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Towards the Grounding of Abstract Words: A Neural Network
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Abstract—In this paper, a model based on Artificial Neural
Networks (ANNs) extends the symbol grounding mechanism to
abstract words for cognitive robots. The aim of this work is to
obtain a semantic representation of abstract concepts through
the grounding in sensorimotor experiences for a humanoid
robotic platform. Simulation experiments have been developed
on a software environment for the iCub robot. Words that
express general actions with a sensorimotor component are first
taught to the simulated robot. During the training stage the
robot first learns to perform a set of basic action primitives
through the mechanism of direct grounding. Subsequently, the
grounding of action primitives, acquired via direct sensorimotor
experience, is transferred to higher-order words via linguistic
descriptions. The idea is that by combining words grounded
in sensorimotor experience the simulated robot can acquire
more abstract concepts. The experiments aim to teach the
robot the meaning of abstract words by making it experience
sensorimotor actions. The iCub humanoid robot will be used
for testing experiments on a real robotic architecture.

I. INTRODUCTION

OGNITIVE DEVELOPMENTAL ROBOTICS, taking

inspiration from developmental mechanisms studied in
children by psychologists and neuroscientists, focuses on
the development of cognitive processes in humanoid robots.
This is an innovative approach to robotics that presents
a strong interdisciplinary character and aims to overcome
current limitations in robot design. In most of the literatures
so far, cognitive processes have been mainly investigated
in the context of separate research areas. However, recent
studies have been shown that mental processes are deeply
influenced by the structure of the body and its interaction
with the environment (embodiment) [1][2][3]. These new
findings are now altering the interaction between different
disciplines ranging from neuroscience to robotics. For this
reason, humanoid robots are achieving more importance
in scientific research on cognitive science and they are
becoming a crucial tool in the study of human behaviour
[4].

Cognitive robots have been successfully used for learning
concrete concepts. In [5][6], it has been shown that cognitive
robots are capable of performing concrete actions and un-
derstanding each action’s name. Building intelligent systems
that can learn the meaning of abstract words is a challenging
task for cognitive developmental robotics. Abstract concepts
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represent everything that is not physically defined and/or spa-
tially constrained (e.g. mental states) and refer to things that
are intangible, which are perceived not through the senses
but by the mind (e.g. “truth”, “democracy”, “happiness”,
“justice”). This is why understanding the representation of
abstract words is a highly challenging and problematic issue
in cognitive and neural sciences, and in cognitive robotics.

In this paper a neural network model for the learning
of abstract words in cognitive robots is presented. The
aim of the robotics experiments is to find a semantic
representation of abstract words for a humanoid robotic
platform. Simulation experiments have been developed on
a software environment for the iCub robot [4]. Words like
“ACCEPT”, “REJECT”, “PICK”, that express general actions
with a sensorimotor component, are taught the robot. The
iCub first learns a set of basic action primitives through
the mechanism of direct grounding; then, the grounding
is transferred from basic symbols to new ones, the latter
obtained by logical combinations of the elementary words.
Specifically, at the beginning of the training the simu-
lated robot learns to perform a series of action primitives
(e.g. “MOVE_ARM_AWAY”, “MOVE_ARM_TOWARD?”,
“OPEN_HAND”, “CLOSE_HAND?”, etc.) and then, through
the process of symbol grounding transfer, by combining
action primitives, the robot acquires more abstract concepts
(e.g. “KEEP”, “GIVE”, “RECEIVE”). The goal of this study
is to prove that the grounding of abstract categories can be
obtained as a consequence of combining the grounding of
sensorimotor experiences.

The paper is organised as follows. Section II identifies
the scientific and technological issues that the paper intends
to address and solve; it also gives an overview of the most
relevant classical theories in this research field. A description
of the model from which the experiments take inspiration,
the neural network architecture implemented and the robotic
platform used for experiments, are described in Section
III. Section IV presents the experimental results and the
discussion. Conclusions of Section V close the paper.

