with 1x (0.1 NA), 2x (0.2NA), and 4x
(0.4NA) objectives. Fluorescence and bright �eld imaging
was performed for each tumour (Figure 1) with NIS-Element
so�ware package. �e vascular network was highlighted in
red 	uorescence by injecting 100 �L of a 20mg/mL solution
of Rhodamine B isothiocyanate-dextran (Sigma Aldrich) in
the vein of the mouse tail on days 7 and 14.

2.1.6. Image Analysis. Image analysis was performed using
ImageJ (version 1.47). To monitor apparent tumour growth,
a grey-level threshold was applied on the GFP-images. Yen’s
thresholding method was used [23] andmanually adjusted to
correct some artefacts. �e more restrictive Default ImageJ
�lter was also used as a comparison. �e area of the tumour
was then measured from the �ltered image.

2.1.7. Tumour Identi�cation. �e results presented corre-
spond to experiments made on 4 mice bearing two tumours,
one on each ear. Each mouse (M) is assigned a number (�)
and the tumour is identi�ed as le� (L) or right (R). �e
di
erent tumours are thus coded M�-L/R (with � from 1 to
4).

2.2. 
e Computational Model

2.2.1. Cell States. A cellular automaton, under the form of
a square grid, is used to describe tumour growth and the
evolution of the tumour cells state. Full details are available
in [17, 24]. Transitions between four possible states are
considered: proliferative, quiescent, apoptotic, and necrotic,
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Figure 1: Imagingmodes. Bright �eld and 	uorescence imaging of mouse pinna bearing a glioblastoma tumour are used to follow the tumour
and vascular evolutions simultaneously. Images were here acquired 14 days a�er cells injection (case M1-R). (a) Bright �eld image of the
tumour and vasculature, (b) 	uorescence image of U87-GFP tumour cells, (c) blood vasculature highlighted by dextran-rhodamine, (d) the
two 	uorescent channels which are merged, and (e) bright �eld image zoom on the tumour andmicrovasculature with objective 4x. All other
images have been acquired with objective 2x. Scale bars: (a), (b), (c), and (d) 1mm; (e) 500 �m.

denoted as �, �, � and �, respectively. �e default state for
a normal (physiological) level of oxygen is the proliferative
state. If the level of oxygen decreases below a threshold and
the cell is in an oxygen-sensitive phase, which is assumed to
be restricted to theG1-phase of its cycle, then the cell becomes
quiescent [25]. It can reverse to the proliferative state if the
oxygen level comes back to normal or above. If the level of
oxygen becomes too low then the cell dies through necrosis
[26].

2.2.2. Cell Cycle and Cell Division. �e duration of the cycle
of a cell a�er division (daughter cell) is assumed to be slightly
di
erent from this of the dividing cell (mother cell). It is
determined using a truncated Gaussian distribution centred
on the duration (�) of the cycle of the mother cell with
standard deviation 	 = 0.2 hours. Only the duration of the
G1-phase is assumed to be altered since this phase is known
to vary themost between cells coming from a same clone [27].
In the automaton, the cell can only divide if there is some
available space, that is, (i) if there is a free element among the
8 neighbour elements of the square grid or (ii) if the dividing
cell can push a neighbour cell in a free element beyond the

�rst row of occupied elements; if not the cell enters apoptosis
[28].

2.2.3.
e Vascular Network. Based on the results from a pre-
vious study [17], the capillary, microvascular, and angiogenic
networks are di
erentiated andmodelled di
erently. First the
capillary network is represented under the form of an implicit
submicrovascular �eld with 
�,� = 
0 at each point of the
simulation grid (�, �) where 
0 corresponds to the normal
density of capillaries which ensures a physiological ground
level of oxygen. In the model, it can be locally degraded (i.e.,

 = 0) by proteases produced by proliferating tumour cells
[29, 30]. Shortage of oxygen can thus occur and in	uence
the tumour evolution in many ways that we limit here to cell
cycle arrest. Second, the microvascular network consists of
vessels with diameters ranging from 30 to a few hundreds
micrometers (capillaries and neovessels are thus excluded).
�e vessels are mapped from the experimental images and
introduced into the automaton. �ird, the angiogenic net-
work corresponds to the newly formed vessels sprouting from
the microvascular network. �e microvascular vessels and
neovessels can occupy the edges and diagonals of the grid
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Table 1: Model parameters.

