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Abstract

Background: Body motion data registered by wearable sensors can provide objective feedback to patients on the

effectiveness of the rehabilitation interventions they undergo. Such a feedback may motivate patients to keep

increasing the amount of exercise they perform, thus facilitating their recovery during physical rehabilitation

therapy. In this work, we propose a novel wearable and affordable system which can predict different postures of

the upper-extremities by classifying force myographic (FMG) signals of the forearm in real-time.

Methods: An easy to use force sensor resistor (FSR) strap to extract the upper-extremities FMG signals was

prototyped. The FSR strap was designed to be placed on the proximal portion of the forearm and capture the

activities of the main muscle groups with eight force input channels. The non-kernel based extreme learning

machine (ELM) classifier with sigmoid based function was implemented for real-time classification due to its fast

learning characteristics. A test protocol was designed to classify in real-time six upper-extremities postures that are

needed to successfully complete a drinking task, which is a functional exercise often used in constraint-induced

movement therapy. Six healthy volunteers participated in the test. Each participant repeated the drinking task three

times. FMG data and classification results were recorded for analysis.

Results: The obtained results confirmed that the FMG data captured from the FSR strap produced distinct patterns

for the selected upper-extremities postures of the drinking task. With the use of the non-kernel based ELM, the

postures associated to the drinking task were predicted in real-time with an average overall accuracy of 92.33% and

standard deviation of 3.19%.

Conclusions: This study showed that the proposed wearable FSR strap was able to detect eight FMG signals from

the forearm. In addition, the implemented ELM algorithm was able to correctly classify in real-time six postures

associated to the drinking task. The obtained results therefore point out that the proposed system has potential for

providing instant feedback during functional rehabilitation exercises.
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Background
Body motion and physiological data registered by wear-

able sensors have been used for diagnostics, as well as

monitoring the rehabilitation progress of people recover-

ing from an injury or living with a chronic disease such

as stroke [1]. These data can provide objective feedback

on patient’s health status and the progress of rehabilita-

tion, which allow therapists to optimize the rehab rou-

tine [2]. Feedback to the patient should be provided in

real-time, as there is evidence that instant feedback can

further motivate the user to reach the targeted goal or

even to keep increasing the amount of exercise [3]. An

example of monitoring device that provides instant feed-

back to the user is the pedometer, which counts the

number of steps and effectively motivates people to in-

crease their walking activities towards better health [4].

However, compared to the lower-extremities activity

monitoring, there are few affordable and easy to use de-

vices that can provide instant feedback of the activities

of the upper-extremities to motivate the patients. Many

studies have shown the increase of upper-extremities ac-

tivity can lead to better outcomes after neurological con-

ditions including stroke [5], head injury [6], incomplete

spinal cord injury [7] and cerebral palsy [8]. Thus, there

are great needs for having such a device for providing

instant feedback of targeted rehab exercise that involves

upper-extremities movement.

Current commercial wrist accelerometers, such as the

Actical [9] and the Actigraph [10], can provide objective

measures of arm use based on multidirectional acceler-

ation data of the upper-extremities. However, these sys-

tems provide no real-time feedback to the user, nor are

able to capture any information about hand use, which

is one of the most important upper-extremities functions

in our daily life. Besides the use of accelerometers, there

are other methods available for capturing both the hand

and arm movement. One example is the use of a data-

glove, such as the Cyberglove [11], which incorporates

both inertial measurement unit (IMU) sensors and

flexible bend sensors for motion capturing. However,

data-gloves are generally designed for virtual reality ap-

plications that require the use of a host CPU. Moreover,

data-gloves limit the tactile sensation of the user’s

fingers, thus limiting the effectiveness of rehabilitation

protocols involving the somatosensory system.

In addition to commercially available devices, current

active research focuses on processing bio-signals

through the use of surface electromyography (sEMG)

to predict the upper-extremities movements that in-

volve elbow, wrist or/and hand [12-14]. Even though

this method frees the hand and allows full tactile sen-

sation, it requires expensive and sizable equipment, as

well as high-level signal processing for feature extrac-

tion. This approach is therefore not very suitable for

inexpensively detecting movements in outdoor activ-

ities or in the home environment.