II. THE SYMBOL GROUNDING PROBLEM

The symbol grounding problem, formulated by Harnard in
1990 [7], is related to the matters of “how words get their
meanings”, “how words are connected to the things they refer
to”. The problem, as Harnard said, is analogous to try to
learn Chinese from a Chinese/Chinese dictionary alone [7].
This problem affects all symbolic cognitivist models that deal
with language learning and evolution. Different approaches
have been proposed in order to solve the symbol grounding
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problem [8]; the two main modelling approaches to this
problem are Symbolic models and Connectionist models.

Symbolic theories assume that conceptual representations
are typically non perceptual [9]. According to symbolic
models, concepts are generated by abstract, arbitrary and
amodal symbols [10] and the mind is viewed as a symbol
system and cognition is symbol manipulation [7]. In these
models there are a set of arbitrary symbols that are combined
and manipulated on the basis of specific rules, neglecting of
the interaction with real world. One of the most prominent
symbolic computational model of language processing is the
Latent Semantic Analysis (LSA) proposed by Landauer and
Dumais [10]. This is a corpus-based statistical method for
representing the meaning of words. This method analyses the
relationships between a set of documents and the terms they
contain by producing a set of concepts related to documents
and terms. In order to show that computationalism is incor-
rect, Searle in 1980 formulated his celebrated Chinese Room
Argument [11]. According to the symbolic theory of mind,
if a computer could pass the Turing Test in Chinese, then
this would mean that the computer understands the meaning
of Chinese symbols in the same sense that an English-
speaking person understands the meaning of English symbols
[7]. Searle attempted to show that a symbol-processing
machine can never be properly described as “having a mind”
or “understanding”, regardless of how intelligently it may
behave.

The Connectionist approach based on artificial neural
networks, on the contrary of symbolic models, focuses on
the grounding of symbols into perception [12] and it models
mental phenomena as an emergent process of interconnected
networks [13]. Roughly speaking, in the connectionist model
learning the meaning of a word is a matter of establishing a
connection between a set of stimuli and a verbal response.
The meaning of words consists of associating verbal labels
with their experience at the time that the label is used.

According to the Connectionist Embodied models, based
on the combination of neural networks and robotics method-
ologies, cognition is emergent from the sensorimotor interac-
tion of an agent with the environment. This model allows us
to overcome the limitations of symbolic and connectionist
models in the development of language learning systems.
Some accounts of the classical embodied theories of abstract
words proposed in literature are Cognitive Simulation The-
ories [1], Memory Theories [2] and Cognitive Linguistics
Theories [3].

In his Perceptual Symbol Systems (PSS) theory [1], Barsa-
lou emphasises the role of simulation in cognition. According
to this theory, perceptual symbols are multimodal, sensori-
motor, proprioceptive, and introspective, that is they activate
different motor and sensorial information (e.g. vision, audi-
tion, touch, etc) tightly linked to the interaction with the
world [14]. Perceptual symbols are neural representations
located in sensory-motor areas in the brain of embodied
actions and they are activated during the experience with the
world. When the body interacts with the environment (e.g.

sitting down on a chair), the brain captures and stores in
memory neural activation patterns present during the expe-
rience with objects and entities (e.g. how a chair looks, the
action of sitting). These perceptual symbols then combine,
when they are semantically related, to form a simulator
(concept). Later, when knowledge is needed to represent
a category (e.g. chair), these neural activation patterns are
reactivated to simulate the concept [15]. In [16] Andrews
et al. propose a Bayesian model for representing words. In
this work, the authors identify two statistical data types from
which a semantic representation of words can be learned. In
particular, they claim that a semantic representation of words
can be derived from an optimal statistical combination of
experiential data and distributional data. Experiential data are
sensorimotor and they are collected through the interaction
of the body with the physical world; on the contrary, distri-
butional data describe the statistical distribution of words in
language. In this framework, experiential and distributional
data are both nontrivial source of semantic information for
obtaining a semantic representation of words.

