
Towards the Establishment of a Software Product

Line for Mobile Learning Applications

Venilton Falvo Júnior

ICMC/USP, Brazil

venilton@icmc.usp.br

Nemésio F. Duarte Filho

ICMC/USP, Brazil

nemesio@icmc.usp.br

Edson OliveiraJr

UEM/PR, Brazil

edson@din.uem.br

Ellen Francine Barbosa

ICMC/USP, Brazil

francine@icmc.usp.br

Abstract—The enormous popularity of mobile devices in the

society has motivated the development of mobile learning

applications. In spite of the benefits with regard to teaching and

training, the existing learning applications still have to address

issues and challenges related to the development, reuse and

architectural standardization. On the other hand, researches

have been carried out to employ the Software Product Lines

(SPL) approach through the development of mobile learning

applications. A SPL focuses on software reuse and has been

successfully applied for specific domains. In this context, this

paper proposes M-SPLearning, one SPL particularly established

to the mobile learning applications domain. The main goal of M-

SPLearning is to provide benefits with regard to the overall

quality, domain comprehension, and reduction of the time spent

in the development and maintenance of m-learning applications.

Keywords- m-learning; software product line; mobile learning

applications; proactive adoption model

 INTRODUCTION

In recent years, learning environments have shown an
increasing importance, playing a fundamental role in teaching
and training activities, both in academic and industrial settings.
Together with the advent of ubiquitous and mobile computing,
learning environments have also contributed for a new
modality of education – the m-learning (mobile learning) [1, 2].
As an attempt to analyze the main motivations for m-learning,
O’Malley et al. [3] emphasize the impact of technological
advances, such as intelligent interfaces, contextual modeling
applications and the recent progresses in the wireless
communications area, which altogether have provided several
new and innovative perspectives for technology users.

M-learning introduces flexibility to the learning process,
since the creation, exchange and access to information occur
naturally due to the ubiquity of mobile devices. In this sense,
apprentices are able to decide when, how and where they feel
more comfortable to learn [3]. On the other hand, one of the
main problems of m-learning is the lack of a well-defined
standard with respect to the means of information access. Due
to the large number of mobile devices available in the market,
the production of content for these devices becomes strongly
dependent of issues such as manufacturer and operating
system, for instance [2].

In a different but related perspective, the introduction of
object-oriented (OO) concepts, component-based development
and service-oriented development have attracted the interest of
the software community to the opportunities and benefits of
code reuse. The success of such initiatives have stimulated the

reuse in several stages of the software development process,
including in artifacts such as documents, specifications and
models, further increasing the perspective of cost reduction and
return on investment (ROI) [4].

The evolution of these ideas has led to the concept of
Software Product Line (SPL), which represents a paradigm
change in the regard of the traditional software development.
Instead of developing software “project-to-project”,
organizations should now focus their efforts on creating and
maintaining a core asset, which would be the basis for the
construction of specific products for a given domain [5].

Motivated by this scenario, in this paper we propose a SPL
for the development of m-learning applications, named
M-SPLearning. The main goal is to investigate the benefits of
systematic reuse of an SPL in the context of m-learning. At the
very end, the idea is to promote the overall quality, domain
comprehension, and reduction of the time spent in the
development/maintenance of m-learning applications.

This paper is organized as follows. In Section II, the
background for our work is summarized. In Section III, we
describe the main aspects of M-SPLearning through the
process used for its creation. In Section IV, we discuss a
preliminary evaluation of the proposed SPL. In Section V, we
briefly discuss the threats to validity. Finally, in Section VI, we
summarize our conclusions and perspectives for future work.

BACKGROUND

SPL represents a new paradigm in Software Engineering,
providing expressive results in terms of cost, schedule and
quality [6]. Linden et al. [5] describe a SPL as a set of software
systems sharing common features that satisfy a specific need
for a particular market segment, developed from core assets in
a systematic way, usually formed by a software architecture
and its components.

The concept of SPL is suitable to domains in which there is
a demand for products that have common features but which
also contain a well-defined set of variabilities. Despite its
relevance, the required activities to adopt the SPL concept are
not trivial, demanding considerable time and effort. Krueger
[7, 8] presents three different adoption models to support the
establishment of a SPL: (i) proactive; (ii) reactive; and (iii)
extractive. The proactive model is fully supported by the scope
of the required systems, being appropriate when the
requirements for the set of products to be developed are stable
and can be previously defined. Therefore, each activity has to
be finished before the next one be started.

