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We report on the status of our study towards the equation of state in 2 + 1 flavor QCD with
improved Wilson quarks. To reduce the computational cost which is quite demanding for Wilson-
type quarks, we adopt the fixed scale approach, i.e. the temperature T is varied by Nt at fixed
lattice spacing. Since the conventional integral method to obtain the pressure is inapplicable
at a fixed scale, we adopt the "T-integral method", to calculate the pressure non-perturbatively.
Reduction of the computational cost of T = 0 simulations thus achieved is indispensable to study
EOS in QCD with dynamical quarks.
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1. Introduction

Clarification of the equation of state (EOS) of hot QCD is important to understand the nature
of quark matter in early Universe and in relativistic heavy ion collisions. Most lattice studies have
been done with computationally cheap staggered-type lattice quarks. However, their theoretical
basis such as locality and universality are not well established. Therefore, to evaluate the effects of
lattice artifacts, it is important to compare the results with those obtained using theoretically sound
lattice quarks, such as the Wilson-type quarks.

In this note, we report on the status of our study towards the EOS in QCD with 2 + 1 flavors
of dynamical Wilson-type quarks. To reduce the lattice artifacts, we adopt RG-improved Iwasaki
gauge action and the clover-improved Wilson quark action with non-perturbatively adjusted clover
coefficient.

A reason that Wilson-type quarks have not been intensively studied in finite temperature QCD
is that the computational cost for Wilson-type quarks is larger than that for staggered-type quarks,
in particular at small quark masses. Therefore, we have to implement efficient methods for sim-
ulations and analyses. We adopt a fixed scale approach in which the pressure is calculated non-
perturbatively by the T-integral method [1].

2. Fixed scale approach armed with the T-integral method

Conventionally, finite temperature simulations in lattice QCD are performed in the fixed-Nt

approach, where temperature T = (Nta)−1 is varied by changing the lattice scale a (through a
variation of the lattice gauge coupling β ) at a fixed temporal lattice size Nt . Thus, simulations
have to be repeated at different values of β along a line of constant physics (LCP) in the coupling
parameter space. In this approach, a sizable fraction of the computational cost is devoted for T = 0
simulations to set the basic parameters such as the lattice scale, to determine LCP’s and the beta
functions on them, and to carry out zero-temperature subtractions for the renormalization of finite-
temperature observables. Note that these zero temperature simulations are required at all the points
in the coupling parameter space for finite temperature simulations.

In the fixed scale approach we adopt, we vary T by changing Nt at a fixed a, fixing all coupling
parameters. Since the coupling parameters are common to all temperatures, (i) T = 0 subtractions
can be done by a common zero temperature simulation, (ii) the condition to follow the LCP is
obviously satisfied, and (iii) the lattice scale etc. are required only at the simulation point. We may
even borrow results of existing high precision spectrum studies at T = 0 which are public e.g. on
the International Lattice Data Grid (ILDG) [2]. Then, the computational cost needed for T = 0
simulations can be reduced largely.

Because the lattice spacings in spectrum studies are usually smaller than those used in con-
ventional fixed-Nt studies around the critical temperature Tc, for thermodynamic quantities around
Tc, we can largely reduce the lattice artifacts due to large a and/or small Nt than those in the con-
ventional fixed-Nt approach. This requires a larger computational cost at low temperatures due
to the larger Nt . Nevertheless, the merits around Tc will be a good news for phenomenological
applications, since temperatures relevant at RHIC and LHC will be at most up to a few times Tc.
On the other hand, as T increases, Nt in our approach becomes small and hence the lattice artifact
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increases. Therefore, our approach is not suitable for studying the high temperature limit. Note
that the pros and cons of our method are complement to the conventional method.