Parameter Unit Value Description Reference


� mm2⋅h−1 10.4 × 10−3 Proteases di
usion coe�cient [17]

�� h−1 130 Proteases production rate by sprout [17]

]� h−1 1.30 Proteases decay rate [17]


� mm2⋅h−1 1.73 × 10−3 Tumour proteases di
usion coe�cient Adapted from [17]

�� h−1 3600 Proteases production rate by tumour cells Adapted from [17]

]� h−1 0.21 Tumour proteases decay rate Adapted from [17]


� mm2⋅h−1 0.104 Growth factor di
usion coe�cient [18]

�� s−1 0.0145 Growth factor production rate by quiescent cells Estimated

]� h−1 0.65 Growth factor decay rate [19]

�� h−1 1 Consumption rate of growth factor by endothelial cells [19]

�
max

h−1 0.06 Max consumption of growth factor by endothelial cells [19]


� mm2⋅h−1 2.41 × 10−3 Oxygen di
usion coe�cient [20]

�� mm−1⋅s−1 4.8 × �/�
min

Vessels permeability to oxygen [21]

�0 s−1 2.4 Oxygen consumption rate by normal cells Based on [22]

�	 s−1 2�0 Oxygen consumption rate by proliferative cells Based on [21]

�
 s−1 �0 Oxygen consumption rate by quiescent cells Based on [21]

elements where the length of a vessel is �� = Δ�, if the vessel
is on the edge (border) of the element and�� = Δ�√2, if it lies
on one of the diagonals. For each grid element (�, �) the vessels
weight ��,� can be calculated to evaluate the contribution of
the neovessels V in providing oxygen or in consuming growth
factors:

��,� = ∑
V∈(�,�)

(��
2 + ��) + 
�,�. (1)

We note that the length of the vessels at the border of the
element is divided by 2, since the vessels contribute to 2
elements (le�/right or up/down). Angiogenesis, that is, the
formation of the new vessels, is described as in [17, 18, 24, 31].

2.2.4. 
e Extracellular Matrix. It evolves when the tumour
develops and can play an important role to stabilize the
tumour or at the opposite to favour tumour invasion [32].
Here we neglect the matrix �bre production and the role
it plays on the tumour. However the model takes into
account matrix degradation occurring during angiogenesis
via the proteases produced by themigrating and proliferating
endothelial cells [33].

2.2.5. Di
usive Molecules. Such growth factors and oxygen
in	uence the relationship between tumour growth and vas-
cular growth in a reciprocal way. Growth factors (�) mainly
produced by hypoxic tumour cells trigger vascular growth
through angiogenesis and reciprocally the new vessels pro-
vide oxygen (�) that fuels the growth of the tumour through
cell proliferation. �e other di
usive molecules involved in
the model are the proteases produced by the proliferating
tumour cells (�) and by the migrating endothelial cells (�)
that degrade the capillary network and extracellular matrix

�bres, respectively. �e equations that rule the spatiotempo-
ral dynamics of the concentrations for all di
usive species
{�, �, �,�} are given by

��
� = 
�∇2� + ����,� − ]��

− ����,�min (�, �max) ,
��
� = 
�∇2� + �

V
��,� (�V

− �) − ��,��,
��
� = 
�∇2� + ����,� − ]��,

��
� = 
�∇2� + ��$�,� − ]��,

(2)

where 
�, 
�, 
�, and 
� are di
usion coe�cients, ��,��, and �� are production rates, and ]�, ]�, and ]� are
decay rates for the related species; �� is the consumption
rate of growth factors by endothelial cells and by unit length
of vessels; �

V
is the permeability coe�cient of the vessels;