678

In the reactive model, the SPL incrementally evolves
whenever there is a demand for new products or new
requirements are specified for the existing products. This
approach is suitable when it is not possible to predict the
requirements for each specific product.

The extractive model reuses one or more existing software
to the initial base of the SPL. To be an effective choice, this
model should not require complex technologies for the
development of the SPL and must allow the reuse of existing
software without the need of a high level of reengineering.

Other relevant concept refers to m-learning. This new type
of electronic learning takes place when the interaction among
the actors of the learning process is performed through mobile
devices (tablets, smartphones, PDAs, etc). As a new and
emerging paradigm, there are several attempts for defining it.
According to O’Malley et al. [3], m-learning refers to any kind
of learning that occurs when the apprentice is not in a fixed
place, or when one takes advantage of learning opportunities
provided by mobile devices, thereby relating technological and
mobility concepts. Ozdamli and Cavus [9] describe
m-learning as an activity that allows individuals to be more
productive when they consume, create or interact with
information, supported by mobile devices.

No matter the definition adopted, the interaction with
learning applications through mobile devices provides benefits
that go beyond accessibility, convenience and communication
[10]. However, in spite of the advantages offered and even with
the increasing demand for m-learning applications, there are
few works addressing development issues in this new learning
setting. One of the researching initiatives in terms of the
development of m-learning applications can be found in Duarte
Filho and Barbosa’s work [11]. In short, the authors proposed a
requirements catalog for m-learning environments. The catalog
was established from the results of a systematic review
conducted in this domain. To facilitate the understanding and
the maintenance of the catalog, a three-level hierarchical
structure (criteria, requirements and description) was adopted.
Additionally, based on the knowledge of domain specialists,
the requirements were prioritized in order to reflect the main
experiences and needs in the m-learning setting.

Duarte Filho and Barbosa [11] also suggest that the
requirements defined in the catalog may serve as a basis for:
(1) the specification of a quality model for m-learning
environments; and (2) the establishment of a reference
architecture for m-learning environments. Actually, quality
standards can support the definition of requirements, thereby
contributing to the establishment of a high quality architecture.

The SPL architecture (PLA) plays a central role to
successfully generate specific products taking into account the
development and evolution of a SPL. It represents, in an
abstract level, the architecture of all potential products for a
specific domain. The PLA addresses the SPL design decisions
by means of similarities and variabilities [12]. Thus, the PLA
evaluation can be seen as one of the most important activities
throughout a SPL life cycle [5]. In this sense, the requirements
catalog proposed by Duarte Filho and Barbosa [11] and the
adoption models proposed by Krueger [7, 8] have been
investigated as the basis for the M-SPLearning construction.

M-SPLEARNING: CONSTRUCTION PROCESS

Before starting to develop M-SPLearning, we looked for
some related works dealing with the construction of SPLs
(Table I). Although considering different domains, all the
works analyzed provide relevant information regarding the
techniques and approaches used in the construction and
adoption of SPLs. For the sake of space, these works will not
be detailed herein.

TABLE I. SUMMARY OF THIS AND RELATED WORK

Work Domain Adoption Model
Architectural

Base

M-SPLearning M-learning Proactive Component

Dalmon et al.

[13]

Interactive

modules

Extractive

(5 applications)
Component

Marinho et al.

[14, 15]

M-guides
Extractive

(57 applications)
SOA

Pascual et al.

[16]

Pervasive

systems
Proactive

Component and

Aspect

Linden et al. [5] claim that one of the most critical activities
in creating a SPL refers to the scoping of the target domain. To
define the initial scope of M-SPLearning, we mainly
considered the requirements catalog proposed by Duarte Filho
and Barbosa [11]. According to the authors, the catalog intends
to reflect, in a high level basis, the experience gained from
developers and researchers in this new modality of learning.
Furthermore, the catalog is generic and embracing, benefiting
its adoption for different purposes in the m-learning domain.

