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METHODOLOGY ARTICLE Open Access

Towards the identification of protein
complexes and functional modules by
integrating PPI network and gene expression
data
Min Li1,2*, Xuehong Wu1, Jianxin Wang1* and Yi Pan1,3*

Abstract

Background: Identification of protein complexes and functional modules from protein-protein interaction (PPI)

networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the

past few years, many computational methods have been proposed. However, most of them considered the PPI

networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can

distinguish between protein complexes and functional modules.

Results: In this paper, a new framework is proposed to distinguish between protein complexes and functional

modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced

subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD

was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to

functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified

complexes. The experimental results show that the combination of temporal gene expression data with PPI data

contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals

that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we

evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The

validation shows that the identified functional modules are statistically significant in terms of “Biological Process”.

More importantly, the relationship between protein complexes and functional modules are studied.

Conclusions: The proposed framework based on the integration of PPI data and gene expression data makes it

possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new

framework and algorithms can distinguish between protein complexes and functional modules. Our findings suggest

that functional modules are closely related to protein complexes and a functional module may consist of one or

multiple protein complexes. The program is available at http://netlab.csu.edu.cn/bioinfomatics/limin/DFM-CIN/index.

html.
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Background
Recent advances in biotechnology have resulted in a

large amounts of protein-protein interaction (PPI) data.

Modeling and clustering PPI networks with simple graphs

makes it possible for us to understand the basic compo-

nents and organization of cell machinery from the net-

work level[1]. One of the most important challenges in the

post-genomic era is to analyze the complex networks of

PPIs and detect protein complexes or functional modules

from them. Over the past decade, many computational

methods have been proposed for clustering PPI networks,

such as G-N [2],MCODE[3], RNSC[4], LCMA[5], DPClus

[6], MoNet [7], IPCA [8], COACH [9], and SPICi [10].

While significant progress has been made in computa-

tional methods, there are two major challenges in clus-

tering PPI networks. One of the challenges is that the

conventional clustering methods generally considered the

PPI network as a static graph and overlooked the dynam-

ics inherent within these networks. This is mainly because

that the widely used large-scale technologies for deter-

mining PPIs, such as yeast two-hybrid and TAP-MS, do

not provide spatial, temporal or contextual information

for the predicted PPIs [11]. In fact, a PPI network is not

a static but a dynamic entity, so whether or not a pro-

tein is expressed is intrinsically controlled by different

regulatory mechanisms through time and space [12,13].

Recently, studies on network dynamics have begun to

attract researchers’ attentions[11,14]. Of course, biologists

have studied dynamics in biological systems for many

years. However, their efforts generally focused on individ-

ual genes or proteins as well as specific interactions in

limited contexts. With the accumulation of PPI and tran-

scriptome data, the integration of gene expression profiles

with PPIs provides new way of uncovering the dynamics

of PPI networks [15,16].

Jansen et al. [17] first investigated the relationship of

PPI interactions with mRNA expression levels and scored

expression activity in complexes. Tornow and Mewes[18]

used the superparamagnetic approach to evaluate the

multi-data correlations and constructed a graph of co-

expressed genes for detecting functional modules. Han et

al. [12] analyzed the PPI network of yeast, and they uncov-

ered two types of hub proteins: “party” hubs and “date”

hubs. Recently, Taylor et al.[19] also proposed another two

types of hub proteins: intermodular hubs and intramod-

ular hubs, and they investigated the modularity of human

PPI networks in two breast cancer patient groups. Xue

et al. [20] analyzed the dynamic modular structure of the

human PPI network in their aging study. Lu et al. [21]

proposed a simple hierarchical clustering algorithm for

analyzing the dynamic organization of biological net-

works by integrating the yeast PPI interaction data, the

global subcellular localization data and the integrated

expression profile data. Cline et al. [22] described how to

integrate biological networks and gene expression data

by using Cytoscape. Maraziotis et al. [23] presented a

method to detect dense subnetworks in a weighted graph

that was constructed by using the gene expression infor-

mation. Cho et al. [24] also introduced an algorithm based

on informative protein selection from a weighted graph

where the weight was calculated by using co-expressional

profiles. More recently, Luo et al. [25] explored special

kinds of protein complexes by integrating transcription

regulation data, gene expression data and PPI data at

the systems biology level. Hegde et al. [26] proposed an

approach for studying an organism at the systems level by

integrating genome-wide functional linkages and the gene

expression data. De Lichtenberg U et al.[27] combined

the subcellular localization data, gene expression data

and PPI network to extract a temporal protein interaction

network of the yeast mitotic cell cycle. Komurov and

White[28] used gene expression data to classify dynamic

proteins which are expressed periodically and static pro-

teins which are expressed all the time, and furthermore

identified dynamic modules and static modules on a static

PPI network. Similar techniques were also applied to the

identification of disease-related genes or modules [19,29].

All these works have made significant progress in the inte-

gration of co-expression information and PPI networks.

However, only a few of them focused on the identification

of protein complexes or functional modules. Some of

them only used gene expression information to construct

weighted PPI network which was still static.

Another challenge in clustering PPI networks is how

to distinguish between protein complexes and functional

modules. Up to now, little progress has been made on this

point. Most clustering methods based on PPI networks

detected both protein complexes and functional modules

without distinguishing between them because they dis-

regard interaction dynamics. How closely are functional

modules related to protein complexes? What are the dif-

ferences between them? Spirin and Mirny have argued

their differences from the concepts that protein com-

plexes are groups of proteins interacting with each other

at the same time, and functional modules, by contrast,

are groups of proteins participating in a particular cel-

lular process while binding to each other at a different

times[30]. Though Spirin and Mirny believed that it was

very important to distinguish between protein complexes

and functional modules, they did not distinguish between

the two because that they lacked temporal and spatial

information on the analyzed PPIs. Recently, Lu et al[21]

proposed to make this distinction by integrating PPI data

with the added subcellular localization and expression

profile data. They investigated the relationship between

protein complexes and functional modules and revealed

that a functional module generally consists of proteins

that participate in a common biological process, and that
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protein complexes form the intersections of co-localized

and co-expressed protein groups that are usually included

in the functional modules[21].