In the Memory Theories of grounded cognition, situated
action plays an important role. According to embodiment,
cognition is not only grounded in our body, but it is also
“situated” (role of the body and of the context in repre-
sentations). As proposed by Glenberg [2] the meaning of
a situation depends on a set of stimuli available for acting
on objects (affordances) tuned on the individuals personal
experience and according to the goal to be pursued. For
example, if the goal of a human beings is to change a light
bulb, the meaning of the situation will arise from affordances
related to a light bulb (e.g. holding it in the hand) “meshed”
with the affordances of a chair (e.g. it supports for reaching
the bulb) related to the goal to be pursued.

Within the framework of Cognitive Linguistics Theories
[17], Lakoff and Johnson [3] argue that abstract concepts are
grounded metaphorically in embodied and situated knowl-
edge. According to their theory, human beings acquire an
extensive knowledge about their bodies (e.g. eating) and
situations (e.g. verticality), by interacting with the environ-
ment. Abstract concepts can be obtained from this knowledge
metaphorically. For example, /ove can be understood as
eating (e.g “being consumed by a lover”), and affective
experience can be understood as verticality (e.g. “happy is
up, sad is down”) [15].

Connectionist neural network models have been demon-
strated to be good candidates to deal with the symbol
grounding problem. In [18] authors investigated the trans-
fer of grounding from names of geometric shapes (e.g.,
circles, ellipses, squares and rectangles) to the superposed
categories (“symmetric” and “asymmetric”). This model was
then expanded in [19] to deal with larger category sets, and
to look at different aspects of the transfer of grounding.
In [20] connectionist simulations of the grounding transfer
mechanism were performed. The simulation results demon-
strated that grounding is transferred from symbols denoting
object properties to new ones denoting the object as a whole.



More recently, neural network models have been successfully
used for the acquisition of language in cognitive robots. In
[6] a neural network controller for the learning of actions
and their corresponding name has been presented. In the
proposed system, a simulated agent is controlled by a three-
layer feedforward neural network that has vision, motor and
language inputs for linguistic comprehension and production.
The use of a dual-route neural architecture permits the
simultaneous simulation of language production (from vision
to language) and language understanding (from language to
vision/action) abilities. In the experiments that are going to
be presented a connectionist and embodied approach for the
learning of abstract words will be adopted.

III. MODEL DESCRIPTION
A. Action and Language Repertoires and Training procedure

According to the connectionist and embodied model, lin-
guistic abilities are developed through the direct interaction
between cognitive agents and the physical world they interact
with. The aim of the experiments reported in this paper is to
find a mechanism for the learning of abstract words through
sensorimotor experiences, using the humanoid robotic plat-
form iCub [23]. Experiments take inspiration from the model
proposed by Cangelosi and Riga [5] in which two simulated
robots, teacher and learner, were trained to learn a set of
basic action primitives. In the proposed model, the training
of the learner requires two mechanisms. The first is the direct
grounding of basic words, during which the agent, by ob-
serving the teacher, learns a set of basic action primitives and
their corresponding name via direct sensorimotor experience.
The second mechanism is the grounding transfer process by
which the grounding of basic words is transferred to higher-
order words via linguistic description [21]. In particular, the
training of the robot consists of three incremental stages:

o (1) Basic Grounding (BG)

o (ii) Higher-order Grounding 1 (HG1)

o (iii) Higher-order Grounding 2 (HG2)

During the BG stage the robot learns to perform,
by imitation, basic action primitives and their
corresponding  names (e.g. “CLOSE_LEFT_ARM”,
“CLOSE_RIGHT_ARM”, “MOVE_FORWARD?”). In
the HG1 stage the robot, via linguistic description, acquires
new words combining basic action primitives (e.g. “GRAB”
[is] “CLOSE_LEFT_ARM” [and] “CLOSE_RIGHT_ARM”).
During the HG2 stage the robot learns high level words
through the combination of action primitives and higher-
order action words (e.g. “CARRY” [is] “GRAB” [and]
“MOVE_FORWARD?”).