�
V
is the intravascular concentration of oxygen, taken as

a constant; �max is the maximum uptake of growth factors
when all cell receptors are saturated. �e coe�cient ��,� is
the uptake rate of oxygen which depends on the cell state in
element (�, �): if (�, �) ∈ �, ��,� = �	 (proliferative cells), if(�, �) ∈ �, ��,� = �
 (quiescent cells), and if (�, �) ∈ � or
� (apoptotic or necrotic dead cells), ��,� = 0, else ��,� = �0
(default uptake rate associated with normal cells) with �	 ≥
�0 ≥ �
. $�,� represents an angiogenic sprout (endothelial
cells) located on one edge of the grid element (�, �). �e cells
forming the sprouts have an intense proteolytic activity, via
the production of proteases that degrade the matrix to ease
cell migration. All the parameter values are given in Table 1.

2.3. Model Initialization. A virtual clone for each tumour is
built from the extraction of structural elements: shape and
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Figure 2: Stages of the procedure to transpose the 	uorescence information of tumour cells to the computational framework. (a)Original GFP
	uorescence image; (b1), (b2), and (b3) successive threshold images; (c1), (c2), and (c3) corresponding noised images; and (d) reconstructed
�nal image obtained by summing images (c1), (c2), and (c3). �e procedure is illustrated here on tumour case M4-L.

density of the tumour, local vascular structure. �ose are
obtained by segmenting the images acquired immediately
a�er the tumour cells injection (or no later than 3 days
a�er). �e GFP 	uorescence image is used to extract the
tumour cells repartition and the information on cell density is
captured by the level of 	uorescence intensity.�ree intensity
thresholds for the 	uorescence are applied successively on the
original image (Figure 2(a)) to di
erentiate three regionswith
various cell density from low density region to high density
region (Figures 2(b1) to 2(b3)). �e images are resized to the
size of the computation grid (200× 200 pixels).We then apply
to each identi�ed region some Gaussian noise (grey levels)
and the images are �ltered again with three thresholds to
re	ect the three di
erent levels of cell density in each region
(Figures 2(c1) to 2(c3)). �e three resulting images are added
to produce the initial virtual tumour (Figure 2(d)). We note
that the thresholds applied are not necessarily the same for
all the tumours since the 	uorescence intensity varies from
one tumour to another. �ey are chosen empirically with the
aim to distinguish 3 levels of densities. In a future stage of
development we intend to standardize the procedure.

�e vessels of the vascular network with a diameter
of at least 30 �m are segmented and their coordinates are
transposed in the model. Very o�en, venules and arterioles
are parallel to one another. Since we do not distinguish them
in our computational framework, only one of the two is
represented in that case. Only the vessels next to the tumour
are taken into account. �e segmented image is cropped
and resized to the size of the computation grid (200 × 200
pixels) (Figures 3(a) and 3(b)). A reference vessel is chosen
and its diameter is set to 80 �m; all the other vessels are
initially assigned a diameter of 30 �m. A pressure of 13 kPa
is imposed at the entry point of the reference vessel (black
dot in Figure 3(c)). �e pressure at the boundaries of the
domain is set to 2 kPa. Vascular adaptation under the e
ects
of hemodynamical constraints induced by the blood 	ow is
simulated according to themodel presented in [31]. All vessels

are free to adapt until a steady state is reached, except the
reference vessel of which diameter is �xed to ensure stability
of the whole network (Figures 3(c) and 3(d)). �e resulting
vasculature is then used as the initial vascular condition for
tumour growth.