In this paper, we will not go as far as what the conven-

tional clustering algorithms have focused on but rather

try to propose a framework to detect and distinguish

between protein complexes and functional modules. In

other words, we will not only explore protein complexes

and functional modules but also study their relationships.

Considering the fact that proteins in a complex interact

with each other at the same time, we constructed a

serial of time-sequenced subnetworks by integrating gene

expression data into PPI data. These time-sequenced sub-

networks show dynamic changes in the original network.

Thus, we call these time-sequenced subnetworks together

as a dynamic PPI network. An improved algorithm

TSN-PCD, developed from our previous algorithm HC-

PIN[31], is proposed to identify protein complexes from

the dynamic PPI network. Applying TSN-PCD to a

dynamic PPI network of S.cerevisiae, we found that many

proteins were found in a multitude of complexes rather

than a single complex. Here, we would like to ask whether

two protein complexes interact with each other through

their common proteins. Moreover, what is the underly-

ing machine between protein complexes and functional

modules. To answer these questions, we constructed a

complex-complex interaction network and proposed an

algorithm, DFM-CIN, for detecting functional modules

from it.

In the case of identifying protein complexes, we found

more known protein complexes are recalled after the com-

bination of temporal gene expression data with PPI data.

We also found not only the combination of temporal

gene expression data with PPI data but also the algorithm

TSN-PCD contribute to detecting protein complexes

more precisely. A quantitative comparison based on

f -measure reveals that our algorithm TSN-PCD outper-

forms six other previously proposed protein complex dis-

covery algorithms: MCL[32,33]), MCODE[3], CPM[34],

COACH[9], SPICI[10], and HC-PIN[31]. Furthermore,

we evaluated the identified functional modules by using

“Biological Process” annotated in GO (Gene Ontology)

and found most of them participated in a special bio-

logical process. Additionally, we even found the relation-

ship between protein complexes and functional modules.

Our findings suggest that functional modules are closely

related to protein complexes and a functional module may

consist of one or multiple protein complexes.

Methods
A framework for detecting protein complex and

functional module

When clustering PPI networks, people seldom distin-

guish between protein complex and function modules.

However, they are not the same thing. The main differ-

ence between them is that protein complexes occur at the

same time, functional modules, generally function at dif-

ferent times. Spirin and Mirny [30] have discussed the

differences between protein complex and functional mod-

ule from biological view. According to Spirin and Mirny’s

perspective, we defined protein complex and function

module as follows: (1)Protein complexes are groups of

proteins that interact with each other at the same time

and place, forming single multi-molecular machine, such

as AP-2 adaptor complex, DNA polymerase epsilon

complex, Dig1p/St12p/Dig2p complex, SAS complex.

(2)Functional modules, in contrast, consist of proteins

that participate in a particular cellular process while bind-

ing each other at a different time and place, such as the

CDK/cyclin module responsible for cell-cycle progres-

sion, the yeast pheromone response pathway,MAP signal-

ing cascades. In this paper, we can not only predict protein

complexes and functional modules but also distinguish

them.

Previous studies [11,15,16,21,26] have shown that by

integrating co-expression information into PPI networks,

one can acquire the dynamic features among networks.

The first question, perhaps, is how to construct a dynamic

PPI network by using these data. Here, we construct a

dynamic PPI network by splitting the original static net-

work into a serial of time-sequenced subnetworks (TSNs)

as we have done in [16]. When generating TSNs, a fixed

threshold value is used to filter gene products at each

time point. Only the transcripts whose expression levels

are greater than a fixed threshold value are remained. By

combined the filtered transcripts and PPI network data,

the TSNs are created. In each subnetwork TSN, all the

interactions are activated at the same time. Then, a clus-

tering method can be applied on each subnetwork TSN to

explore protein complexes. In this case, proteins in every

identified protein complex will interact with each other

at the same time. Here, we will highlight a new frame-

work for detecting and distinguishing between protein

complexes and functional modules, as shown in Figure 1.

In Figure 1, each previous clustering algorithm can be

used as a candidate of clustering method 1 for identifying

protein complexes.

Preliminary observation of protein complexes and func-

tional modules has indicated that while protein com-

plexes occur at the same time, functional modules,

generally function at different times. The former are usu-

ally included in the latter [21,30]). According to the close

relationship between protein complexes and functional

modules, as well as the obvious difference between them,

we propose to discover functional modules based on the

identified protein complexes. A complex-complex inter-

action network is constructed based on analyzing the

relationship among the identified protein complexes. In
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Figure 1 A framework for detecting protein complex and

functional modules based on the combination of a PPI network

and time-sequenced gene expressions. Clustering method 1 is

used for predicting protein complexes while clustering method 2 is

used for mining functional modules according to the identified

complexes. In this framework, each previous clustering algorithm can

be used as a candidate of clustering method 1 for identifying protein

complexes as well as clustering method 2 for identifying functional

modules.

the complex-complex interaction network, each vertex

represents a protein complex and each edge represents the

relationship of two protein complexes. Then, a clustering

algorithm can be applied on the complex-complex inter-

action network to explore functional modules. Different

clustering algorithms can also be used here. To distinguish

it from the protein complex discovery algorithm, we mark

it as clustering method 2 in Figure 1. Next, we will discuss

two specific algorithms for identifying protein complexes

and functional modules, respectively.