In the experiments that are going to be presented, the
robot will first learn to perform a series of action primitives
(e.g. “PUSH”, “PULL”, “GRASP”, “RELEASE”) through
the mechanism of direct grounding. Subsequently, by cor-
relating higher-order action words (e.g. “KEEP”, “GIVE”,
“RECEIVE”) with basic action primitives, the robot will
acquire more abstract concepts (e.g. “PICK”, “ACCEPT”,
“REJECT”). A set of objects, whose visual properties can
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Fig. 1. Architecture of association network for the learning of verbal labels
associated to action primitives

be sensed, are being used as training set of the experiment.
Each object of the training set is labeled to a certain degree of
likeness, according to its characteristics. The idea is that, the
robot by interacting with the objects in his environment can
acquire action primitives such as “GRASP”, “RELEASE”,
etc. After, by combining these elementary words the robot
is capable of learning new words like “KEEP”, “GIVE”,
“RECEIVE”. For example, when a new object is presented
to the robot, it evaluates its properties (e.g. weight, shape,
colour, etc) and makes a decision to “ACCEPT” it or not.
At the end of the experiment, the robot learns how to
behave through interaction with the environment and is able
to categorise abstract symbols by experiencing sensorimotor
actions.

B. Neural Network Architecture

We propose an Artificial Neural Network (ANN) model
that extends the symbol grounding mechanism to abstract
words for the iCub robot. As discussed above, embodied
ANN:Ss are particularly suitable for modelling the relationship
between language (perceptual symbolic input) and action
(sensorimotor output e.g. the concept/action of pushing,
pulling, grasping) [21][22]. A neural network controller has
been implemented for the learning of verbal labels associated
to action primitives (Fig. 1).

The robot’s neural network, as shown in Fig. 1, is a
3-layers feedforward NN, fully connected, with a sigmoid
activation function (1)

1

f($)=m

with unity slope (A = 1).

The network has 14 input units that encode the name
of all the actions that can be taught the robot (localist
encoding of words). The hidden units consist of 8 neurons
that are fully connected with both input and output units. The
output of the network selects which action primitive needs
to be activated in order to obtain a specific behaviour. When
one of the input units is activated, the network selects as
output a combination of action primitives to be executed.

M
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The iCub: real robotic architecture (a) and software simulator (b)

Fig. 2.

The output of the network is the input for the iCub module
that implements the execution of action primitives.

C. The iCub Robotic Platform

The iCub humanoid robot, shown in Fig. 2(a), has been
used as robotic platform for the experiments performed.
The iCub, developed at the end of the RobotCub European
project, is an open-source robotic platform for research in
embodied cognition [23]. The robot is 104 cm tall and his
overall weight is 22 kg; the dimensions of it are similar to
that of a three and half year old child.

The iCub has 53 Degrees Of Freedom (DOF) allocated
as follow: 6 DOF for the head, 3 DOF for the torso, 12
DOF for the legs and 32 DOF for the upper limbs. In
particular, each upper limb has 16 DOF, 7 of which are
in the arm and 9 in the hand (3 for the thumb, 2 for the
index, 2 for the middle finger, 1 for the coupled ring and
little finger, 1 for the adduction/abduction). The iCub is also
equipped with different types of sensors; in particular, it has
digital cameras and microphones from which it can see and
hear, gyroscopes and accelerometers for the movement and
force/torque sensors. A distributed sensorized skin is under
development.

The iCub Simulator (Fig. 2(b)) has been used as a tool for
testing algorithms before to use the real robotic architecture
[24][25]; the simulator has been developed by using open
source libraries and it reproduces the physics and the dynam-
ics of the real robot. The software simulator is a replication
of the first iCub prototype, and it was developed collecting
data directly form the robot design specifications.