Still with regard to scoping issues, since mobile
applications can be built using a native development approach,
the m-learning domain encompasses several different operating
systems. Thus, to define an acceptable domain in terms of
scope, we had to select a single operating system. Our choice,
Android OS, was based on the amount of devices that each
operating system controls. According to Llamas et al. [17],
Android OS owns 68.8% of the world’s smartphones market,
which represents nearly 500 million devices.

Having delimited the scope, the adoption models proposed
by Krueger [7, 8] were analyzed to identify the most
appropriate to the construction of M-SPLearning. The
specificities and features of the mobile domain, along with the
existence of a requirements catalog for m-learning
environments [11], have motivated the choice of the proactive
model. Such a proactive approach comprises four main phases,
described next.

A. Domain Analysis

According to Krueger [7, 8], at this phase the domain is
analyzed in order to identify the variation in the specific
products from a SPL. In this sense, requirements catalog
proposed by Duarte Filho and Barbosa [11] was analyzed with
respect to the ISO/IEC 25010 – International Standard for
Software Product Quality (successor of the ISO/IEC 9126
standard) [18]. The aim was to identify missing or disconnected
requirements.

From the analysis conducted, we noticed that most of the
requirements were equivalent to the features/sub-features
established by the ISO/IEC 25010 standard. However, some
requirements had to be rearranged and/or renamed and, in a
fewer cases, added and/or removed.

679

Figure 1. The M-SPLearning Feature Diagram

The following step consisted of identifying the variabilities
incorporated by the specific products of the SPL. Variability is
one of the most important issues in designing a SPL, reflecting
the diversity and commonality of its artifacts [19]. Therefore,
the precise and explicit representation of variabilities makes it
possible the generation of specific products in a SPL.

Variabilities may be identified and represented by the
concept of features [20]. A feature is defined as a system
characteristic that is relevant and visible to the end user [21].
Features are usually represented by a feature model, i.e., a
hierarchical representation that captures the structural
relationships among the features of a specific domain.

Feature models are visually represented by means of feature
diagrams. Figure 1 illustrates the feature diagram representing
the requirements catalog for M-SPLearning. The interpretation
of the feature diagram is straightforward and its construction is
in agreement with the concepts and guidelines proposed by
Kang et al. [21]. Shortly, each requirement in the catalog was
evaluated considering its relevance in the SPL domain and, if
appropriate, mapped as feature. The primary features are
summarized as follows:

- Pedagogical: incorporates educational and pedagogical
requirements in order to facilitate and support teaching and
training activities. This feature and its sub-features are
represented as mandatory due to their relevance in the mobile
learning domain. The only optional sub-feature is interactivity,
which allows communication with social networks;

- Usability: addresses relevant issues with respect to the visual
interface of a product, being crucial to the software market
acceptance. This feature assures that all products generated by
the SPL follow an usability standard, adding quality to the final
product. Since usability is a global feature of the product and
not a specific feature, it is defined as mandatory and abstract.

- Compatibility: encompasses coexistence and the ability of a
product to exchange information with other systems in the
same operating environment. As the feature and its sub-features
are crucial for mobile applications, they are defined as
mandatory (and the coexistence feature is abstract);

- Security: fundamental feature for any educational application.
Due to the relevance of the features regarding integrity and
confidentiality, they are defined as mandatory. The
authentication sub-feature is optional;

- Communication: supports the exchange of information among
users enabling, for instance, message exchange, delivery of test
results and even synchronization of activities performed in
other mobile devices. It is an optional feature; and

- Support: provides some supporting alternatives to the user
such as help and internationalization. It is classified as optional,
as well as it sub-features.

B. Validation of the Domain Analysis

Aiming at validating the requirements previously elicited,
this phase suggests the application of a checklist to evaluate the
main technical issues related to M-SPLearning. An online
checklist, composed of twelve multiple-choice questions, was
prepared and applied to domain experts. The first two questions

were related to the participants’ experience in SPL and
m-learning. The remaining questions were related to the
requirements catalog resultant from the domain analysis.

From the obtained results, taking into account the
participants’ point of view, the requirements catalog was
considered adequate (60.90%) or at least regular (39.10%) for
all items evaluated. None of the questions related to the catalog
was answered as unsatisfactory.

Despite the positive results achieved, it is important to
highlight that the requirements validation conducted is still
preliminary. In this scenario, an empirical validation through
experiments with qualified practitioners from industry and
academia would be extremely relevant. These experiments
have been planned and should be performed in short term.