TSN-PCD: Time-sequenced network-based protein

complex discovery algorithm

Based on the combination of PPI network and time-

sequenced gene expressions, a serial of time-sequenced

subnetworks (TSNs) is constructed. The TSNs-based pro-

tein complex discovery algorithm is named as TSN-PCD.

The description of algorithm TSN-PCD is shown in

Figure 2.

Given k gene expression data at k different times, k time-

sequenced subnetworks (TSNs) are generated. These k

time-sequenced subnetworks form a dynamic process of

Figure 2 The description of algorithm TSN-PCD. One of the inputs

for TSN-PCD is the subnetworks which are generated from the

combination of the PPI network and gene expression data. HC-PIN is

used here to predict protein complexes from the subnetworks with

two parameter λ and s. The output of TSN-PCD is the predicted

protein complexes.

the PPI network. Each TSN is a subnetwork of the origi-

nal PPI network. All interactions among proteins in each

TSN happen at the same time. Then, a clustering can be

performed on each TSN to produce protein complexes.

Here, the same strategies used in HC-PIN[31] are adopted

to generate protein complexes in each TSN. For a TSNi,

the vertices in it are initialized as singleton clusters at first.

Then, the clustering value of each edge in it is calculated.

The clustering value of an edge (u, v) is defined as:

ECV (u, v) =

∑

k∈Iu,v
w(u, k) ·

∑

k∈Iu,v
w(v, k)

∑

s∈Nu
w(u, s) ·

∑

t∈Nv
w(v, t)

(1)

where Nu denotes the set of neighbors of vertex u, Nv

denotes the set of neighbors of vertex v, and Iu,v denotes

the set of common vertices in Nu and Nv (i.e. Iu,v =

Nu ∩ Nv).

All the edges in TSNi are queued into Sq in a non-

increasing order in terms of their clustering values. Then,
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different clusters are constantly reassembled into larger

clusters by gradually removing edges from the queue. The

basic idea is that the higher clustering value the edge has,

the more likely its two vertices are inside the same protein

complex. Finally, the clusters which consist of no less than

s proteins are produced as protein complexes.

In this step, the previous clustering algorithms used

in static PPI networks can also be used here. As our

proposed algorithm HC-PIN outweighs other clustering

algorithms in most cases. We thus use it to predict protein

complexes with the recommended parameter λ = 1.0.

A protein complex may exist in only one TSN or in

multiple TSNs. Let T = {t1, t2, · · · , tk} be a time period.

Then, the frequency fT (Cj) of a protein complex Cj is

defined as the number of TSNs in which protein com-

plex Cj exists. Figure 3 shows the frequencies of protein

complexes detected in these TSNs. There are 865 differ-

ent protein complexes detected, in which ∼ 60% protein

complexes are explored only in one TSN and ∼ 24% pro-

tein complexes are discovered in more than three TSNs.

The frequency of each identified protein complex and the

information of subnetworks in which the protein complex

is included are available from Additional file 1.

DFM-CIN: detecting functional modules from the

complex-complex interaction network

It is well known that functional modules are closely related

to protein complexes. In previous studies, most clustering

algorithms do not distinguish between them. However,

their biological meanings are very different. In one the

processes occur at the same time, while in the other,

Figure 3 The distribution of frequencies of protein complexes

detected in TSNs. There are 865 different protein complexes

detected by TSN-PCD, in which ∼ 60% protein complexes are

explored only in one TSN and ∼ 24% protein complexes are

discovered in more than three TSNs as shown in a sub-figure with

one TSN in the top right corner of Figure 3.

they occur at different times. According to the close

relationship and different biological meaning between

functional modules and protein complexes, we propose a

new algorithm DFM-CIN for detecting functional mod-

ules based on the complex-complex interaction network.

In the complex-complex interaction network, each vertex

represents a protein complex and each edge represents

the relationship of two protein complexes. The descrip-

tion of algorithm DFM-CIN is shown in Figure 4. To

describe more simply, some related definitions are given

as following.

For a protein complex Ci, let TCi be the set of times that

protein complex Ci functions in the corresponding TSNs.

If two protein complexes function at least in one same

time (ie., that, TCi ∩ TCj �= ∅), we say that these two pro-

tein complexes are synchronous. If two protein complexes

function in two continuous times, (ie., that,TCi∇TCj �= ∅),

we say that these two protein complexes are adjacent to

each other.

Let graph G(V ,E) denote the complex-complex inter-

action network (abbreviated to CIN). In graph G, a ver-

tex represents a protein complex, an edge represents a

Figure 4 The description of algorithm DFM-CIN. The inputs of

DFM-CIN are the complexes identified by TSN-PCD, and three

parameters th, Smin, Smax . The parameter th is used as a threshold of

the similarity between two protein complexes, the parameters Smin

and Smax in algorithm DFM-CIN are used to control the size of the

identified functional modules, which are developed to make users

get functional modules of suitable size, depending on their own

requirements. The output of DFM-CIN is the final identified functional

modules.
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connection between two protein complexes, and the edge

weight represents how similar two protein complexes are.

There is a one-to-one correspondence between a protein

complex Ci and a vertex vi of G.

For a weighted graph G, the weighted degree of a vertex

v is donated as dw(v) , which is the sum of weights of the

edges connecting v.

dw(v) =
∑

u∈Nv;(u,v)∈E

w(u, v). (2)

For a vertex v in a subgraph K ⊆ G, its weighted in-

degree, denoted as dinw (K , v), is the sum of the weights of

edges connecting vertex v to other vertices belonging to K,

and its weighted out-degree, denoted as doutw (K , v), is the

sum of the weights of edges connecting vertex v to other

vertices in the rest of the graph G. dinw (K , v) and doutw (K , v)

can be formed as follows:

dinw (K , v) =
∑

u,v∈K ;(u,v)∈E

w(u, v). (3)

doutw (K , v) =
∑

v∈K ;u/∈K ;(u,v)∈E

w(u, v). (4)

It is clear that the weighted degree dw(v) of a vertex v is

equal to the sum of dinw (K , v) and doutw (K , v).