3. Results

3.1. Tumour Growth through Texture and Size. Tumour devel-
opment is followed using intravital 	uorescence imaging.�e
di
erent imaging modalities give access to detailed and spe-
ci�c structural information on the tumour and its vasculature
(Figure 1). �e microscopic structural information is then
integrated to build up the virtual tumour (Figures 2 and 3).
Real tumour development is followed over 28 days and the
comparison with the parameterized virtual counterpart is
made at 4 discrete time points (days 3, 7, 14, and 28). Four
di
erent cases are presented in Figure 4. Simulation results
are presented in order to provide graphical representations
compatible with experimental observations. Fluorescence
images which reveal tumour cells are compared with simu-
lations only showing the tumour cells while distinguishing
the di
erent cell states: proliferative, hypoxic, and dying cells.
Brighter zones in the experimental images correspond to
higher tumour cell densities with proliferating cells. Similarly
in the simulation, proliferative cells are represented with a
brighter colour. Experimental bright �eld images show both
the vascular network and the tumour mass (Figure 5(a)). �e
corresponding simulations exhibit the vascular network and
the distribution of growth factors (VEGF) produced by the
hypoxic tumour cells (Figure 5(b)).

Since all cells are initially introduced with a proliferative
state (in the computational model), they almost immediately
exhaust the oxygen resource by consuming oxygen and by
degrading the underlying capillary network �eld [29, 30, 34]
since the introduced tumour mass is important. �e tumour
cells become hypoxic and turn into a quiescent state. We note
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Figure 3: Stages of the procedure to transpose the bright �eld image information of the vascular network into the computational framework.
(a) Bright �eld image of the vasculature; (b) the main vessels segmented; (c) the image cropped to the region of interest; (d) the vascular
network perfused at the entry point highlighted by the black dot and vascular adaptation simulated until a stationary state is reached; (e) the
resulting adapted vasculature merged with the extracted information on the tumour cells distribution. �e procedure is illustrated here on
tumour case M4-L.

that in our model hypoxic and quiescent cells are in fact the
same cells. �e hypoxic cells release growth factors (such
as vascular endothelial growth factor, VEGF). Depending
on the location of the closest vessels, angiogenesis will start
more or less rapidly to bring back oxygen to the hypoxic
tissue (Figure 5(c)). Tumour cells in the vicinity to the newly
formed vessels will turn back to the proliferative state andwill
primarily �ll the empty gaps between cells, thus increasing the
tumour density and allowing the tumour to grow.

Similarly in vivo, we observe that tumours become more
compact with time. Compaction can be qualitatively assessed
from the texture of the GFP 	uorescence images (Figure 4)
and the size of the tumours. On day 3, the 	uorescent image
is very granular, that is, heterogeneous which allows us to dif-
ferentiate dense regions corresponding to higher 	uorescence
intensity from low density regions with weaker signal inten-
sity. With time, the image texture becomes smoother, which
reveals that cell proliferation andmovements homogenize the
cells spatial distribution.

�e changes in the texture on the tumour 	uorescence
images from day 3 to day 28 are quanti�ed and characterized
from the distribution curves of 	uorescence intensity. To
that end, the 	uorescence intensity and the intensity range
have been normalized to make the comparison possible
since the intensity levels are di
erent from one image to

another depending on how the image has been tuned to
avoid pixel saturation. �e resulting curve corresponding to
the previously presented tumour is displayed in Figure 6(a).
We recall that only pixels associated with the tumour are
taken into account. On day 3, darker pixels dominate; the
distribution of 	uorescence intensity is heterogeneous and
decreases sharply leaving very few bright pixels. �is gives
a rough (granular) texture. On the subsequent days, the
	uorescence distribution becomes more homogeneous with
less darker pixels and signi�cantly more brighter ones, which
gives a smoother texture.�e close-up in the �gure compares
day 3 with day 28 to highlight the signal transition. �e
progression with time of this transition is particularly clear
for this tumour case (Figure 6(a)) with a signi�cant increase
of bright pixels.

In themeantime, the tumour size which is estimated from
its apparent area is multiplied in average by 1.67 ± 0.36 in 28
days (by 1.25 for tumour case M1-L and by 2.08 for tumour
caseM4-L, which are, resp, the slowest and the fastest growth
on our group of tumours). �e apparent area taken alone is
however not su�cient to assess correctly the tumour growth
in the two-dimensional plane, that is, the increase of the
number of tumour cells in this plane. Correlation with the
granularity is necessary to obtain a better estimation related
to tumour cells density. A qualitative good match is attained
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Figure 4: GFP 	uorescence images (upper row in each frame) are compared with snapshots of the simulations (lower row in each frame)
taken at four time points (days 3, 7, 14, and 28) for four di
erent tumour cases (M4-L,M1-L,M3-L, andM3-R). Colour code for the simulations:
proliferative cells in light green, quiescent cells in green, and apoptotic cells in yellow. Scale bars: 500 �m.�e corresponding simulations are
available in Supplementary Data Video in Supplementary Material available online at http://dx.doi.org/10.1155/2016/7851789.

between the real tumour and the virtual one based on three
criteria: the shape, size, and texture.