IV. SIMULATION RESULTS AND DISCUSSION

In order to verify the validity of the model proposed for
the learning of the meaning of abstract words in the iCub
humanoid robot, simulations experiments have been per-
formed. The robot’s ANN controller was developed in C++
programming language and linked with the iCub simulator.
The execution of basic actions was implemented by using the
Action Primitives library from the iCub software repository;

this library provides a set of action primitives that can be
easily combined in order to obtain more complex behaviour.
In our model the grounding of words is obtained by linking
verbal labels to sensorimotor experience.

A. Neural Network Training

For the training of the neural network model a supervised
learning algorithm was chosen. In particular, the network
is trained by using the error backpropagation algorithm to
teach the neural controller to perform a given task through
the optimization of the error with respect to the weights.
The neural controller has been trained with the following
configuration: weights of the network are initialized to a
random value in the range [+0.5] and the backpropagation
algorithm is applied for 180000 iterations, with a learning
rate (a) equals to 0.2 and momentum (/) 0.9. The learning
rate and momentum, in general, can assume values between
[0,1]; in our simulation, a small value of « slows the
convergence rate of the algorithm but helps to ensure that the
global minimum is not missed. A small learning rate value
has been coupled with a larger momentum to control the
convergence rate of the algorithm; a big value of 3 increases
convergence speed.

As described in the previous section, the proposed algo-
rithm for the association of verbal labels to actions primitives
consists of three incremental steps: (i) the Basic Grounding,
(i1) the Higher-order Grounding 1 and (iii) the Higher-order
Grounding 2.

During the BG training stage, the robot learns the names
associated to the eight action primitives through direct sen-
sorimotor experience. The names of action primitives, that
are the input of the neural network, are “PUSH”, “PULL”,
“GRASP”, “RELEASE”, “STOP”, “SMILE”, “FROWN?”,
“NEUTRAL”. The output of the network in this stage is
computed by applying the backpropagation algorithm online,
to calculate the weights correction from the input. In the
post-training test, the results of the simulations show that
the network performs correctly the mapping between inputs
and outputs. The BG learning stage runs for 30000 iterations.
As shown in Fig. 3, after 5000 runs, the value of the error
is already smaller then 0.02.

The HG1 and HG2 training phases implement the ground-
ing transfer process. During these stages the grounding of
basic words, acquired via direct sensorimotor experience, is
transferred to higher-order words via linguistic description
that, in the neural controller implementation, is semplified
as an input pattern to the network. The grounding transfer
consists of multiple steps, depending on the number of action
primitives that are combined to obtain a more complex
behaviour. For example, in order to transfer the grounding
from the basic actions “GRASP” and “STOP” to the higher-
order word “KEEP” (“KEEP” [is] “GRASP” [and] “STOP”)
two steps are required, one for each basic action primitive
involved. Each of this steps consist of two phases (Fig. 4):

« the network receives as input the action primitives words

contained in the linguistic description of the higher-
order word and computes the corresponding output
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without applying backpropagation algorithm (feedfor-
ward phase without learning).

o the network receives as input the name of the higher-
order word and as target the output of the network cal-
culated during the feedforward phase (backpropagation
learning).

This procedure is adopted during both HG1 and HG2
training stages. In the HG1 stage the robot learns three new
higher-order action words (“GIVE”, “RECEIVE”, “KEEP”)
by combining only basic action primitives; for example, the
linguistic description for the higher-order word “KEEP” is
“KEEP” [is] “GRASP” [and] “STOP”. In order to obtain
the transfer of grounding from basic actions to higher-
order words, the network calculates separately the output
corresponding to the words contained in the description
(“GRASP”, “STOP”) and stores it. Then, the network re-
ceives as input the higher-order word “KEEP” and as target
the outputs previously stored.

The HGI training stage runs for 30000 iterations and as
shown in Fig. 5, after 5000 runs, the value of the error is
smaller then 0.02.