The modularity MK of a subgraph K ⊆ G is defined as

follows:

MK =
�v∈Kd

in
w (K , v)

�v∈Kdinw (K , v) + �v∈Kdoutw (K , v)
(5)

The inputs of algorithm DFM-CIN are protein com-

plexes and their frequencies. First, each protein complex

is condensed into a vertex. If two protein complexes Ci

and Cj are synchronous or adjacent, and their similarity

is equal to or larger than th, an edge is added to vertex vi
and vertex vj. The similarity SC(Ci,Cj) of two complexes

Ci and Cj is defined as:

SC(Ci,Cj) =
|Ci ∩ Cj|

√

|Ci| × |Cj|
(6)

Based on the evaluation of similarity among protein

complexes, a weighted graph G(V ,E) is constructed with

vertices representing protein complexes and edges rep-

resenting connections among protein complexes. Then,

all vertices of graph G are sorted into queue Q in non-

increasing order in terms of their corresponding com-

plexes’ frequencies. After that, algorithm DFM-CIN ini-

tializes a set R to store the identified modules. Next, the

first vertex in queue Q is selected as a seed and then ini-

tialed as a singleton cluster K. Then, algorithm DFM-CIN

extends cluster K by gradually adding its neighbors based

on the evaluation of their contributions toMK . The neigh-

bors of a cluster K are a collection of the neighbors of all

vertices in K. For a neighbor vertex vi, its contribution to

the modularityMK of cluster K is defined as:

δMK (vi) = MK∪{vi} − MK (7)

If any neighbors make positive contributions, the neigh-

bor that has the maximum δMK is added into K. Then,

the neighbors of K are updated and another round of

evaluation is performed. If no neighbors of K make posi-

tive contributions, set NK = ∅. The extension performed

on a cluster K will stop when NK = ∅. A new func-

tional module is generated simultaneously. At the same

time, all vertices in the identified functional module are

removed from queue Q. For each loop, algorithm DFM-

CIN always selects the first vertex in queue Q as the seed

and extends from it. The whole extending processes will

stop when the queue Q is null. The parameters Smin and

Smax in algorithm DFM-CIN are used to control the size

of the identified functional modules, which are developed

to make users get functional modules of suitable size,

depending on their own requirements.

Results and discussion
Datasets and evaluation methods

The original protein-protein interaction data of

S.cerevisiae, consisting of 4950 proteins and 21,788

interactions, was downloaded from the DIP database

(2009, version12) [35]. The gene-expressing profiles of

S.cerevisiae were retrieved from Tu et al., 2005[36], which

contains 6777 gene products and 36 samples in total,

with 4,858 genes involved in the yeast PPI network. We

integrated gene expression profiles with the PPI network

to construct a series of time-sequenced subnetworks

(TSNs). In the integration process, the gene products

with an expression value lower than 0.7 are filtered.

In an effort to evaluate the proposed algorithms of

TSN-PCD and DFM-CIN, we compared them with five

previously proposed clustering algorithms: MCL[32,33]),

MCODE[3], CPM[34], COACH[9], and SPICI[10]. MCL

is a fast and highly scalable clustering algorithm for net-

works based on stochastic flow, and its superiority for

the extraction of protein complexes has been proven by

Brohee et al [37]. MCODE is a typical density-based

local search algorithm. CPM is an algorithm for detecting

overlapping communities in biological networks [34], and

formed the basis for a famous tool called CFinder [38].

COACH and SPICI are the two most recent algorithms

for clustering PPI networks to discover protein complexes

and functional modules. The values of the parameters in

each algorithm are selected from those recommended by

the authors.



Li et al. BMC Bioinformatics 2012, 13:109 Page 7 of 15

http://www.biomedcentral.com/1471-2105/13/109

Identification of protein complexes in dynamic

protein-protein interaction network

First of all, the proposed algorithm TSN-PCD is applied

to the dynamic PPI network of S.cerevisiae. There are

865 different protein complexes detected, and ∼ 60% of

the protein complexes are explored in only one TSN and

∼ 24% are discovered in more than three TSNs. So many

protein complexes are only found in one TSN. This may

be caused by the strict definition of protein complexes.

For the complexes, they will be considered as two dif-

ferent complexes even they have most common proteins.

How to deal with the overlapped protein complexes is an

important and challenging issue. In future, we will study

complexes over time-sequenced networks and investigate

the relationship of the proteins in the protein complex.

Moreover, the threshold value used to filter gene products

at each time point may be another reason. Lower thresh-

old of gene expression causes protein complexes tending

to appear in less TSNs.

To directly validate the identified protein complexes,

we compare them with the known protein complexes

provided by the literature published in Nucleic Acids

Research([39]). The 532 known protein complexes are

regarded as the gold standard. Here, we use the same scor-

ing scheme used in [3,8] to determine how effectively a

predicted complex (Pc) matches a known complex (Kc).

The overlapping score OS(Pc,Kc) between a predicted

complex Pc and a known complex Kc is calculated by the

following formula:

OS(Pc,Kc) =
|VPc ∩ VKc|

2

|VPc| × |VKc|
(8)

where |VPc| is the number of proteins in Pc and |VKc|

is the number of proteins in Kc, and |VPc ∩ VKc| is the

number of common proteins both in Pc and in Kc. A

known complex and a predicted complex are considered

as a match if their overlapping score is equal to or larger

than a specific threshold. Our analysis based on different

overlapping score thresholds (from 0 to 1 with a 0.1

increment) shows that the number of matched known

complexes of TSN-PCD clustering in a dynamic network

is consistently higher than that of HC-PIN clustering in a

static network, which implies that the dynamic network

is more suitable to exploring protein complexes, as it can

reflect the dynamics of the network. In Figure 5, three

examples are given to show how TSN-PCD identifies pro-

tein complexes more accurately than HC-PIN does in a

static network.