3.2. Growth Kinetics and Limitations. Comparisons of the
real and virtual (simulated) tumour growth are realised
from the evaluation of the tumour area at discrete time
points. Experimentally the tumour area is measured from
the 	uorescence images and depends on the �lter used to
segment the image (see Image Analysis). For the virtual
tumour, the area can be directly calculated from the number
of cells since each cell occupies one element of the cellular
automaton. �is gives us the e
ective tumour area. However
we also estimate the apparent tumour area which is obtained
by delineating the tumour edge. �e di
erent curves for
the evolution of the tumour area with time are plotted on
a same graph in Figure 6(b). �ese curves are the two
experimental curveswhich correspond to twodi
erent �lters:
the restrictive one gives the lower estimation for the tumour
area whereas the other one is more tolerant, so artefacts are
manually corrected which gives a more accurate estimation;
the two theoretical curves which correspond to the e
ective
and apparent areas.

Figure 6(b) shows some discrepancies between the curves
(which highlights the limit of the model). First, there is a
di
erence at time  = 0. �e virtual tumour areas are

smaller than the experimental ones.�is is due to the strategy
we employ to de�ne the initial virtual tumour. Only the
bulk of the tumour is taken into account for the estimation
of the tumour area. �e scattered cells are not taken into
account (see Figure 2(d)) whereas in the experimental case,
the integration of other plans (third dimension) allows the
detection of a larger tumour surface.�ere is a relatively good
�t between the virtual and real tumours from day 7 to day
21: the measured virtual tumour area is catching up with the
estimated real one since the virtual tumour cells �ll the gaps in
the simulated 2D plan.�ey further develop a�er the onset of
angiogenesis. Some divergence can occurmore or less rapidly
above 21 days. �ose are especially visible in the tumour case
presented in Figure 6(b) where the virtual tumour expansion
is faster than for the real tumour. �is is once again related
to the di
erent dimensionality of the virtual (2D) and real
(3D) tumours but also to a compaction e
ect that has been
disregarded in the virtual tumour model due to the fact that
there can only be one cell per element of the automaton.

3.3. 
e Angiogenic Bottleneck. �e best match in terms of
growth between the virtual tumour and its real counterpart
is obtained from day 7 to day 21. Figure 7 compares images
that merge the two 	uorescent channels with simulated
images for two other tumour cases (M2-R and M4-R). �e
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Figure 5: Comparison of the growth evolution of a simulated tumour (tumour caseM4-L) with its real counterpart at four time points (days 3,
7, 14, and 28). (a) Bright �eld images of the tumour with 2x objective and RFP-	uorescence image of the vasculature (on day 14); (b) associated
virtual tumour exhibiting the tumour cells (proliferative cells in light grey and quiescent cells in grey), vessels (darker vessels are larger), and
VEGF distribution (in red); (c) oxygen level (dark spots for oxygen levels lower than normal and bright spots for oxygen levels higher than
normal). Scale bars: 1mm for experimental images (a); 500 �� for simulated images (b, c).

simulated images show the tumour, the vasculature, and the
growth factors secreted by the hypoxic tumour cells. From
the experimental images we observe that the background is
darker at day 7 and much brighter at day 14. �is is due
to some leakage of the 	uorescent dye (dextran-rhodamine)
into the extravascular space induced by the growth fac-
tors which breaches the vascular walls as endothelial cells
detached to form the angiogenic sprouts. �is e
ects is indi-
rectly captured in the simulated images where the increased
growth factor concentration is related to the increase vessel
leakage.