Other than using accelerometer, data acquisition glove

or sEMG for monitoring the upper extremity movement,

there is a relatively unexplored method named force

myography (FMG). FMG is referred to a technique

which use force sensor to capture the expansion/con-

traction of the large surface muscle [15]. The use of

FMG to distinguish limb movements was preliminarily

explored by O.Amft et al. [16] who used two force resist-

ive sensors (FRS) on the forearm, and were able to visu-

ally distinguish four types of arm gestures on a data plot.

The use of FMG was also investigated for monitoring

cycling activity by placing FSRs on the upper leg [17].

The research performed by G. Ogris [18], X. Wang [19]

and Li et al. [20] showed the possibility to predict differ-

ent arm and finger gestures by using multiple FSRs

pressed against the arm. While their methodologies did

not allow having a wearable system for real-time feed-

back, these works proved the feasibility of using FMG

for monitoring upper-extremities gestures.

In this paper, we propose a novel system to detect dif-

ferent upper-extremities postures in real-time through

the use of a lightweight and wearable forearm FSR strap.

The strap has multiple FSR sensors, whose signals are

classified in real-time to distinguish different upper-

extremities postures. The FRS strap was conceived to be

easy to use by a layperson. Location of the single fore-

arm muscle groups is therefore not required every time

the sensor strap is worn. The FRS strap was also de-

signed to be a standalone device, which does not require

any external equipment, such as a powerful computer or

auxiliary sensors, for its calibration. The strap can there-

fore be used in unstructured environments, such as the

patient’s home.

Among the different existing classifiers, we utilized the

Extreme Learning Machine (ELM) for processing signals

of our FSR strap system. The ELM was first proposed by

G.Huang et.al [21] in 2004, and has been refined since.

In recent publications, ELM has been shown to have

equal or superior performance compared to the popular

Support Vector Machine (SVM) [22] and Artificial

Neural Network (ANN) [23] for supervised multiclass

classification, but with simpler architecture and faster

learning speed [24,25]. Simple architecture and fast

learning speed are crucial for our system. It should in

fact be noted that in order to have an affordable and

lightweight device to monitor the upper-extremities ac-

tivity, a low power and low profile microcontroller

would to be used. Due to the potentially low computa-

tional power available, the simplicity of the classifier’s

learning algorithm is a crucial aspect. In additional,

every time the FSR strap is worn, the force resistive sen-

sors might be positioned in a different location respect
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to the muscle groups. The classifier has therefore to be

retrained every time the strap is worn – high learning

speed of the classifier is therefore a desired feature. The

ELM was selected to work with the FSR strap for real-

time upper-extremities posture classification for its sim-

plicity and fast learning speed.

To evaluate the performance of the proposed system,

we developed a test protocol that resembles the se-

quence of needed steps required to drink from a cup.

The drinking task has widely been used in multiple

kinds of rehabilitation interventions, including the

constraint-induced movement therapy [26]. We discre-

tized the drinking task in a sequence of movement steps,

in order to identify at which point the volunteer failed

the task. By correctly classifying each step, the FRS strap

can potentially provide feedback to the patient to en-

hance her/his motivation or to the therapist to assess

the patient’s improvements. For example, in constraint-

induced movement therapy, the patient is required to re-

peat an exercise a number of times. The quality of the

movement gradually worsens with the number of repeti-

tions because of fatigue. By assessing each movement

step, the system can identify at which point the volun-

teer fails to correctly perform the task. Thus, by classify-

ing the intermediate steps, the system is able to provide

feedback to help the patient to maintain the quality of

the exercise, as well as to provide more detailed infor-

mation to the therapist for analysing the progress of the

rehabilitation.

The proposed work is innovative from different per-

spectives. Differently from the work proposed in the lit-

erature, we used a portable and minimalistic FSR array

to capture FMG patterns of the forearm, which enables

us to distinguish complex upper limb posture that in-

volves multiple joint movements. The proposed system

is also very simple to be worn and used; for instance, the

muscle location is not needed to be identified before pla-

cing the FSR strap. This work presents real-time FMG

classification, which, to the best of the authors’ know-

ledge, has not been analysed or presented in previous

works. The use of real-time FMG classification through

the FSR strap is proposed in the interesting task of clas-

sifying arm postures during the well-known drinking

task.