As shown in Figure 5, DASH complex, Dig1p/Ste12p/

Dig2p complex, and SAS complex are perfectly located by

TSN-PCD in a dynamic network. However, these three

known protein complexes are enclosed in larger clusters

detected by HC-PIN in a static network. These phe-

nomena illustrate that topological information alone is

not enough to discover different complexes, and that the

time-sequenced gene expressions are useful for correct

identification of protein complexes which function at dif-

ferent times. Table 1 also gives several examples of known

protein complexes which are neither perfectly identified

by HC-PIN nor ideally discovered by TSN-PCD. The pair

of standard names and systematic names in Table 1 can

be seen in Additional file 2. But the results of TSN-PCD

are closer to the target than that of HC-PIN. Take the

DASH complex for example: its 7 proteins are included

SCC2

MCD1

CDC5

SMC1

SMC3

(A) DASH complex

ECO1

DIG2
SLI15 DAM1SPC34 ASK1

(B) Dig1p/Ste12p/Dig2p complex
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Figure 5 Examples of protein complexes identified by TSN-PCD in a dynamic network and those identified by HC-PIN in a static network.

Figure 5 provides three examples of proteins complexes identified by TSN-PCD in a dynamic network and those corresponding complexes

identified by HC-PIN in a static network. The circle and round rectangle vertices both represent the proteins of complexes identified by HC-PIN in a

static network. The round rectangle vertices represent the proteins of complexes identified as TSN-PCD in dynamic network that are matched

perfectly by known protein complexes. The known protein complexes are (A) DASH complex; (B) Dig1p/Ste12p/Dig2p complex; (C) SAS complex.
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Table 1 Examples of protein complexes identified by TSN-PCDmore precisely in a dynamic network than that identified

by HC-PIN in a static network

Best matched complexes identified Best matched complexes identified

Known protein complexes in static network (HC-PIN) in dynamic network (TSN-PCD)

Complexes Proteins #. Pc Size(Overlap) OS #. Pc Size(Overlap) OS

Dig1p/Ste12p/Dig2p complex DIG1;DIG2;STE12 43 4(3) 0.75 302 3(3) 1.00

AP-3 adaptor complex APL5;APL6;APM3; 109 3(3) 0.75 77 4(4) 1.00

APS3

SAS complex SAS2;SAS4;SAS5 122 11(3) 0.27 404 3(3) 1.00

MRX complex MRE11;RAD50;XRS2 39 4(1) 0.083 218 3(3) 1.00

prefoldin complex GIM3;GIM4;GIM5; 8 11(5) 0.45 107 6(5) 0.83

PAC10;PFD1;YKE2

AP-1 adaptor complex APL2;APL4;APM1; 116 6(4) 0.67 401 5(4) 0.8

APS1

DASH complex ASK1;DAD1;DAD2; 56 36(7) 0.15 857 7(7) 0.78

DAD3;DAD4;DAM1

DUO1;SPC19;SPC34

FBP degradation complex RMD5;GID7;GID8; 83 4(3) 0.28 586 8(7) 0.77

VID24;VID28;VID30

FYV10;YDL176W

ARGR complex ARG80;ARG81;ARG82; 26 6(4) 0.67 158 3(3) 0.75

MCM1

retromer complex PEP8;VPS29;VPS35 72 5(3) 0.6 45 4(3) 0.75

alpha DNA polymerase:primase complex POL1;POL12;PRI1; 110 12(3) 0.19 709 3(3) 0.75

PRI2

Sec62p/Sec63p complex SEC62;SEC63;SEC66; 75 129(1) 0.002 584 3(3) 0.75

SEC72

Kornberg’s mediator (SRB) complex SSN3;SSN8;SRB8; 50 54(20) 0.30 552 19(18) 0.68

SSN2;CSE2;GAL11

MED1;MED11;MED2

MED4;MED6;MED7

MED8;NUT1;NUT2

PGD1;RGR1;ROX3

SIN4;SRB2;SRB4

SRB5;SRB6;SRB7

SOH1

in a 36-member cluster detected by HC-PIN. In con-

trast, TSN-PCD identifies a 7-member cluster which also

includes the same proteins. Of course, there is a collec-

tion of protein complexes which are detected both by

TSN-PCD and by HC-PIN correctly and for some special

cases, a cluster of HC-PIN may match better than that

of TSN-PCD. The matched results of all the protein

complexes of HC-PIN and TSN-PCD can be seen in

Additional file 3.

Moreover, we compare other five algorithms MCL,

MCODE, CPM, SPICI, COACH with TSN-PCD by

matching their predicted protein complexes with the 532

known complexes. The comparison results show that

TSN-PCD and COACH can identify more known protein

complexes thanMCL,MCODE, SPICI, CPM. As COACH

gets such a good recall from known complexes, we com-

pared its predicted complexes with that of TSN-PCD. As

shown in Figure 6, TSN-PCD has a better score when
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Figure 6 Comparison of the percentage of matched complexes

identified by TSN-PCD and that by COACH. Though, the

complexes predicted by COACH can match more known complexes

than that of TSN-PCD as shown in Figure 7, TSN-PCD has larger

percentage of matched predicted complexes than that of COACH

with respect to each overlapping score.

considering the percentage of predicted complexes over

each overlapping score.

To further estimate the performance of TSN-PCD for

detecting protein complexes, a comprehensive evalua-

tion method called f -measure is used. For a clustering

algorithm, its f -measure is defined as a harmonic mean of

its sensitivity (Sn) and specificity (Sp).