The HG2 training stage runs for 30000 iterations as well
(Fig. 6) and the value of the error is smaller then 0.02 after
5000 runs.
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Fig. 4. Representation of the procedure that implements the grounding
transfer mechanism
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During the HG2 stage, the robot learns three higher-order
behaviour (“ACCEPT”, “REJECT”, “PICK”) consisting of
the combination of basic action primitives and higher-order
action words (e.g. “ACCEPT” [is] “KEEP” [and] “SMILE”
[and] “STOP”).

At the end of the training of the neural network all
the actions primitives, higher-order words and higher-order
behaviour were successfully learned.

Table I contains the simulation parameters used for train-
ing the feedforward NN and the Root Mean Square Error
(RMSE) calculated at the end of each training stage.

TABLE I
SIMULATION PARAMETERS FOR THE TRAINING OF THE NETWORK AND
RMSE
| Training Stage | No. Iterations | Larn Rate | Momentum | RMSE |
BG 30000 0.2 0.9 0.005840
HG1 30000 0.2 0.9 0.005620
HG2 30000 0.2 0.9 0.005042

B. Robot Simulation

For teaching the robot to perform actions associated to
basic words, the Action Primitives library of the iCub soft-
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Fig. 6. Root Mean Square Error after the HG2 training stage



ware repository has been used. The library, that relies on the
YARP Cartesian Interface [26], implements abstraction layers
that allows the execution of higher level actions and more
sophisticated tasks. The Action Primitives library provides
a set of functions to perform basic action primitives and to
combine them in order to obtain more complex behaviours.
The functions contained in the library can move the arm of
the robot to a specific position (e.g. MOVE_ARM_AWAY,
MOVE_ARM_TOWARD), execute a predefined fingers se-
quence (OPEN_HAND, CLOSE _HAND) and wait for a
specific time interval (STOP). For executing an action it
is necessary to push the corresponding request item in the
actions queue by using the function pushAction (params); by
using this function it is possible to insert in the action queue
a sequence of simple actions to be executed.

A software module that relies on YARP and Action Prim-
itives libraries has been developed in order to execute action
primitives associated to verbal labels. Fig. 7 shows the exe-
cution of the basic action primitives “MOVE_ARM_AWAY”
(Fig. 7(b)), “CLOSE_HAND” (Fig. 7(c)), “OPEN_HAND”
(Fig. 7(d)) and “MOVE_ARM_TOWARD?” (Fig. 7(e)).

The Action Primitives library relies on the YARP Cartesian
Interface that allows the user to control upper limbs of the
robot by defining a specific pose (position and orientation in
axis-angle representation) for the end-effector [27]. In order
to determine the joints configuration to move the robot arms
to a desired position, a nonlinear optimization technique is
used. The inverse kinematic is solved by using the IpOpt
software package [28].

Through YARP, that is an open source framework for
decoupling devices from software architecture, it is possible
to exchange information between the user code and the sim-
ulated robot with its environment. The iCub Simulator and

Fig. 7. Execution of basic action primitives on the iCub: initial position
(a), “MOVE_ARM_AWAY” (b), “CLOSE_HAND” (c), “OPEN_HAND” (d)
and “MOVE_ARM_TOWARD” (¢)
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Fig. 8. Software architecture of the proposed model for the learning of
words: Neural Network controller, YARP interface, iCub Simulator and real
robotic platform

the real robot have the same software interface. Therefore,
the adaptation of the simulated experiments to the physical
robot (Fig. 8) will not require any particular modification of
the code linking the neural network with the robot (though
extra work is required to handle with visual input stream and
motor performance).

C. Discussion

Building intelligent systems that can learn the meaning
of abstract words is a challenging task for cognitive devel-
opmental robotics. In this paper an embodied neural net-
work model that extends the symbol grounding mechanism
to abstract words in cognitive agents has been presented.
Simulation results show that the grounding of words that ex-
press general actions with a sensorimotor component can be
obtained as a consequence of sensorimotor experiences; by
combining words grounded in direct sensorimotor experience
the simulated robot can acquire more abstract words.