Methods
FSR strap and its placement

A force sensor resistor (FSR) is made of a polymer thick

film that decreases in resistance when pressure is applied

onto its sensing area. Eight 0.5′ circular FSRs made by

Interlink Electronics [27] were inserted onto a strap

made with FloTex foam; the FSR sensors were placed

3 cm apart from each other. The total length of the FSR

strap was 30 cm. Velcro tapes were attached on both the

interior and exterior end of the FSR strap to secure the

strap onto user’s forearm. The interior view of the FSR

strap is shown in the Figure 1.

The FSR strap was designed to be a simple device

which can be worn without or with little assistance. The

user does not require having muscle physiological know-

ledge in order to identify the location for the strap place-

ment. He/she can simply wrap the FSR strap around the

proximal portion of the forearm, and tight it up with

Velcro. The amount of pressure needed to be applied to

record FMG is mild, and with the flexibility of the Flo-

Tex foam, the FSR strap does not block blood circula-

tion or constrain motion. There are two main reasons

for placing the FSR strap on the proximal portion of the

forearm (see Figure 2). Firstly, this portion of the

Figure 1 Interior view of FSR strap.
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forearm covers multiple major muscles groups that con-

trol both the hand and wrist movements [13,14], which

include, but are not limited to, the Extensor Carpi

Radialis, the Extensor Digitorum, the Flexor Carpi

Ulnaris and the Palmaris Longus. Secondly, it is also able

to detect pattern associate with the elbow movement.

Data acquisition setup

The hardware that was used for extracting the FMG sig-

nals was very simple. This aspect represents an advan-

tage of FMG over EMG signals for detecting movements

of the upper extremities. Specifically, voltage dividers

were used for extracting the signals from the force sen-

sors as shown in Figure 3. In absence of pressure, the

resistance of the FSR was more than 10 M Ohm, and it

decreased logarithmically as pressure increased. The

suitable output range for muscle pressure sensing de-

pends on the base resistor, which was empirically set to

be at 22 k Ohm for optimal measurements. The voltage

divider circuit was powered by a 5 V voltage source of a

data acquisition (DAQ) device made by National Instru-

ment (NI USB 6210). The outputs of the voltage dividers

were fed into the DAQ, which was connected to a bat-

tery powered notebook computer for signal processing.

Pattern recognition with non-kernel based extreme learn-

ing machine (ELM)

In order to distinguish different upper-extremities pos-

tures based on the FSR strap data, we utilized the ELM

for real-time classification. Two types of ELM were pro-

posed in [24], the non-kernel based ELM and the kernel

based ELM. In this work, we implemented the non-

kernel based ELM as its performance is less subjected to

the user specified parameters [25]. The non-kernel based

ELM has an output function as the following:

f xð Þ ¼ h xð Þβ ð1Þ

where h(x) is the hidden-layer output corresponding to

the input samples from the 8 FSR (x ϵ R
8), and β is the

output weight vector between the hidden layer and the

output layer. For multiclass classification, the predicted

class label is the index number of the output node that

has the highest value.

In equation (1), the hidden-layer output function h(x)

maps x from its original space into an L-dimension space,

where L is the number of the hidden nodes, which is speci-

fied by the designer. The h(x) has the following form:

h xð Þ ¼ h a1; b1; xð Þ…h aL; bL; xð Þ½ � ð2Þ

where h(ai, bi, x) is a nonlinear piecewise continuous

function with i ranging from 1 to L. The parameter

ai and bi of h(ai, bi, x) can be randomly generated

Figure 3 System diagram.

Figure 2 Placement of the FSR strap. Red arrow indicates the

proximate span of the corresponding muscle.
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according to any continuous distribution. Once generated,

they can be reused as long as the number of input features

and number of hidden nodes do not change. The choice

of h(ai, bi, x) is large, for example it can be a sigmoid,

Gaussian, sine, hard-limit, triangular or the radial based

functions.