Figure 7 Comparison of the number of known complexes

matched by the predicted protein complexes by TSN-PCD and

other five algorithms MCL, MCODE, CPM, COACH, SPICI. Figure 7

shows the number of matched known complexes with respect to

different overlapping scores for different sets generated by TSN-PCD

and other five algorithms: MCL, MCODE, CPM, COACH, SPICI. TSN-PCD

predicts the protein complexes from dynamic network while the

others identify the protein complexes from the static network. The

results show that TSN-PCD and COACH can match more known

protein complexes than the other algorithms.

f − measure =
2 ∗ Sn ∗ Sp

Sn + Sp
(9)

Sn =
TP

TP + FN
(10)

Sp =
TP

TP + FP
(11)

where TP (true positive) is the number of the predicted

complexes (Pc) matched by the known complexes (Kc), FP

(false positive) equals the total number of Pc minus TP,

and FN (false negative) is the number of Kc that are not

matched by Pc.

The f -measure results of TSN-PCD and five other

algorithms (MCL, MCODE, CPM, SPICI and COACH)

performed on static and dynamic PPI networks are shown

in Figure 8. From Figure 8 we can see that the f -measure

of TSN-PCD is much higher than that of HC-PIN, MCL,

MCODE, CPM, SPICI and COACH on a static PPI net-

work. The f -measure of TSN-PCD is about two times

more than that of MCL, CPM, and SPICI, and it is about

six times more than that of MCODE performed on the

static network. As TSN-PCD is applied in a dynamic

network and MCL, MCODE, CPM, SPICI and COACH

are applied in a static network, it is difficult to confirm

what really contributes to the improvement of f -measure

of TSN-PCD, TSN-PCD itself or the dynamic network?

Therefore, we also apply another five algorithms (MCL,

MCODE, CPM, SPICI and COACH) to the dynamic net-

work. That is, we replace the subroutine HC-PIN of TSN-

PCD with MCL, MCODE, CPM, SPICI and COACH,

respectively. The comparison of the f -measure results of

TSN-PCD with those of the other five algorithms when

Figure 8 Comparison of f -measure of TSN-PCD and that of other

algorithms performed on static and dynamic protein-protein

interaction networks. To evaluate the effectiveness of TSN-PCD for

identifying protein complexes, the f -measure results of HC-PIN

performed on static network and those of five other protein complex

discovery algorithms: MCL, MCODE, CPM, SPICI, and COACH

performed on static and dynamic PPI networks are also shown in

Figure 8.
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applied to a dynamic network are also shown in Figure 8.

The f -measure values of MCL, MCODE, CPM, SPICI and

COACH applied to a dynamic network are improved rel-

ative to those obtained when static network was used.

From Figure 8 we can also find that the f -measure of TSN-

PCD is consistently higher than that of MCL, MCODE,

CPM, SPICI, and COACH, even when performed on a

dynamic network. The results show that not only the use

of a dynamic network, but also the algorithm, TSN-PCD,

enhances the accuracy of identifying protein complexes.

Algorithm TSN-PCD outperforms all five previous algo-

rithms in the detection of protein complexes.

In [40], Gavin et al. also provided 491 protein complexes

which were determined by using affinity purification and

mass spectrometry. By comparing the 865 complexes

identified by our method TSN-PCD with Gavin’s 491

complexes, we surprisingly found that not any predicted

complexes of TSN-PCD were the same as that of Gavin’s.

Only 41 complexes of TSN-PCD were similar(OS ≥ 0.5)

to that of Gavin’s. As there is such a low overlapping

between the TSN-PCD and the Gavin’s, we matched them

with the known complexes, respectively. The comparison

results are shown in Figure 9. From Figure 9 we can find

that more knwon protein complexes are matched by the

predicted complexes of TSN-PCD than that of Gavin’s.

Evaluating functional modules based on

Function Enrichment

It is well known that functional modules are closely related

to protein complexes. In fact, most clustering algorithms

Figure 9 Comparison of the protein complexes predicted by

TSN-PCD and that published in Gavin’s publication(Nature

2006). Figure 9 shows the number of matched known protein

complexes with respect to different overlapping scores which rang

from 0.1 to 1.0. The protein complexes predicted by TSN-PCD and

that published in Gavin’s publication(Nature 2006) are matched with

the known complexes, respectively. As shown in Figure 9, more

known protein complexes are matched by the predicted complexes

of TSN-PCD than that of Gavin’s.

detect both protein complexes and functional modules

without distinguishing between the two. In this paper, we

constructed a weighted graph (CCI network) by calcu-

lating the similarities among the identified protein com-

plexes and analyzing their relationships in time. Then,

the proposed algorithm DFM-CIN was applied to the

weighted graph to discover functional modules. The sim-

ilarity threshold th = 0.5 is used here. The effect of its

variation will be discussed later. In the following, 0.5 is

used as a default value for the algorithm, DFM-CIN, if

without special instructions.

To get insights on the shared, underlying biological

processes of the identified functional modules, we use

Gene Ontology annotations, downloaded from the Sac-

charomyces Genome Database (SGD) [41], to analyze

their enrichments. Most of the identified functional mod-

ules appear to be enriched for proteins related to the same

or similar biological processes. For example, all 5 pro-

teins in module 175 function as “protein deneddylation”,

all 9 proteins in module 62 belong to “cyclin catabolic

process”, all 58 proteins in module 271 are related to

“cellular macromolecule metabolic process”, out of which

57 proteins participate in “regulation of transcription,

DNA-dependent”. To further test and verify the biologi-

cal significance of the identified functional modules, we

quantify their GO biological process term co-occurrences

by using the SGD. For each identified functional mod-

ule, its P-values are calculated. The smaller the P-value

of a GO term, the more statistically significant the use of

the GO term in the functional model[7,42,43]. The com-

mon cutoff of 0.001 is used here to differentiate between

significant and insignificant groups. The lowest P-values

of GO term of the 258 significant modules range from

7.85E-04 to 1.56E-66. The percentage of the significant

functional modules, average −log(P-value), and the per-

centage of modules whose P-value falls within P<E-15,

[E-15, E-10], [E-10, E-5], and [E-5, 0.001] are shown

in Table 2.