Experimental and simulated growth curves of all the
tumour cases are presented in Figures 8(a) and 8(b), respec-
tively. �e curves '�( ) (� = 1 to 7) have been normalized

by their integral value, that is, '̃( ) = '�( )/ ∫280 '�( )5 , to
make them all comparable. Experimental curves correspond
to the manually determined tumour area of Figure 6(b).
Simulated growth curves plot the evolution of the number
of tumour cells which corresponds to the e
ective tumour

area of Figure 6(b). Although the simulated growth curves are
obviously more homogeneous than the experimental ones,
there is a striking resemblance at day 17 where the curves
variability is minimum for both experimental and simulated
curves.

�is corresponds to the well-known angiogenic switch
[15] that we designate here by the term bottleneck that more
accurately describes the observe phenomena by which slow
growing tumours (slower than the average) have a higher
angiogenic potential since they possess a higher proportion
of hypoxic cells (producing growth factors), whereas faster
growing tumours (faster than the average) produce a lower
angiogenic response. As a result, the growth curves coincide
at a speci�c time period due to a progressive and adapted
angiogenic regulation which starts to develop a�er about a
week and reaches its full capacity about 10 days later, leading
to the emerging convergence of the normalized growth
curves on day 17 (with the approximation of time sampling
for image acquisition).
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Figure 6: Tumour evolution (case M4-L). (a) �e evolution of the tumour 	uorescence distribution is assessed over 4 time points (days 3,
7, 14, and 28). �e horizontal axis represents the 	uorescence intensity of the images from dark pixels (with value 0) to bright pixels (with
value 1). �e range of pixel intensity values has been normalized for each image between the minimum value (darker pixel equals 0) and the
maximum value (brighter pixel equals 1) since they are not necessarily the same from one image to another. �e vertical axis stands for the
number of pixels for each 	uorescence intensity normalized by the total number of tumour pixels (the integral of each curve equals 1). �e
close-up compares day 3 with day 28 to exhibit the switch in the tumour 	uorescence pro�le. (b) �e evolution of the tumour area is �rst
evaluated from the experimental images (green curves with bullets) using both a manual Yen-guided �lter (plain line) and the Default ImageJ
�lter (dotted line). �e curves are then compared with the areas measured on the corresponding virtual tumour (blue curves with squares),
where the e
ective area is the area e
ectively occupied by the tumour cells (plain line) and the apparent area is the area which is delineated
by the tumour’s edge (dotted line).
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Figure 7: Tumour and vascular states are compared between day 7 and day 14 for two tumour cases: M2-R (a) andM4-R (b). In experimental
images, the vasculature is highlighted in red using dextran-rhodamine and the U87-GFP tumour cells are highlighted in green. In the
simulated images, a corresponding colour code has been used. �e vessels are in red and the neovessels in lighter red. �e tumour cells
appear in green with actively proliferating cells in brighter green. In the simulated images, the growth factors produced by the tumour cells
appear in red in the background. Scale bars: 500�m.
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Figure 8: Tumour growth is monitored from the normalized tumour area in experimental images (a) and in the simulations (b). All tumour
cases are represented in both graphics (curves in green for the experiments in panel (a) and in blue for the simulations in panel (b)) and
the black curves correspond to the mean curves featuring the standard deviation for each point. (c) shows the evolution of the ratio between
actively proliferating cells (�) and quiescent cells (�) in the simulations for all the tumour cases (where each grey curve represents one tumour
case) and the red curve represents the mean curve with standard deviation of the mean for each point.

�eproportion of quiescent cells (i.e., hypoxic cells) in the
simulated tumours is highlighted in Figure 8(c). �e tumour
cells are initially (day 0) all proliferative.Onday 3, only 30% in
average are still proliferative; all other cells turned quiescent.
In average the proportion of proliferative cells decrease to a
minimum close to 10% on day 13. Angiogenesis then starts
to produce some sensible e
ects on the cell population by
reverting quiescent cells into a proliferative state. �is leads
to an increase proportion of proliferative cells visible from
day 17 which con�rms the interpretation of the angiogenic
bottleneck e
ect by which tumour growth is progressively
resumed.