In the conventional fixed-Nt approach, p is calculated non-perturbatively by the integral method
[3]: using the thermodynamic relation p = (T/V ) lnZ valid in the large volume limit, with V being
the spatial volume and Z the partition function,

p =
T
V

∫ b

b0

db
1
Z

∂Z
∂b

= −T
V

∫ b

b0
∑

i
dbi

{〈
∂S
∂bi

〉
−

〈
∂S
∂bi

〉
T=0

}
(2.1)

where S is the action and b = (β ,κud ,κs, · · ·) ≡ (b1,b2, · · ·) is the vector in the coupling parameter
space. The integration path can be chosen freely in the coupling parameter space as far as p(b0)≈ 0.

The conventional integral method is inapplicable in the fixed scale approach because we sim-
ulate only at a point in the coupling parameter space. Therefore, we developed “the T-integral
method” [1] to evaluate the pressure non-perturbatively: Using a thermodynamic relation valid at
vanishing chemical potential

T
∂

∂T

( p
T 4

)
=

ε −3p
T 4 , (2.2)

we obtain

p
T 4 =

∫ T

T0

dT
ε −3p

T 5 (2.3)

with p(T0) ≈ 0. Here the trace anomaly ε −3p is calculated as usual by

ε −3p
T 4 =

N3
t

N3
s
∑

i
a

dbi

da

{〈
∂S
∂bi

〉
−

〈
∂S
∂bi

〉
T=0

}
(2.4)

where Ns is the spatial lattice size. The coefficient a dbi
da is the lattice beta-function defined by the

variation of the ith coupling parameter bi along the LCP.
In the fixed scale approach, T is restricted to discrete values due to the discreteness of Nt . For

the integration of (2.3), we need to interpolate the data with respect to T . The systematic error from
the interpolation should be checked. Note that, because the scale is common for all data points in
the fixed scale approach, T is determined without errors besides the common overall factor 1/a.

3. Test of the method in quenched QCD

In [1], we made a test of the fixed scale approach armed with the T-integral method in quenched
QCD using the standard one plaquette gauge action, on isotropic and anisotropic lattices. The
simulation parameters are summarized in Table 1.

The trace anomaly obtained on the isotropic i1, i2 and i3 lattices are shown in the left panel
of Fig.1. The shaded line represents the result of the conventional fixed-Nt method obtained on a
large lattice of Nt = 8 and Ns = 32 (about 2.7 fm around Tc ∼ 290 MeV) [4]. Comparing i1 and
i3, we find that the lattice cutoff effects are quite small on these lattices. On the other hand, the i2
lattice shows a small deviation from the Nt = 8 lattice near Tc. This deviation may be understood
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set β ξ Ns Nt r0/as as[fm] L[fm] a(dg−2/da)
i1 6.0 1 16 3-10 5.35(+2

−3) 0.093 1.5 -0.098172
i2 6.0 1 24 3-10 5.35(+2

−3) 0.093 2.2 -0.098172
i3 6.2 1 22 4-13 7.37(3) 0.068 1.5 -0.112127
a2 6.1 4 20 8-34 5.140(32) 0.097 1.9 -0.10704

Table 1: Simulation parameters on isotropic and anisotropic lattices [1]. The i1, i2 and i3 lattices are
isotropic, while the a3 lattice is anisotropic with ξ ≡ as/at = 4. The beta function is taken from [4]. The
temperature ranges cover T ∼ 200–700 MeV. Corresponding T = 0 simulations are done on Nt = 20ξ
lattices.
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Figure 1: EOS in quenched QCD [1]. Left: trace anomaly on isotropic lattices. Dotted lines are the natural
cubic spline interpolations of the data. Center: trace anomaly on anisotropic lattice a2 compared with the
isotropic i2 lattice with similar spatial lattice spacing and volume. Right: energy density and pressure by
the T-integral method. The shaded curves represent the results of the conventional fixed-Nt method at Nt = 8
[4].

by the physical finite size effect expected in the critical region. Off the critical region, all results
agree well with each other.

Dotted curves in the left panel of Fig.1 are the natural cubic spline interpolations of our trace
anomaly. To estimate the systematic error due to the interpolation ansatz, we tested another inter-
polation with the trapezoidal rule. Carrying out the numerical integration (2.3), we find that the
EOS from the trapezoidal interpolation is almost identical with the EOS from the natural cubic
spline interpolation [1].