As shown in Table 2, the percentage of significant mod-

ules detected by DFM-CIN is similar to that identified by

MCODE and CPM, but much greater than that generated

by MCL, SPICI, and COACH. Moreover, the average -

log(P-value) of DFM-CIN is much greater than that of the

other five algorithms. The absolute percentage of func-

tional modules identified by our algorithm, DFM-CIN,

with P-values less than E-15 is 7 times more than that

of SPICI and MCL, 2.5 times more than that of COACH

and MCODE, and about 1.5 times than that of CPM.

Figure 10 illustrates the P-value distributions of the signif-

icantmodules generated by all these algorithms. As shown

in Figure 10, the 50 most significant modules identified by

our algorithm DFM-CIN are consistently more significant

than those generated by other algorithms. The statistical

results from Table 2 and Figure 10 show that DFM-CIN
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Table 2 Functional enrichments of the identified complexes detected by TSN-PCD and functional modules detected by

DFM-CIN, MCL, MCODE, CPM, SPICI, and COACH

Number of Average % of significant Average Significant modules(P)

Algorithms modules size modules (-logP) <E-15 E-15 to E-10 E-10 to E-5 E-5 to 0.001

TSN-PCD 865 26.41 95.95 16.36 39.77%(344) 19.65%(170) 26.24%(227) 10.29%(89)

DFM-CIN 280 18.28 92.14 14.49 30.71%(86) 13.93%(39) 34.64%(97) 12.86%(36)

MCL 619 6.58 59.93 5.07 4.2%(26) 5.00%(31) 20.52%(127) 30.21%(187)

MCODE 50 15.66 92.00 8.53 12.00%(6) 12.00%(6) 50.00%(25) 18.00%(9)

CPM 126 11.59 92.65 11.14 20.63%(26) 14.28%(18) 38.89%(49) 19.84%(25)

SPICI 552 11.59 66.85 5.00 4.71%(26) 3.80%(21) 21.19%(117) 37.14%(205)

COACH 894 8.99 85.57 7.76 10.85%(97) 11.97%(107) 35.79%(320) 26.96%(241)

is more effective for identifying functional modules than

other algorithms.

Effect of parameter th on the identification of functional

modules

In this section, we will discuss the effect of parameter th

on the identification of functional modules. The values of

parameter th are set to be from 0.2 to 0.6 with 0.1 incre-

ments. In total, five different sets are obtained by variation

of th. For each set, the number of identified functional

modules, the average size, the percentage of significant

modules, the average -log(P-value), and the percentage of

modules whose P-value falls within P<E-15, [E-15, E-10],

[E-10, E-5], and [E-5, 0.001] are shown in Table 3.

The number of the identified functional modules

increases with the increase of th. This is because the larger

value of th leads to fewer edges connecting the protein

Figure 10 Comparison of the P-value distribution of significant

modules generated by DFM-CIN and those detected by other

algorithms. The x axis represents the number of significant modules,

and the y axis represents the -log(P-value) for each corresponding

module. The 50 most significant modules identified by our algorithm

DFM-CIN are consistently more significant than those generated by

other algorithms.

complexes. That is to say, a sparser graph is constructed

by using a larger value of th. As a result, more functional

modules will be identified with the same criterion for

generating modules. From Table 3, we can see that DFM-

CIN is not very sensitive to the input parameter, th, for

evaluation of its biological meaning.

Relationship between protein complexes and functional

modules

As protein complexes and functional modules are signifi-

cantly related to each other, we discuss their relationships

in this section. Analysis of the identified functional mod-

ules shows that they generally include multiple protein

complexes. As shown in Figure 11, ∼ 55% of the func-

tional modules consist of at least two identified protein

complexes. To avoid the bias of using the algorithm DFM-

CIN, we also analyze howmany known protein complexes

a functional module will include. Given a known protein

complex (Kc) and an identified functional module (Im),

we say that Kc is part of Im if more than 60% proteins

in Kc are members of Im. The results agree closely with

the identified protein complexes, as shown in Figure 11.

Another key feature of the relationship between protein

complexes and functional modules is that the complexes

included in the same module generally participate in the

same biological process.

There are about 45% identified functional modules

which consist of only one protein complex. For example,

module (#15) andmodule (#235) both consists of only one

protein complex (The identified functional modules are

available from Additional file 4). Module #15 functions

as “nuclear-transcribed mRNA catabolic process, exonu-

cleolytic, 3′ − 5′” which includes a Nonsense-mediated

mRNA decay pathway complex. In the definition of

GO:0000184, the nonsense-mediated decay pathway for

nuclear-transcribed mRNAs degrades mRNAs in which

an amino-acid codon has changed to a nonsense codon.

This prevents the translation of such mRNAs into poten-

tially harmful, truncated proteins. Module #235, including

a FBP degradation complex and a protein “MOH1”, whose
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Table 3 Effect of parameter th on the identification of functional modules

Parameter Number of Average % of significant Average Significant modules(P)

th modules size modules (-logP) <E-15 E-15 to E-10 E-10 to E-5 E-5 to 0.001

0.2 223 21.21 90.58 14.88 34.98%(78) 12.11%(27) 30.94%(69) 12.55%(28)

0.3 242 19.29 91.32 14.48 33.88%(82) 13.64%(33) 31.40%(76) 12.40%(30)

0.4 261 17.78 91.57 14.01 30.65%(80) 16.92%(42) 32.57%(85) 12.26%(32)

0.5 280 18.28 92.14 14.49 30.71%(86) 13.93%(39) 34.64%(97) 12.86%(36)

0.6 320 19.22 93.12 14.82 31.25%(100) 13.75%(44) 35.00%(112) 13.12%(42)

function is unknown, participates in the process of “nega-

tive regulation of gluconeogenesis”.