Back to equation (1), the output weight β is computed

based on the following:

β ¼ H
T I

C
þHH

T

� �−1

T ð3Þ

where H is the hidden-layer output matrix, T is the 1-of-

K representation of the target label for the training data,

and C is the regularization parameter that needs to be

specified. H is constructed from the entire collection of

hidden-layer output functions for all hidden nodes and

training samples, and it has the following form:

H ¼
h x1ð Þ
⋮

h xNð Þ

2

4

3

5 ¼
h1 x1ð Þ … hL x1ð Þ

⋮ ⋱ ⋮

h1 xNð Þ … hL xNð Þ

2

4

3

5 ð4Þ

where N is the number of training samples.

In this work, the ELM was implemented in MATLAB

for offline analysis and in LabVIEW for real-time classifi-

cation. There were many choices for h(ai, bi, x), how-

ever, since the purpose of this paper is not to compare

different classifiers’ performance, only the sigmoid func-

tion was used. The sigmoid based h(ai, bi, x) was imple-

mented as the following:

h ai; bi; xð Þ ¼
1

1þ exp − ai⋅xþ bið Þð Þ
ð5Þ

With the hidden-layer output function decided, the

number of hidden node (L) and the regularization par-

ameter (C) were then selected empirically. The common

practice for selecting the application dependent parame-

ters, such as L and C, is to use cross validation tech-

nique when each time the classifier is trained; however,

this approach requires large amount of computation, so

it is not suitable for our portable system. Fortunately,

the performance of the non-kernel based ELM is not

very sensitive to the choice of the parameters L and C

[25]. By increasing the value of L, the classification ac-

curacy increases until it reaches plateau; after that, little

improvement can be gained. By choosing a large value

for L, high accuracy is guaranteed. However, the larger

Figure 4 Classes definition for drinking task postures.

(A) Class 1 - Relax; (B) Class 2–90 deg Elbow Flexion; (C) Class 3 -

Fingers Extension; (D) Class 4 – Soft Grasp; (E) Class 5 – 120 deg

Elbow Flexion; (F) Class 6 – Wrist Pronation.
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the L is, the more memory is required. The selection

process for the parameter C is different; a large value

does not guarantee to have good performance. However,

a suitable value for C can be chosen within optimal

range. The optimal range of C was empirically found to

be between 25 and 211 for this application. Due to the

fact that the suitable value of L and C do not have to be

unique, there is no need to use cross validation tech-

nique, which allows the classifier to be quickly trained.

The selected values of L and C were respectively 200

and 27, and they were used throughout the experiment

for all the participants.

Experiment

An experiment was designed to evaluate the perform-

ance of the combined use of the FSR strap and ELM

classifier for upper-extremities posture classification in

real-time. A total of six classes were included, and each

class corresponding to one distinct posture for the

drinking task as shown in Figure 4 (the volunteer gave

consent for publication of this image). The postures

were associated with the movement, such as rising the

forearm (elbow flexion), grasping or releasing the cup

(fingers flexion/extension), and repositioning the cup to

mouth (wrist pronation). Due to the fact that the FSR

strap was only able to monitor the force pressure dis-

tribution pattern of the muscles in the forearm, no

posture that involved change of shoulder position was

included in the experiment. The entire experiment was

divided into two phases, training phase and testing

phase.

During the training phase, the participant was

asked to recreate the six postures shown in Figure 4,

and maintain each posture for 7 seconds. During this

period, the operator instructed the custom made

LabVIEW application to record 5 seconds of data.

The entire sequence was repeated 3 times during

this phase.

During the testing phase, the participant was asked to

follow a set of predefined instructions on a monitor to

perform the corresponding postures. The instruction se-

quence with the corresponding class labels (in bracket)

is shown in Figure 5 for better understanding the proto-

col. To start the test, the participant was asked to sit on

a chair with upper-extremities completely relaxed (see

Figure 4A). Next, he/she raised the elbow to the hori-

zontal plane and then fully extended all the fingers in

order to grasp a cup in the next step (see Figure 4B). An

empty cup was grasped (Figure 4C) and then the elbow

was further flexed (see Figure 4D). In order to resemble

the drinking action, the participant tilted the cup toward

the mouth with wrist pronation (see Figure 4E). At the

end of this task, the volunteer was asked to reversed the

actions, namely to supinate the wrist, extend the elbow,

extend the fingers, and fully relax the arm. There were

therefore a total of 10 instructions (see Figure 5), and

each instruction lasted 3 seconds, except for the Class 1

instruction. The participant was asked to repeat the se-

quence 3 times during this testing phase.

