
Towards the Implementation
of a Source-to-Source Transformation Tool

for CHR Operational Semantics

Ghada Fakhry(B), Nada Sharaf, and Slim Abdennadher

Computer Science and Engineering Department,
The German University in Cairo, Cairo, Egypt

{ghada.fakhry,nada.hamed,slim.abdennadher}@guc.edu.eg

Abstract. Constraint Handling Rules (CHR) is a high-level committed-
choice language based on multi-headed and guarded rules. Over the past
decades, several extensions to CHR and variants of operational semantics
were introduced. In this paper, we present a generic approach to simu-
late the execution of a set of different CHR operational semantics. The
proposed approach uses source-to-source transformation to convert pro-
grams written under different CHR operational semantics into equivalent
programs in the CHR refined operational semantics without the need to
change the compiler or the runtime system.

Keywords: Source-to-Source Transformation · Constraint Handling
Rules · Operational Semantics

1 Introduction

Constraint Handling Rules (CHR) [4] is a high level language that was intro-
duced for writing constraint solvers. CHR is a committed choice language based
on multi-headed and guarded rules. With CHR, users can have their own defined
constraints. CHR transforms constraints into simpler ones until they are solved.
Over the past decade, CHR has matured into a general purpose language. In addi-
tion, the number of CHR extensions and variants has increased [10]. These exten-
sions have operational semantics different than the refined operational semantics
(wr) of CHR [3] regarding some properties like execution control, expressivity
and declarativity.

Such extensions tackle some weaknesses and limitations of CHR and offer
interesting properties to its users [10]. However, users cannot use these exten-
sions directly through SWI-Prolog [13] since their operational semantics is differ-
ent than the refined operational semantics supported by SWI-Prolog (wr). Some
extensions, nevertheless, provide transformation schemes to the refined opera-
tional semantics. However, such schemes usually require accessing the compiler
and using additional low level tools [6,8,11,12] .

c© Springer International Publishing Switzerland 2014
G. Gupta and R. Peña (Eds.): LOPSTR 2013, LNCS 8901, pp. 145–163, 2014.
DOI: 10.1007/978-3-319-14125-1 9

146 G. Fakhry et al.

The work presented here extends the tool presented in [2] which enhanced
CHR with visualization features through a source-to-source transformation app-
roach without changing the compiler or the runtime system.

The aim of this work, on the other hand, is to introduce an approach that
is able to automatically simulate the execution of a set of CHR operational
semantics. Such operational semantics could have different execution models
than the refined operational semantics. The proposed approach uses source-to-
source transformation to convert CHR programs written under different oper-
ational semantics to equivalent programs that could be used with the refined
operational semantics (wr). This process does not require any changes to the
compiler or the runtime system. The paper presents the general scheme that
could be used with different operational semantics. In addition, the scheme is
applied on a set of the existing CHR operational semantics. Although previous
approaches provided transformation techniques, the focus here is on achieving a
general approach that is usable without having to change any details regarding
the runtime system. The presented work thus does not aim to provide a more
efficient alternative but rather a more general one.

The paper is organized as follows. Section 2 briefly discusses the syntax and
semantics of Constraint Handling Rules. Section 3 introduces the general trans-
formation approach and the structure of the transformed file. In addition, it
introduces the implementation of an explicit propagation history. Section 4 shows
how the transformation approach is applied to implement a set of different CHR
operational semantics. Section 5 provides an sketch proof for the equivalence
between source programs and the transformed programs. Finally, we conclude
with a summary and a discussion of future work in Section 6.

2 Constraint Handling Rules

This section introduces the syntax of CHR. In addition, we informally explain
the abstract semantics and the refined operational semantics.

2.1 Syntax

CHR programs consist of a set of guarded rules that are applied until a fixed
point is reached. In CHR two types of constraints are available. The first type
is the built-in constraints provided through the host language. The second type
of constraints is the CHR or user-defined constraints that are defined through
the rules of a CHR program [5]. A CHR program consists of a set of a so-called
“simpagation” rules in the following format:

Hk \ Hr ⇔ G | B.