The results of simulations demonstrate that new concepts
can be learned through the mechanism of the grounding
transfer; higher-order behaviours can be indirectly-grounded
in basic action primitives directly-grounded in sensorimotor
experience. In the field of research on cognitive robotics, the
results achieved are very important because the acquisition
of new concepts can be obtained as a combination of the
previously grounded words. Through the grounding transfer
mechanism a cognitive system can autonomously get more
knowledge about the environment it interact with. The pre-
sented model can be scaling up in order to acquire more
complex behaviours and linguistic abilities.

In the current work, the Higher-order Grounding mecha-
nism, that implements the transfer of grounding, takes inspi-
ration from the PSS theory proposed by Barsalou [1]. During
the HG learning stages, the robot learns new higher-order
words (e.g. “KEEP”) by reactivating the internal “mental
simulations” of the basic words contained in the linguistic
description (“GRASP”, “STOP”) previously recorded. The
proposed model can be extended to test other embodied



cognition theories of language learning as for example,
the Action-sentence Compatibility Effect [29]. This model
provides a useful tool for investigating and testing new
hypotheses on embodied theory of language learning.

V. CONCLUSIONS

In the framework of cognitive robotics, the development
of linguistic abilities is very important in order to achieve
an effective interaction between human beings and cognitive
autonomous agents. The current model can be extended in or-
der to include in the robot both language comprehension and
production capabilities; it can be useful for human-robot in-
teraction and for easily programming the robot, for instance,
through linguistic description provided by users through
natural language. For human beings language skills are
one of the most powerful tools for understanding situations
and communicating with other agents in the environment.
Therefore, the learning of words requires mental capabilities
that involve different cognitive capacities working together
[30]. Two of the most important approaches to language
acquisition proposed in literature are Constructivist theories
and Nativist theories [31]; according to the Constructivist
theory, children gradually “construct” their grammar knowl-
edge through experience [32] while for Nativist theory some
aspects of the language are innate [33][34]. In the framework
of the development of linguistic abilities, another distinction
can be done between Domain Specific theories and Domain
General theories; in the first case, cognitive processes are
specialized and confined to handling just one specific type of
information while according to the Domain General theories,
cognitive processes are applicable to information in many
different knowledge domain [31].

In this paper we focused on the learning of abstract
language; abstract terms, on the contrary of concrete words,
that refer to objects or events that can be perceived by
senses, refer to things that are not tangible and that have
no physical referents in the world. Then, while for concrete
words is possible to attach labels to concepts formed on the
basis of sensorimotor experience, is not possible to do the
same for abstract words [35]; furthermore, abstract terms like
love change meaning with time and circumstances, while
concrete terms like book have a stable meaning. For all
these reasons, obtaining a semantic representation of abstract
words is changeling. In this study we focused on the learning
of semi-abstract words that have motoric features; these
kind of words refer to the way in which an object can be
used or describe its motion (e.g. grasp, receive, etc.). In
particular, in the experiments described above we taught the
robot the meaning of words that express general actions and
characterised by a sensorimotor component; this allowed us
to build the meaning of words through direct sensorimotor
experience. As an extension of the current work, the idea
is to focus our attention to words with a major level of
abstractness.

Furthermore, we would like to extend the presented model
in order to include in the Neural Network controller the
encoding of motor outputs. In the current work the NN

controller receives linguistic inputs and gives as output a
combination of the name of action primitives to be executed.
We would like to implements a Neural Network model that
controls both motor and linguistic behaviour of the robot.
The idea is to have a neural controller that receives the
linguistic input and calculates in output the motor response,
that correspond to the force that should be applied to the
robot’s joints in order to perform a specific action. In this
way the robot is able to simultaneously learn how to perform
actions and their corresponding names; when a linguistic
input is given to the robot, the neural controller activates
the corresponding input node and calculates as output the
force to be applied to the robot’s joints.
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