To further estimate systematic effects due to discreteness of T , we compare the results with
those on the anisotropic lattice a2, which has about 4 times finer resolution in T than the i2 lattice.
In the central panel of Fig.1, we compare the trace anomaly on a2 and i2 lattices. We find that the
data points from the a2 lattice are well on the natural cubic spline interpolation line of the i2 lattice,
except for the data on the a2 lattice around the peak where the interpolation line of the i2 lattice
slightly overshoots. We note that the height of the peak on the a2 lattice is consistent to those of
the fine i3 and Nt = 8 lattices shown in the left panel of Fig.1. Therefore, the difference may be
explained by the smaller discretization errors in the temporal direction on the a2 lattice.

In the right panel of Fig.1, we show the results of EOS by the numerical integration (2.3). We
find that the results of i2 and a2 lattices are well consistent with each other. This suggests that the
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Figure 2: Status of finite temperature 2 + 1 flavor QCD simulations with improved Wilson quarks. Left:
the Polyakov loop time history. Right: heavy quark free energy in the color-singlet channel [5]. The
heavy-quark potential V (r) at T = 0 was calculated by the CP-PACS and JLQCD Collaborations [6]. The
pale dashed curve is the result of a Coulomb + linear fit of the zero-temperature V (r). The arrows on the
right side denote twice the thermal average of the single-quark free energy.

systematic errors due to the discreteness of T is at most about the statistical errors. The shaded
curve in the figure represents the result of the conventional fixed-Nt method at Nt = 8 [4]. We
find that the fixed scale approach armed with the T-integral method is powerful to calculate EOS
reliably. See Ref.[1] for more discussions.

4. Towards the EOS in 2+1 flavor QCD with improved Wilson quarks

Adopting the fixed scale approach armed with the T-integral method, we are carrying out a
series of simulations of finite temperature QCD with 2 + 1 flavors of improved Wilson quarks.
As the basic zero temperature configurations, we use those created by the CP-PACS and JLQCD
Collaborations [6] and made public at the JLDG branch of ILDG [2] . Their spatial lattice volume
is about (2 fm)3. Among their simulation points, we have chosen the finest lattice (a = 0.07 fm,
β = 2.05) with the lightest u and d quarks (mπ/mρ = 0.63) The lattice size is 283 × 56 and the
statistics is about 6000 trajectories. Using the same coupling parameters as the zero temperature
simulation, we are generating finite temperature configurations on 323 ×Nt lattices with Nt = 4, 6,
· · ·, 16. The pseudo-critical temperature is expected to be around Nt ∼ 14.

Status of the finite temperature simulations is shown in the left panel of Fig.2. While we
are still increasing the statictics, in particular for Nt = 12–16 lattices around the pseudo-critical
temperature, we have started first test calculations on these configurations.

At the conference, Yu Maezawa presented our preliminary results for the heavy quark free
energy obtained on these configurations [5]. Our results for the heavy quark free energy in the color
singlet channel are shown in the right panel of Fig.2. Here, we note another good feature of the
fixed scale approach that we can purely extract the temperature effects in the physical observables:
In the case of fixed-Nt approach, because the β -dependent renormalization factor for the constant
term of the free energy is not known, the free energies at different temperatures (different β ’s) are
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Figure 3: mPS/mV ratio in 2 + 1 flavor QCD. Left: mPS/mV for light-light ` ¯̀ mesons (mπ/mρ ). Right:
mPS/mV for ss̄ mesons. Curves represent the results of a 9 parameter global fit.

vertically adjusted by hand such that they coinside with each other at short distances. This means
that we imply the temperature dependence to be small at short distances. On the other hand, in
the fixed scale approach, the renormalization factors are common to all temperatures. Therefore,
we need no adjustment of the constant term to compare the free energies at different temperatures.
The free energies shown in the right panel of Fig.2 are plotted without adjusting the constant term,
and V (r) is the zero-temperature heavy quark potential defined by Wilson loop expectation values
[6]. We find that the free energies at various T converge to V (r) at short distances. We have thus
proved the validity of the theoretical expectation that the short distance physics is insensitive to the
temperature. See [5] for more discussions.