C. Architecture Definition

The third phase involves the definition of a PLA for
M-SPLearning. Ultimately, such architecture can serve as a
basis for the derivation of all products defined in the scope of
the SPL proposed.

In short, we defined a component-based architecture aiming
at bringing together the benefits of reuse and modularization to
the systematic characteristics of SPLs. To do so, we take into
account SMarty [22], a variability management approach for
UML-based SPL. More specifically, we applied the UML
profile that the approach provides, the SMartProfile, according
to a set of guidelines from the SMartyProcess.

680

Figure 2. The M-SPLearning Architecture

According to OliveiraJr et al. [22], the SMartyProfile
contains a set of stereotypes and tagged values to represent
variability in SPL models. This profile uses a standard object-
oriented notation and its profiling mechanism on order to
provide an extension of UML and to allow graphical
representation of variability concepts. Figure 2 illustrates the
M-SPLearning architecture according to SMarty.

From the architectural diagram, it is possible to identify the
basic structure used in the construction of M-SPLearning.
Notice that the assets package contains the components that
correspond to the requirements of M-SPLearning. These
components provide the concrete features, defined in the
feature diagram (Figure 1).

The components that represent the essential features were
grouped as the core component. Thus, the idea is to unify all
the fundamental modules to any product generated by
M-SPLearning. Furthermore, the other components have a
dependence relationship with the core, since they need the core
to provide their functionalities.

The application layer contains the component that
represents M-SPLearning, showing their association with the
assets package and making explicit the possibility of creating
multiple products. Each generated product uses the components
available in the M-SPLearning assets, thereby allowing that
different configurations can be used according to the settings
defined in application layer.

The products communicate with the storage layer to
perform the operations provided by SPL that require data
access or data writing. Since the products generated can be
manipulated by developers, they can also communicate with
the storage layer in an external mode. This alternative can be
useful, for instance, if it is necessary to implement a variability
that is not supported by M-SPLearning.

Next we summarize the design of the components that
implement the concrete features of M-SPLearning. These
components define the similarities and variabilities supported
by M-SPLearning.

D. Components Design

The design phase completes the process of creating a SPL.
According to Krueger [7, 8], variabilities and similarities
among specific products of a SPL must be identified.
Therefore, the features of the components stored in the
repository should be designed and visually represented through
a new component diagram, as shown in Figure 3.

From the component diagram, it is possible to explore all
the details of the concrete features covered by the SPL,
detailing the variation points and identifying each component
with its respective SMartyProfile stereotype. These stereotypes
make it easier the understanding of the possible configurations
of the m-learning applications resulting from M-SPLearning.

The dependence relationship among components becomes
explicit as well. As previously said, the core component fully
unifies the mandatory features. This is particularly necessary
for security, communication and support components.

Notice that the communication component is not directly
dependent to the core. Actually, this dependence is
intermediated by the security component, guaranteeing that all
products have a secure communication. This ensures the
architectural obligation that all components depend on the core
component, which is responsible for providing the fundamental
features of M-SPLearning.

M-SPLEARNING: IMPLEMENTATION

In order to preliminary evaluate the application of
M-SPLearning, some of its features were implemented
according to the SOA architectural pattern, which is frequently
associated with the concept of SPL [14, 15, 23].

Basically, M-SPLearning presents a logical view of a SPL
defined for the configuration and creation of Android
applications. These applications were generated through the
consumption of services, and mainly by the collaboration
among the implemented modules. Three modules are
particularly important, since their interactions and
responsibilities characterize our SPL. Figure 4 highlights the
adopted architecture, relating it to the initial architecture
proposed by M-SPLearning.

Figure 4. Main modules implemented in the

architecture of M-SPLearning

681

The RestApp module is based on the Representational State
Transfer (REST), an architectural style that is characterized by
the use of Web technologies and protocols for the creation and
delivery of services [24]. This application accesses a remote
database in which all the information of this case study was
stored in addition to the features (similarities and variabilities)
specified in M-SPLearning and used for the generation of
customized products.