4. Discussion

In this study we developed a model for tumour growth and
angiogenesis that has been applied to build up a virtual
clone of a real tumour. �e model successfully describes the
development of seven di
erent tumour cases over a period of
about amonth, without requiring any changes or adjustments
in the model parameters from one tumour to another. �is
shows that the model with the default set of parameters

(Table 1),mostly taken from the literature and adjusted from a
previous study [17], is robust. Interestingly, we identi�edwhat
we called an angiogenic bottleneck characterizing the tumour
development. �is e
ect, observable from the experimental
tumour growth curves, is very well captured by the computa-
tional model since it is found to be signi�cantly emphasized
in the simulated curves. �is angiogenic bottleneck marks
the convergence of the normalized growth curves around
day 17 (Figure 8). It can be interpreted as a signature of the
progressive transition—hence bottleneck rather than switch—
between avascular and vascular (i.e., angiogenic) tumour
growth over this speci�c time period for all the tumour
cases. We note that this phenomenon appeared in the
simulations as an emerging property of the physiological
model. It shows that the model, although simple, is able
to catch a major characteristic of the experimental model.
Speci�cally, the basic mechanisms for cell growth activation
and inhibition through the regulation of the oxygen level and
themediation of growth factors are su�cient to reproduce the
characteristics of tumour development in terms of shape, size,
and density. �e vascular structure of the microenvironment
in	uences the cell shape and the tumour heterogeneity (active
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proliferating zones versus dormant quiescent zones) through
its angiogenic potential stimulated by the tumour itself.

Although successful in catching key aspects of reality, the
physiological model should be further improved to become
reliable on a longer time scale. First the computational model
can be generalized in 3D to exploit the potential of two-
photon imaging that gives access to a tissue depth of a few
hundreds microns for the reconstruction of a large tumour
volume. Second, cell compaction that has been overlooked
in this version of the model can be easily integrated in the
computational framework by allowing more than one cell in
a grid element. �e consequences of the increase mechanical
pressure on the modulation of the cell proliferation rate [35]
and on vascular shutdown [34] can thus be described. �is
will allow us to account for the increased density of the
tumourmass (by exploiting the image texture, rather than the
tumour area) in order to match more accurately the tumour
growth curve beyond the angiogenic bottleneck.

With this study, we have been able to show that a
biological object, as complex as a tumour, can be transposed
into a virtual clone to predict its overall behaviour. But
the main interest in detaining such a reliable tool is its
potential to investigate and predict the e
ects of therapies.
Its main object is to use it as a virtual substitute to test
a panel of therapeutic protocols (i.e., by de�ning the drug
dose, administration duration, and frequency). �is is even
more helpful in combined therapy protocols that may in	u-
ence each other like the use of antivascular and cytotoxic
drugs. �is should help to identify the optimum therapeutic
strategy for the real tumour. It is expected that such a
personalized treatment, which takes into account all the
tissue speci�cities of the patient (tumour shape and density
and vascular con�guration), would considerably increase
its e�cacy. Although precision medicine has been recently
promoted and advertised through the rise of big data [3–6],
we remain convinced that Personalized Medicine, involving
biologically based computer models, is equally reachable and
achievable.

5. Conclusions

Personalized Medicine is pursued as a major goal to �ght
cancer and requires the assistance of biologically based
theoretical models. However deriving such highly informed
and dedicated models is not easy. In this study we devel-
oped a virtual tumour based on basic mechanisms for cell
growth activation and inhibition through the regulation
of the oxygen level and the mediation of growth factors.
�ose mechanisms appeared to be su�cient to reproduce the
characteristics of tumour development in terms of size and
shape over a month. Moreover, the key angiogenic transition
in the growth process was very well captured by themodel, by
spontaneously emerging in the simulations as a consequence
of these simple physiological rules.
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Angélique Stéphanou would like to thank the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for support
and hospitality during the programme “Coupling Geometric
PDEs with Physics for Cell Morphology, Motility and Pattern
Formation” where this work was presented and �nalized.