The head of the CHR rule, which comes before the (⇔), consists of a conjunction
of CHR constraints only. The elements of Hk are the constraints that are kept
after the rule is executed. On the other hand, the constraints in Hr are removed

Towards the Implementation of a Source-to-Source Transformation Tool 147

after executing the rule. G is the optional guard that consists of built-in con-
straints. The body (B) could contain both CHR and built-in constraints. Two
other types of rules exist. They are considered as special cases of simpagation
rules. The first one occurs whenever Hk is empty. Such rules are called “simplifi-
cation” rules. In this case, the head of the rule consists only of CHR constraints
that should be removed on executing the rule. Such rules replace constraints by
simpler ones. A simplification rule thus has the following format:

Hr ⇔ G | B.

The second rule type is propagation rules. In a propagation rule, Hr is empty.
Consequently, all head-constraints are kept after the rule is executed adding
the constraints in the body to the constraint store. This may cause further
simplification afterwards. Propagation rules have the following format:

Hk ⇒ G | B.

2.2 Operational Semantics

The operational semantics of CHR programs is defined by a state transition
system. The complete definition of state transitions of the abstract semantics
and the refined operational semantics are introduced in [5] and [3] respectively.
The execution of a CHR program starts from an initial state. Rules are applied
until a final state is reached. A final state is a state where no more rules are
applicable.

A rule is applied if the constraints in store matches the head-constraints of
the rule, and the guard of the rule succeeds. The current implementation of
CHR in SWI-Prolog does not allow binding variables in the guards of rules by
default [13]. According to the type of the rule, the constraints that matched the
head-constraints of the rule are either removed or kept after the rule application.

Consider the following example that computes the minimum of a multiset
of numbers. The numbers are represented by the CHR constraint min/1 whose
argument is the value of the number.

find_min @ min(N) \ min(M) <=> N=<M | true.

The initial query for the program is a multiset of constraints representing
the numbers whose minimum is to be computed. Each time the simpagation
rule (find_min) is applied, two numbers are compared and the larger one is
removed. This rule is applied exhaustively until the constraint store contains
one min constraint representing the minimum number.

The abstract CHR operational semantics does not specify the order in which
the constraints of the initial goal are processed, or the order of the application
of the rules. For the initial goal min(1), min(3), min(0), min(2), the result is
always min(0). However, many execution paths could be taken. The computation
can start with applying the rule on the constraints min(1) and min(3), or the
constraints min(1) and min(0), or any other combination of two constraints

148 G. Fakhry et al.

matching the head of the rule. In addition, in case the goal constraints match
the heads of more than one rule, then any of them could be applied. In other
words, there is no restriction on the order of application of rules.

The refined operational semantics fixes, in part, the non-determinism of the
abstract semantics. It fixes the order of processing the goal constraints and the
order in which the rules are applied. In the refined operational semantics, goal
constraints are processed from left to right, and rules are tried in the textual
order of the program. Accordingly, for the same goal in the above example, the
simpagation rule will be applied first with min(1) and min(3) constraints then
it will continue with the remaining constraints.

In both semantics, there is a restriction for the application of propagation
rules. A propagation rule is allowed to be applied only one time with the same
combination of constraints that matched the head-constraints of the rule.

3 The Transformation Approach

This section introduces a new source-to-source transformation approach that is
able to transform CHR programs written under different operational semantics
into CHR programs that are equivalent when executed under the refined opera-
tional semantics.

Building on the representation used in [2], the rules of the source program
are transformed into a so-called “relational normal form” introduced in [7]. This
normal form uses special CHR constraints that represent the components of a
rule. For example, the rule find_min in Section 2.2 is represented in the relational
normal form as follows:

head(find_min,‘min(N)’,keep),
head(find_min,‘min(M)’,remove),
guard(find_min, ‘N<=M’),
body(find_min,‘true’)

The CHR solver is first parsed. The parser extracts the information of the
program and represents it in the normal form. The transformer is a CHR solver
that runs on the relation normal formal of the source program and writes the
new rules into the transformed program file.