A visual interface for creating the products is provided by
the WebApp application. In this interface, it is possible to
configure the variabilities and request the generation of a
customized product. This module was implemented only using
client-side technologies. The idea was to demonstrate
interoperability in a SOA architecture, since RestApp module
also communicates with an Android module (described next).

Finally, the AndroidApp module was developed on the
Android platform using the Java programming language. This
application allows a service, available in RestApp module,
executes a custom “build” according to the variabilities
configured in WebApp application. So, it is possible to generate
customized products, which can be installed on Android
devices.

The generated product is adapted, in run time, to the
variabilities configured at time of its creation. Actually, each
application carries its own similarities and variabilities.

In our preliminary implementation, the compatibility
feature and its sub-feature interoperability were built aiming to
consumption of REST services. The security feature and all its
sub-features were also available, allowing secure and reliable
authentications. The interactivity feature, in turn, allowed the
integration with social networks (Facebook and Twitter).

Figure 5 illustrates two products generated by the
implementation of M-SPLearning. The first product was

generated with only the optional authentication feature; the
second product was configured in a similar way, but including
the interactivity feature.

Although not all the features defined by M-SPLearning
were implemented yet, it was possible to apply a set of concrete
software architectures that altogether characterize a functional
SPL, with some of the features presented in this paper.

THREATS TO VALIDITY

Regarding the preliminary validation of M-SPLearning,
some threats have been identified:

- Missing relevant requirements. The requirements catalog
adopted [11] may have omitted important requirements to the
m-learning applications domain. This threat was identified
since there is no guarantee that the derivation of the original
catalog [11] from the ISO [18] included all the features of the
target domain.

- Validation of domain analysis. In this phase a checklist was
proposed. In spite of being answered by experts, this checklist
may be not efficient in the case of the proposed questions be
not really effective for this validation.

- Similarities and variabilities. M-SPLearning is a proposal of
SPL, i.e., it has not been fully implemented yet. This can
represent a threat, since similarities and variabilities were still
not applied in real products, making difficult to evaluate the
proposed SPL in practice.

Despite the threats observed, it is important to highlight that
the derivation of a PLA from the requirements catalog and the
feature diagram, both of them in agreement with the ISO
quality standard [18], can significantly increase the quality of
M-SPLearning. Controlled and systematic experiments should
be conducted in the near future in order to formally validate
M-SPLearning and its main aspects.

Figure 3. The M-SPLearning Component Diagram

682

CONCLUSIONS AND FUTURE WORK

In this paper we describe M-SPLearning – a SPL for
m-learning applications. M-SPLearning was developed through
a process based on concepts and relevant practices of software
engineering. Its main contribution relies on providing benefits
with regard to the overall quality, domain comprehension, and
reduction of the time spent in the development and
maintenance of m-learning applications.

As future work, M-SPLearning must be fully implemented
and the generated products should be evaluated with regard to
quality and compliance. In this sense, we point out the need of
conducting a complete evaluation of M-SPLearning. This
evaluation has been planned and will require efforts to develop
a considerable set of m-learning applications. Quantitative
studies involving detailed experiments to measure the effort
required to use M-SPLearning should be conducted as well.

Finally, we also intend to investigate other adoption
models. For instance, the extractive model can be applied in
similar products to those generated by M-SPLearning aiming at
increasing the validity of similarities and variabilities specified.
The reactive model can be investigated as an alternative to the
evolution of the proposed SPL as well.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding
agencies (FAPESP, CNPq and CAPES) and CEPID-CeMEAI
(FAPESP 2013/07375-0) for their financial support. We also
thank Cast Informática S.A. for supporting this research.

REFERENCES

[1] D. Keegan. The incorporation of mobile learning into mainstream
education and training. Proccedings of m-Learning 2005 - 4th World
Conference on m-learning, 2005.

[2] S. Wexler, J. Brown, D. Metcalf, D. Rogers and E. Wagner. Mobile
learning: What it is, why it matters, and how to incorporate it into your
learning strategy. Guild Research, 2008.

[3] C. O'Malley, G. Vavoula, J. P. Glew, J. Taylor, M. Sharples and P.
Lefrere. Guidelines for learning/teaching/tutoring in a mobile
environment. Technical Report, MOBIlearn/UoN/UoB/OU, 2003.