The data processing sequence of the experiment is

shown in Figure 6. In both training and testing phases,

the FSR strap data was sampled at 1 kHz and passed

through a low pass filter with a cut-off frequency of

4Hz to remove high frequency noise. It was then down

sampled by an average filter with a moving window of

200 samples and a step size of 100 samples (see Step

A1 and Step B1 in Figure 6). During the training phase,

50 samples (corresponding to 5 seconds of data) were

collected for each posture, with 6 different postures

and 3 repetitions, a total of 900 samples were collected.

Each FSR strap sample and the corresponding class

label were stored in a training buffer (see Step A2 in

Figure 6). Once the training protocol was completed, the

Figure 5 Testing protocol for real-time classification.
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entire dataset was saved and then went through a nor-

malization process (see Step A3 in Figure 6) before being

used for ELM classifier model generation (see Step A4

in Figure 6). The learning was completed in less than 3

seconds, which allowed the participant started testing

without waiting.

During the testing phase, the FSR strap data went

through the same filtering process and then was scaled

Low pass filter

with cutoff freq of

4Hz

Down sample by

an averaging filter

Data normalization

Generate classifier

model using ELM

Store training data

into a buffer

Real-time

classification using

the generated

model

Low pass filter

with cutoff freq of

4Hz

Down sample by

an averaging filter

Scale the treated

data using

normalization

parameter from

the training phase

Test the

classification

result against the

given command

FSRS Data

FSR strap data

(raw signal

input)

Corresponding

class label

Normalization

parameters

Action

command

Classification

result

(output)

Training

phase

Testing

phase

ELM classifier

model

signal treatment

signal treatment

Testing

accuracy

(Step A1)

(Step A2)

(Step A3)

(Step A4)

(Step B1)

(Step B2)

(Step B3)

(Step B4)

Figure 6 Data processing sequence.
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down using the normalization parameters obtained dur-

ing the training phase (see Step B2 in Figure 6). The

scaled sample was classified in real-time (see Step B3 in

Figure 6). The classification result along with the proc-

essed FSR strap sample and the action command (visual

command provided to the volunteers) were recorded for

analysis (see Step B4 in Figure 6). Note that even though

the prediction was performed in real-time, there was no

feedback for the participant; only the operator could see

the instant (less than 200 ms delay) classification results.

A total of six healthy male volunteers, who signed an

informed consent form (project approved by the Office

of Research Ethics, Simon Fraser University), partici-

pated in the study. Their average age was 29.7 years old,

and the average circumference of their forearm, at the

location in which the FSR strap was placed, was 27 cm.

The characteristic of the participants are detailed in

Table 1.

Results
Training dataset analysis

The training data for the 6 participants are plotted in

Figure 7. For each dataset, the corresponding class labels

are shown with different background colours, and the

corresponding training FSR strap data are shown with

coloured solid lines. By visually inspecting Figure 7, we

can see that the FMG patterns of each participant are

different - no obvious trend can be observed. This be-

haviour was a consequence of the different positions the

force resistive sensors had on the muscle groups of each

volunteer. Both the different shape and size of the vol-

unteers’ forearms and the different muscle synergies also

contributed to have very different signal patterns from

one individual to another. This result corroborates the

work done by Liarokapis et al. [28] on sEMG analysis,

which indicates the model generated by the classifier

should be subject-specific.

Figure 7 also shows that the FMG pattern of the same

participant varied slightly among the three repetitions

that were performed. Besides variations due to the dif-

ferent amounts of force applied by the participant dur-

ing the different repetitions, FMG pattern changes

were also caused by the small displacements of the FSR

strap on the forearm during the movements of the

upper extremity. Figure 7 shows that the training of

the classifier has taken these small variations into

account.

Real-time classification result analysis

The FSR strap data along with the action commands

(visual command provided to the volunteers) and the

real-time predictions were recorded during the testing

phase for off-line analysis. The action commands and

real-time predictions for all participants are shown in

Figure 8. For each subplot in the Figure 8, the action

command sequence is shown with a blue solid line, and

the real-time prediction is shown with a green solid line.