The idea of the presented transformation approach relies on the execution
model of the operational semantics. The work in this paper involves transforming
different operational semantics that have different state transitions for rule choice
and rule application. In addition, inverse execution of the rules of a program [14]
is also considered. The transformation allows for the simulation of different rule-
choice and rule-application state transitions of different operational semantics.
This is done by separating rule matching and rule application into two steps.
The basic idea is to delay the application of the body of the rule. With this app-
roach, rather than having to apply the first matched rule, the new program is
able to choose from the set of all the applicable rules. The adopted candidate set
resolution approach is similar to the conflict resolution mode introduced in [5].

Towards the Implementation of a Source-to-Source Transformation Tool 149

However, the presented work provides an automated transformation method-
ology that is able to combine the different properties of the execution models
of the operational semantics. As a result, the execution of different operational
semantics is possible. Two rules are generated for every rule in the source pro-
gram. The first is a propagation rule that replaces the body by a new CHR
constraint representing the rule name and the constraints that matched the rule
head. The second rule applies the (possibly modified) body of the rule. The
choice of the rule to be applied depends on the candidate set resolution strat-
egy. In the current implementation, the transformer provides different resolution
strategies simulating different rule-choice state transitions. The execution model
of the operational semantics was represented through a set of properties. Such
properties encode the execution direction, the candidate set resolution strategy
and whether multiple-rules matching is allowed. Such property-set is then used
to construct the transformed program.

Through specifying the properties of the execution model, the proposed app-
roach is able to transform different operational semantics. The proposed trans-
formation allows forward or inverse rule application as execution strategies. It
also offers a set of candidate set resolution strategies. In addition, at each com-
putation step, a choice of single or multiple rules matching is possible.

Section 3.1 explains the transformation of the rules according to the proper-
ties of the execution model. Section 3.2 introduces the idea of implementing an
explicit propagation history in the transformed program.

3.1 The Transformed Program Structure

Figure 1 shows the steps of constructing the transformed program. The choice
between the different construction paths depends on properties of the execution
of the semantics. The construction of the transformed file is done in four steps
as explained below.

1. The first step adds for every CHR constraint c(X) in the source program, a
simplification rule (extend) in the transformed program PT in the form:

extend @ c(X) <=> c(X,_).

This way, when executing the transformed program, an extended CHR con-
straint c(X,V) is created for each CHR constraint c(X) similar to the app-
roach used in [8]. V is a fresh Prolog variable used as an explicit identifier for
a constraint and is also used in the implementation of the propagation his-
tory explained in Section 3.2. In addition, all the constraints in the heads of
the rules of the transformed file are extended with an additional argument.
This argument represents the unique identifier of the constraint.

2. The second step adds, for each rule in the source program, a propagation
rule that differs according to execution strategy of the operational semantics.
One of two possible rules is added. The rule Fmatch is added in the case of
forward execution. On the other hand, the rule Imatch is added whenever
inverse execution is needed.

150 G. Fakhry et al.

Fig. 1. Construction Steps of The Transformed File

Although both rules are propagation rules, they have different constituents.
A forward match (Fmatch) rule has the same head-constraints and guard as
the original rule of the source program rule. However, the head of an inverse
match (Imatch) rule contains the kept head-constraints (if any) in addition to
the CHR constraints of the body of the original rule. If the body of the source
program rule contains built-in constraints then they are added to the guard
of this new rule. The body of Fmatch and Imatch is a new CHR constraint
cand/3. The arguments of this new constraint are the rule name, the list of
identifiers of the head-constraints od the rule in addition to a number that
could represent some specific property of the rule. For example, in the case of
CHR with user-defined rule priorities, this number represents the priority of
each rule. Since inverse execution of CHR rules is a one-to-many relationship,
a true disjunct is added to allow backtracking for more than one result.
Thus, for every CHR rule in the source program P:

ri @ Hk\Hr ⇔ G | B.

we will have one of the following rules in the transformed program PT :

Towards the Implementation of a Source-to-Source Transformation Tool 151

Fmatch-ri @ Hr,Hk ⇒ G | cand(ri, Ids, p).
Imatch-ri @ Hk, B ⇒ G | cand(ri, Ids, p) ; true.