References

[1] F. S. Collins and H. Varmus, “A new initiative on precision
medicine,” New England Journal of Medicine, vol. 372, no. 9, pp.
793–795, 2015.

[2] A. Katsnelson, “Momentum grows to make ‘personalized’
medicine more ‘precise’,” Nature Medicine, vol. 19, no. 3, article
249, 2013.

[3] A. R. Shaikh,A. J. Butte, S.D. Schully,W. S.Dalton,M. J. Khoury,
and B. W. Hesse, “Collaborative biomedicine in the age of big
data: the case of cancer,” Journal of Medical Internet Research,
vol. 16, no. 4, article e101, 2014.

[4] J. U. Adams, “Genetics: big hopes for big data,” Nature, vol. 527,
no. 7578, pp. S108–S109, 2015.

[5] E. Bender, “Big data in biomedicine: 4 big questions,” Nature,
vol. 527, no. 7576, 2015.

[6] Y. Zhang, Q. Zhu, and H. Liu, “Next generation informatics
for big data in precision medicine era,” BioData Mining, vol. 8,
article 34, 2015.

[7] Q. Mi, N. Y.-K. Li, C. Ziraldo et al., “Translational systems
biology of in	ammation: potential applications to personalized
medicine,” Personalized Medicine, vol. 7, no. 5, pp. 549–559,
2010.

[8] A. A. Friedman, A. Letai, D. E. Fisher, and K. T. Flaherty,
“Precisionmedicine for cancer with next-generation functional
diagnostics,”Nature Reviews Cancer, vol. 15, no. 12, pp. 747–756,
2015.

[9] L. Van Neste and W. Van Criekinge, “We are all individuals...
bioinformatics in the personalized medicine era,” Cellular
Oncology, vol. 38, no. 1, pp. 29–37, 2015.

[10] Y. Louzoun, C. Xue, G. B. Lesinski, and A. Friedman, “A math-
ematical model for pancreatic cancer growth and treatments,”
Journal of 
eoretical Biology, vol. 351, pp. 74–82, 2014.

[11] G. G. Powathil, D. J. A. Adamson, and M. A. J. Chap-
lain, “Towards predicting the response of a solid tumour to
chemotherapy and radiotherapy treatments: clinical insights
from a computational model,” PLoS Computational Biology, vol.
9, no. 7, Article ID e1003120, 2013.

[12] M. Robertson-Tessi, R. J. Gillies, R. A. Gatenby, and A. R.
A. Anderson, “Impact of metabolic heterogeneity on tumor
growth, invasion, and treatment outcomes,” Cancer Research,
vol. 75, no. 8, pp. 1567–1579, 2015.

[13] O. Saut, J.-B. Lagaert, T. Colin, and H. M. Fathallah-Shaykh,
“A Multilayer grow-or-go model for GBM: e
ects of invasive
cells and anti-angiogenesis on growth,”Bulletin ofMathematical
Biology, vol. 76, no. 9, pp. 2306–2333, 2014.



12 Computational and Mathematical Methods in Medicine

[14] L. Tang, A. L. van de Ven, D. Guo et al., “Computational mod-
eling of 3D tumor growth and angiogenesis for chemotherapy
evaluation,” PLoS ONE, vol. 9, no. 1, Article ID e83962, 2014.

[15] D. Hanahan and J. Folkman, “Patterns and emerging mecha-
nisms of the angiogenic switch during tumorigenesis,” Cell, vol.
86, no. 3, pp. 353–364, 1996.

[16] A. Pourtier-Manzanedo, C. Vercamer, E. Van Belle, V. Mattot,
F. Mouquet, and B. Vandenbunder, “Expression of an Ets-1
dominant-negative mutant perturbs normal and tumor angio-
genesis in a mouse ear model,” Oncogene, vol. 22, no. 12, pp.
1795–1806, 2003.

[17] A.-C. Lesart, B. van der Sanden, L. Hamard, F. Estève, and
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