The action command sequence and the prediction were

matched in general, despite a small delay between the

two. The delay of the real-time prediction was mainly

due to the participant’s response time to the given

commands. That is, when a new command was given,

the user needed 0.5 seconds to 1.5 seconds to respond,

which mostly depended on the participant’s concentra-

tion during the test. A measure of the response time

for each participant was computed and reported in

Table 2. Its calculation was based on the average delay

during the transition from Class 1 to Class 2 posture,

which is indicated by the red arrows in Figure 8A.

Because the volunteers’ response time relatively con-

sistent, this specific transition was selected for the

evaluation for the delay. In addition, there was almost

no misclassification during this transition for all par-

ticipants. The average delay for all participants for this

transition in each section was computed to be 1 second

with an average standard deviation of 0.18 second.

In order to have an accurate quantitative measure of

the proposed method, the delay in time response of each

volunteer to the visual commands should be compen-

sated. By shifting the real-time classified output data of

each participant forward in time according to the aver-

age delay found in Table 2, the real-time testing accuracy

was obtained. The accuracy was calculated based on the

number of correctly classified data point over the total

number of data point. The result is presented in Table 3.

This table also reports the most misclassified output

data (second column of Table 3) and their corresponding

accuracy (third column in Table 3). The overall average

classification accuracy for all participants was 92.33%

with a standard deviation of 3.19%. The most misclassi-

fied output data corresponded to Class 2, namely to the

“90 degrees elbow flexion” (see Figure 4B). The average

accuracy for the most misclassified output data was

Table 1 Participant statistics

Age Proximal forearm circumference (cm)

Participant 1 24 26

Participant 2 31 27

Participant 3 27 27

Participant 4 35 27

Participant 5 34 27

Participant 6 27 28

Average 29.7 27.2

STD 4.4 0.8
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above 75%. Based on the statistical data, we concluded

the ELM was able to accurately extract the pattern in

real-time from the FSR strap for the drinking task.

An off-line analysis was also performed to study the

general performance of the ELM for different randomly

generated hidden-layer bases. Five random hidden-layer
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Figure 7 Training dataset with 50 samples (5 seconds) per class per section. (A) Dataset for Participant 1; (B) Dataset for Participant 2;

(C) Dataset for Participant 3; (D) Dataset for Participant 4; (E) Dataset for Participant 5; (F) Dataset for Participant 6.
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Figure 8 Real-time classification result. (A) – Result for Participant 1 with red arrows indicate the transition from Class 1 to Class 2

posture; (B) – Result for Participant 2; (C) – Result for Participant 3; (D) – Result for Participant 4; (E) – Result for Participant 5; (F) – Result for

Participant 6.
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bases were generated and applied on to the recorded

FSR strap data. The data processing procedure was the

same for both the real-time and off-line classification.

The result of off-line classification is shown in Table 4.

Including the real-time test result, the average accuracy

was calculated along with the corresponding standard

deviation for each participant. Five out of six partici-

pants’ results had standard deviations less than 1.3%,

and the result of the remaining one (Participant 4) was

2.4%. The average test accuracy for Participant 4, namely

84.8%, was the lowest amongst all the volunteers. In

addition, the real-time accuracy for most misclassified

output data (Class 2 data) for the same participant was

50.7% (see Table 3). These data suggested that Partici-

pant 4 had complex features in the FSR strap pattern

that the ELM was not able to pick up during the test. In

order to gain an insight on the reasons of the misclassifi-

cation, an in-depth analysis about the data acquired

from the Participant 4 was performed.

Analysis for data misclassification

The real-time test profile for Participant 4 is shown in

Figure 9. In Figure 9A, the red dotted line indicates the

class label for the action commands and the blue line in-

dicates the class label for the shifted predicted actions.