Whenever a rule is applicable, then a new constraint cand/3 is created for
the applicable rule. This new constraint is added to the constraint store. The
new cand/3 constraint means that the applicable rule could be fired with
this specific combination of constraints. If the operational semantics allows
multiple-rules matching at each computational step, an additional constraint
id/1 is added to the head-constraints of the matching rules (Fmatch or
Imatch). Changing the value of the argument of id/1 allows the propaga-
tion rules to be matched with the same instances of constraints for multiple
times. This behaviour is needed to reach the correct output. An example
of this is the case of CHR with user-defined rule priorities, where the high-
est priority rule, among the applicable rules, is fired at each computational
step. The rules that were not fired at one step due to the existence of higher
priority rule(s), should be given a second chance of application. However,
the match (Fmatch or Imatch) rules are propagation rules that are fired for
a specific combination of constraints once. Thus changing any argument of
the constraints of the heads of such rules allow them to be fired again (i.e.
giving the rest of the rules another chance). Since the original constraints
cannot be manually modified, using the auxiliary constraint id/1 with an
argument that changes with the rule application solved this problem.

In addition, a propagation rule (trigger) is added at the end of the
matching rules. This new rule adds the CHR constraint start/0 to trigger
the candidate set resolution step. The constraint trigger/0 is added to the
end of the constraints in the original query to ensure that it is only activated
at the end.

trigger @ trigger, id(Ni) ==> start.

On executing the transformed program, the result of this step is a set of
all the applicable rules. Each of the candidate rules is represented by the
constraint cand/3. In the refined operational semantics, head-constraints
are searched from left to right. However, for simpagation rules, the head-
constraints to be removed are tried before the constraints to be kept [5].
Thus to preserve the same order, removed head-constraints are added before
the kept head-constraints in the Fmatch transformed rules. p is a property
specified by the operational semantics. In the current implementation, the
property is concatenated to the rule name instead of using the directive
pragma argument to give hints to the compiler.

3. In the third transformation step, rules are added to perform candidate set
resolution. Only one of the candidate applicable rules is chosen to be applied
according to the resolution strategy. In the current implementation of the
transformer, this step is customized according to the respective CHR opera-
tional semantics. The current implementation allows probabilistic and prior-
ity based resolution strategies. More details about candidate set resolution is
given in Section 4 with examples. The result of this step is the rule chosen to

152 G. Fakhry et al.

be applied represented by a new CHR constraint fire/2. The first argument
of fire/2 is the rule name and the second argument is a list of identifiers
of the head-constraints of the rule. The list of constraint identifiers is added
to ensure that the rule will only be applied with this specific combination of
constraints.

4. The last part in the transformed file is responsible of the actual rule appli-
cation. A new rule is added for each rule in the original solver. The new
rule is chosen according to the execution strategy. Thus either a forward
application (Fapply) or an inverse application (Iapply) rule is added to the
transformed program. In Fapply rules, a new constraint fire/2 is added to
the head-constraints to be removed of the source program rule (if any). This
way ensures that only this rule will be applied with the specific combination
of constraints in the list. The body of the rule remains unchanged. In Iapply
rules, the fire/2 constraint and the body of the original rule are added as
head-constraints to be removed. The body of the Iapply rule contains the
head-constraints that should be removed.
For every CHR rule in the source program P:

ri @Hk\Hr ⇔ G | B.

we will have one of the following two rules in the transformed program PT :

Fapply-ri @ Hk\ fire(ri,Ids) , Hr ⇔ B.
Iapply-ri @ Hk\ fire(ri,Ids) , B ⇔ Hr.

The rules are written such that the execution of one rule in the source
program is done in 4 steps in the transformed program The execution of the
transformed program starts by extending the original query constraints. The
extended constraints (constraints with the additional identifier argument) then
try to match the propagation rules in the second part of the transformed file.
Among the set of the applicable rules represented by cand/3 constraints, one
rule is chosen according to the candidate set resolution strategy. Finally, the
chosen rule is applied. Execution then proceeds by extending any constraints
added after applying the chosen rule. The new constraints then try to match
the propagation rules. Candidate set resolution is applied afterwards on the new
candidate-set and so on until reaching a fixed point where no more rules are
applicable. The new file depends on the textual order of the rules since it runs
using the refined operational semantics implemented in SWI Prolog.