For a functional module consisting of multiple protein

complexes, exploration of its biological processes shows

that these multiple protein complexes participate in the

same biological process. The illustrated example mod-

ule #166, and the protein complexes contained in it are

shown in Figure 12. The biological process of module

#166 is “regulation of transcription” with the lowest P-

value=2.55E-68. There are 13 protein complexes, in total,

with different sizes recovered bymodule #166. The biggest

one is Kornberg’s mediator (SRB) complex, which has

been found to support activated transcription in yeast[44].

The transcription factor TFIID complex and SAGA com-

plex are both multi-subunit complexes involved in tran-

scription by RNA polymerase II [44,45]. As shown in

Figure 12, there is an overlap between SAGA and TFIID.

The common subset of SAGA and TFIID have been

verified to be TBP-associated factors (TAFs) subunits

which mediate a common function in global transcription

Figure 11 The relationship between protein complexes and

functional modules. The x axis represents the number of protein

complexes to construct a functional module while the y axis

represents the number of modules. To avoid the bias of using the

algorithm DFM-CIN, the relationship between the known protein

complexes and the identified functional modules is also shown in

Figure 9.

[46]. NuA4 histone acetyltransferase complex is active in

transcription and DNA repair[47]. Four proteins of NuA4

histone acetyltransferase complex are also found in Swr1p

complex. The general transcription factor TFIIE complex,

though only composed of two proteins, plays important

roles at two distinct, but sequential steps, in transcription

as follows: preinitiation complex formation and activa-

tion (open complex formation), and the transition from

initiation to elongation[48]. The CCR4-NOT complex

functions as general transcription regulation complex[49].

The alpha DNA polymerase:primase complex catalyzes

the synthesis of an RNA primer on the lagging strand of

replicating DNA (annotated in GO:0005658). Moreover,

the conversion of Ume6p from a repressor into an acti-

vator by association with the meiotic inducer Ime1p is

required in meiotic induction[50]. According to the above

analysis, the different functional components of module

#166 participate in the mechanism of transcription regu-

lation. More functional modules which consist of multiple

protein complexes can be seen in Additional file 5.

Conclusion
An important and challenging task in post-genomic era is

to investigate the systematic and dynamic organization of

PPI networks and explore biologically significant clusters.

This paper introduces a new framework for construct-

ing a dynamic PPI network by integrating gene expression

data into PPI data. An important contribution of the

framework is that in which protein complexes and func-

tional modules can be distinguished. Few such works have

been done before, though many researchers know that

protein complexes and functional modules are two dif-

ferent concepts which have different biological meanings.

In the proposed framework, the dynamic PPI network

is composed of a series of time-sequenced subnetworks,

based on the the time that the interactions are activated.

Two different clustering algorithms: TSN-PCD and DFM-

CIN are proposed for identifying protein complexes and

functional modules, respectively.

To test and validate the effectiveness of the proposed

framework and clustering algorithms, the identified pro-

tein complexes and functional modules are compared

with those detected by other clustering algorithms: MCL,
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Figure 12 An example of functional module identified from a complex-complex interaction network. There are 11 known protein

complexes contained in it. The 11 protein complexes are: Sw1p complex, SAGA complex, CCR4-NOT core complex, transcription factor TFIIE

complex, transcription factor TFIID complex, NuA4 histone acetyltransferase complex, Ume6p/Ime1p complex, Nucleosomal protein complex,

Chz1p/Htz1p/Htb1p complex, Kornberg’s mediator (SRB) complex, alpha DNA polymerase:primase complex.

MCODE, CPM, SPICI, and COACH. A quantitative com-

parison based on f -measure reveals that our algorithm

TSN-PCD outperforms the other five protein complex

discovery algorithms. Comparison of the results on static

and dynamic PPI networks shows that the combination of

temporal gene expression data with PPI data is worthwhile

for protein complex discovery.

An evaluation of the identified functional modules

involved the function enrichment. The evaluation shows

that the identified functional modules discovered by

DFM-CIN are statistically significant in terms of “Bio-

logical Process”. More importantly, the analysis of the

relationship between protein complexes and functional

modules reveals that a module generally consists of one

or more protein complexes, and the protein complexes

contained in the same module participate in the same

biological process universally.

In conclusion, the proposed framework and clustering

algorithms, TSN-PCD and DFM-CIN, effectively reveals

modular organization of the PPI network, and they

distinguish well between protein complexes and func-

tional modules.

Additional files

Additional file 1: Protein complexes identified by TSN-PCD and their

frequencies. Additional file 1 provides the protein complexes identified by

the algorithm TSN-PCD from the dynamic protein interaction network. The

frequency of each identified protein complex and the information of

subnetworks in which the protein complex is included are also shown in

the Additional file 1.

Additional file 2: A supplemental table with the standard names and

systematic names paired. Additional file 2 provides a supplement table

with standard names and systematic names paired for Table 1, Figure 5

and Figure 12.

Additional file 3: The matched results of the identified protein

complexes of HC-PIN and TSN-PCD with known complexes. Additional

file 3 provides the results of the complexes predicted by HC-PIN and

TSN-PCD matched with the known complexes, respectively.

Additional file 4: Functional modules identified by DFM-CIN.

Additional file 4 provides the functional modules identified by the

algorithm DFM-CIN.

Additional file 5: Identified functional modules consist of multiple

complexes and their relationship. Additional file 5 provides all the

identified functional modules. For each module, we provide its possible

function by p-value and its proteins, frequency, p-value and detail

complexes it contains.

http://www.biomedcentral.com/content/supplementary/10.1186/1471-2105-13-109-S1.txt
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