[4] R. C. Durscki, M. M. Spinola, R. C. Burnett and S. S. Reinehr. Software
product lines: risks and benefits of your implanting. VI International
Symposium on Software Process Improvement, 2004.

[5] F. J. Linden, K. Schmid and E. Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[6] P. Clements. Being Proactive Pays Off. IEEE Software - Point / Counter
Point, p. 28–31, 2002.

[7] C. Krueger. Easing the Transition to Software Mass Customization. 4th
International Workshop on Software Product-Family Engineering,
Springer-Verlag, London, UK, p. 282–293, 2002.

[8] C. Krueger. Eliminating the Adoption Barrier. IEEE Software - Point /
Counter Point, p. 28–31, 2002.

[9] F. Ozdamli and N. Cavus. Basic elements and characteristics of mobile
learning. World Conference on Educational Technology Researches,
Volume 28, p. 937–94, 2011.

[10] A. Schepman, P. Rodway, C. Beattie and J. Lambert. An observational
study of undergraduate students’ adoption of (mobile) note-taking
software. Computers in Human Behavior, 28(2), 308-317, 2012.

[11] N. F. Duarte Filho and E. F. Barbosa. A Requirements Catalog for
Mobile Learning Environments. SAC’13 Proceedings of the 28th
Annual ACM Symposium on Applied Computing, 2013.

[12] N. Taylor, N. Medvidovic and E. M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, USA, 2009.

[13] D. L. Dalmon, L. O. Brandão, A. F. Anarosa and S. Isotani. A Domain
Engineering for Interactive Learning Modules. Journal of Research and
Practice in Information Technology. v. 44, p. 309–330, 2012.

[14] F. G. Marinho, R. M. C. Andrade, C. Werner, W. Viana, M. E. F. Maia,
L. S. Rocha, E. Teixeira, J. B. F. Filho, V. L. L. Dantas, F. Lima and S.
Aguiar. MobiLine: A Nested Software Product Line for the domain of
mobile and context-aware applications, Science of Computer
Programming, v. 78, p. 2381–2398, 2013.

[15] F. G. Marinho, A. L. Costa, F. F. P. Lima, J. B. B. Neto, J. B. F. Filho,
L. Rocha, V. L. L. Dantas, R. M. C. Andrade, E. Teixeira and C.
Werner. An architecture proposal for nested software product lines in the
domain of mobile and context-aware applications. Proceedings - 4th
Brazilian Symposium on Software Components, Architectures and
Reuse, SBCARS 2010, p. 51–60, 2010.

[16] G. G. Pascual, M. Pinto and L. Fuentes. Component and aspect-based
service product line for pervasive systems. CBSE'12 - Proceedings of the
15th ACM SIGSOFT Symposium on Component Based Software
Engineering, p. 115–124, 2012.

[17] R. Llamas, R. Reith and M. Shirer. Android and iOSCombine for 91.1%
of the Worldwide Smartphone OS Market in 4Q12 and 87.6% for the
Year. IDC - Press Release, 2013. Available in: http://goo.gl/WsBRBh.

[18] ISO/IEC JTC 1/SC 7. ISO/IEC 25010: Systems and software
engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality models, 2011.
Available in: http://goo.gl/tkpwPa.

[19] J. van Gurp, J. Bosch and M. Svahnberg. On the notion of Variability in
Software Product Lines. Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), 2001.

[20] J. Bosch. Software Product Lines: Organizational Alternatives.
International Conference on Software Engineering (ICSE'01), 2001.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Carnegie-
Mellon University Software Engineering Institute, Pittsburgh,
Pennsylvania, 1990.

[22] E. A. OliveiraJr, I. M. S.Gimenes and J. C. Maldonado. Systematic
Management of Variability in UML-based Software Product Lines. In: J.
UCS, vol. 16, num. 17, pp. 2374–2393, 2010.

[23] A. S. Nascimento, C. M. F. Rubira and J. Lee. An SPL approach for
adaptive fault tolerance in SOA. In Proceedings of the 15th International
Software Product Line Conference (SPLC '11), vol.2, art. 15 , pp. 1–8,
New York, 2011.

[24] R. T. Fielding. Architectural Styles and the Design of Network-Based
Software Architectures. Ph.D. Dissertation. University of California,
Irvine, 2000.

Figure 5. Products generated by the implementation of M-SPLearning

683