Figure 9B shows the FSR strap data for all 8 channels

with the predicted class labels in the coloured back-

ground for easy identification. The red arrows in Figure 9

indicate where the misclassified outputs for Class 2 data

occurred. As shown by the red arrows, the majority of

the misclassifications occurred during the transitions be-

tween two classes and these transitional patterns were

mislabelled as Class 2 data. This type of transitional mis-

classification finds its justification on the training pro-

cedure that was used in this study. Specifically, the

classifier was trained by using only data recorded outside

the transitions. Therefore, it is reasonable to expect

misclassification may occur during transitions. Results

reported in Figure 9 also show that sometimes misclassi-

fication also occurred while the participant was main-

taining a steady posture. As indicated by the deep blue

arrow in Figure 9, a misclassification was for example

found during the Class 4 command, namely “soft grasp”

(see Figure 4D), in the second repetition. By analysing

the raw data of this specific case in Figure 9B, it can be

observed that the FSR strap reading changed while the

action command remained unchanged. This behaviour

could be attributed to possible variations in muscle re-

cruitment strategies and the nonlinear time response of

the FSR sensors.

Limitations and future work

The scope of the current work is limited to discrete clas-

sification of different postures of the volunteers’ upper-

extremities. While this approach can be used to provide

valuable information to patients and therapists, future

work will address classification of continuous move-

ments using FMG signals. The main challenge for imple-

menting this feature is the need of automatically

identifying the signature of different types of multi-joints

movements involved in a functional task.

Conclusions
Research was performed towards the development of

an affordable and easy to use wearable system that

processes force myographic (FMG) signals to provide

Table 2 Time delay for action response

Section 1 (s) Section 2 (s) Section 3 (s) Average (s) STD (s)

Participant 1 1.9 1.0 1.1 1.33 0.49

Participant 2 0.8 1.0 0.7 0.83 0.15

Participant 3 0.8 0.7 0.8 0.77 0.06

Participant 4 1.3 1.5 1.1 1.30 0.20

Participant 5 1.1 1.0 0.9 1.00 0.10

Participant 6 0.7 0.8 0.8 0.77 0.06

Average 1.00 0.18

Table 3 Real-time test result

Real-time
classification
accuracy in%

Class label of
most misclassified

output data

Accuracy of the
most misclassified
output data in%

Participant 1 95.50 3 & 5 93.50

Participant 2 92.20 5 78.20

Participant 3 90.20 2 78.50

Participant 4 87.50 2 50.70

Participant 5 92.70 2 76.40

Participant 6 95.90 2 79.70

Average 92.33 76.17

STD 3.19 13.94

Xiao and Menon Journal of NeuroEngineering and Rehabilitation 2014, 11:2 Page 11 of 13

http://www.jneuroengrehab.com/content/11/1/2



instantaneous feedback (less than 200 ms) about activ-

ities of the upper extremities. A novel force sensing

resistor strap for the forearm was developed to capture

FMG patterns associated to upper-extremities move-

ments. We utilized extreme learning machine (ELM) to

extract the FMG patterns. Specifically, the ELM classifier

was implemented in LabVIEW to classify in real-time six

different upper-extremities postures associated to the six

different steps required to drink from cup. Six healthy

volunteers followed a test protocol that was designed to

resemble the complete sequence of the drinking task.

The average real-time testing accuracy was 92.33% with

a standard deviation of 3.19%. This result shows that

the proposed device and the use of FMG are potentially

suitable to provide accurate feedback to the users about

functional movements of their upper extremities.

Table 4 Offline test result with randomly generated base for ELM

Real-time
recorded

classification
result (%)

Classification
result with

random base
1 (%)

Classification result
with random
base 2 (%)

Classification result
with random
base 3 (%)

Classification result
with random
base 4 (%)

Classification result
with random
base 5 (%)

Average
(%)

STD
(%)

Participant 1 95.5 95.5 95.6 95.1 95.5 95.5 95.5 0.2

Participant 2 92.2 93.8 90.0 91.2 91.9 91.3 91.7 1.3

Participant 3 90.2 91.7 88.1 91.2 91.1 90.2 90.4 1.3

Participant 4 87.5 87.3 82.8 85.7 82.2 83.1 84.8 2.4

Participant 5 92.7 92.2 91.0 92.0 91.1 90.9 91.6 0.8

Participant 6 95.9 93.1 93.6 94.1 95.5 93.1 94.2 1.2
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Figure 9 Real-time test profile for Participant 4. Red arrows indicate the transitional misclassifications and deep blue arrow indicates the

non-transitional misclassification. (A) - Real-time Test Result; (B) – Real-time Test Data.
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