We now turn our attention to the calculation of EOS. According to (2.4), in addition to the
gluon contribution to the trace anomaly, we have the quark contribution due to the scaling of the
hopping parameters κud and κs. When the clover coefficient CSW depends on β , its β -derivative
also contributes as a part of the quark contribution. Therefore, we need to know the values of the
beta functions for these coupling parameters.

We attempt to calculate the beta functions in 2 + 1 flavor QCD using the hadron data by the
CP-PACS and JLQCD Collaborations [6]. In this study, we use the data of mPS/mV for light-light ` ¯̀

mesons (mπ/mρ ), mPS/mV for ss̄ mesons, and the decay constant fPS of the ss̄ pseudoscalar meson,
to obtain the LOC through our simulation point mPS/mV(` ¯̀) = 0.6337 and mPS/mV(ss̄) = 0.7377
in the three dimensional coupling parameter space of (β ,κud ,κs), as well as the scale on the LCP.
Figure 3 shows the data of mPS/mV(` ¯̀) and mPS/mV(ss̄). The curves in the plots are the results of
a 9-parameter global fit. Although the fit approximately reproduces the data, the quality of the fit
is not quite high with χ2/do f ∼ 10. To calculate the beta functions, we adopt the inverse matrix
method developed in [7]. Results of the beta functions are shown in the left panel of Fig.4. We find
that the magnitudes of the beta functions are similar to those obtained in the previous two flavor
case with improved Wilson quarks [7]. However, although the beta function adβ/da for the gauge
coupling is well determined, the beta functions adκud/da and adκs/da for the hopping parameters
have errors larger than their values. The main reason is the coarseness of the data points in the
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Figure 4: Beta functions and EOS in 2 + 1 flavor QCD. Left: beta functions adβ/da, adκud/da and
adκs/da. Right: preliminary result of the gluon contribution to the trace anomaly.

coupling parameter space. The substitution of other meson masses for fPS(ss̄) leads to similar
results.

Using the result of adβ/da, we further attempt to calculate the gluon contribution to the trace
anomaly. A preliminary result is shown in the right panel of Fig.4. For comparison, the peak height
of (ε −3p)/T 4 in the case of 2+1 flavor QCD with improved staggered quarks was about 6–8 on
Nt = 6 and 8 lattices [8]. On the other hand, we expect a large cancellation between the gluon and
quark contributions in the trace anomaly: In the case of two flavor QCD with a similar improved
Wilson quark action [7, 9], the peak height of (ε −3p)/T 4 is about 13 at mπ/mρ ∼ 0.65 on Nt = 4
lattices, in which the gauge contribution is about 45 and the quark contribution is about −32. Thus
the magnitude of the gluon contribution shown in the right panel of Fig.4 seems to be consistent
with expectation.

5. Discussion

We have developed the fixed scale approach armed with the T-integral method to reduce the
computational cost for the EOS calculation on the lattice. A test in quenched QCD has shown that
the method works well [1].

Applying the method, we are carrying out a series of finite temperature simulations in 2 + 1
flavor QCD with improved Wilson quarks, based on the public zero-temperature configurations on
ILDG generated by the CP-PACS and JLQCD Collaborations [6].

To calculate the EOS, we need the beta functions too. We found that, with the inverse matrix
method adopted in previous studies, the hadron data available from the zero-temperature spectrum
study are insufficient to calculate precise beta functions for the hopping parameters — we need
more data points in the coupling parameter space around the finite temperature simulation point
with this method. In order to avoid additional intensive zero-temperature simulations, we are trying
to develop new methods, including a reweighting method to directly calculate the beta functions at
the simulation point.
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