3.2 Propagation History Implementation

In some of the cases, the set of matched rules that were not applied at one com-
putation step are given a second chance in the next computation step. This is the
case when the operational semantics allows multiple-rules matching at each com-
putation step and one rule application. In order to allow for multiple-rules match-
ing, the constraint id/1 is added to the head-constraints of the transformed rules.

Towards the Implementation of a Source-to-Source Transformation Tool 153

However, this approach raised a problem with propagation rules. If a propaga-
tion rule was chosen to be fired then in the next computation step the same
propagation rule will also be applicable, because the constraints that matched
the head were not removed. This causes a problem of trivial non-termination in
the transformed program.

This problem would be solved if every propagation rule is fired only once for
each specific combination of constraint identifiers. This was done by implement-
ing an explicit propagation history. In the proposed approach, a new constraint
history/1 is added to the original query. The argument of history/1 is a list
that contains a set of tuples (r,I). Initially, the list is empty. The first argument
(r) is the propagation rule name while the second argument (I) is an ordered list
of the identifiers of constraints that matched the head-constraints of rule r. The
size of the propagation history depends on the propagation rules in the program.
At any computation step the length of the list of history/1 corresponds to the
number of fired propagation rules.

In the transformed program, propagation rules are modified to be applied
only if the tuple containing the rule name and the list of identifiers of constraints
does not exist in the propagation history, since each constraint in the executed
program has a unique identifier. For example, the following rule in the original
program P:

rule1 @ a(X) ==> b(X).

will have the corresponding propagation rule transformed program PT :

match-rule1 @ a(X,Id1), history(L) ==> \+member((rule1,[Id1]),L)
| cand(rule1,[Id1],1).

Moreover, in this example, the property specified to the operational semantics
is the rule order. Thus for the rule rule1, this property is set to 1 since the
program contains only one rule.

In addition, if a propagation rule is chosen to be applied, a new tuple with
the name of the rule and a list with the identifiers of the matched constraints
is added to the propagation history. Thus, the propagation rules are modified
in the rule application part to update the propagation history. The rule in the
previous example generates the following simpagation rule in the transformed
program PT :
apply-rule1 @ a(X,Id1) \ fire(rule1,[Id1]), history(L)

<=> b(X),history([(rule1,[Id1])|L]).

4 Source-to-Source Transformation for Different CHR
Operational Semantics

This section shows, through examples, how the presented transformation app-
roach is applied to a set of different CHR operational semantics. Transformation
for Probabilistic Constraint Handling Rules is explained in Section 4.1, CHR

154 G. Fakhry et al.

with user defined-rule priorities is introduced in Section 4.2. Section 4.3 intro-
duces transformation for CHRiSM. Finally, transformation for inverse CHR is
introduced in Section 4.4.

4.1 Transformation for Probabilistic Constraint Handling Rules

Probabilistic Constraint Handling Rules (PCHR) [6] is an extension of CHR that
allows for a probabilistic rule choice among the applicable rules. The choice of
the rule is performed randomly by taking into account the relative probability
associated with each rule. PCHR modifies the CHR abstract semantics (wt) in
the “Apply” transition by specifying the probability of the choices of the rules.
This results in an explicit control of the chance that certain rules are applied
according to their probabilities. The “Apply” transition of wt chooses a rule from
the program for execution. Constraints matching the head of the rule should
exist in the store. In addition, the guard should be satisfied. PCHR rules are the
same as CHR rules but with the addition of a number representing the relative
probability of each rule.

PCHR is implemented using the proposed approach with forward execution
strategy, multiple-rules matching. Candidate set resolution is done through a
random choice after normalizing the probabilities of the probabilistic rules. The
following example shows a PCHR program [6] that generates a n bit(s) random
number. The number is represented as binary list of n bit(s). The list is generated
bit by bit recursively and randomly. As long as N is greater than zero, the next
bit will be either 0 or 1 by applying either the second or the third rules with
equal probability; otherwise the non-probabilistic rule r1 will be applied and the
recursion ends. The program is:

r1 @ rand(N,L) <=> N =:= 0 | L = [].
r2_50 @ rand(N,L) <=> N>0 | L=[0|L1], N1 is N-1, rand(N1,L1).
r3_50 @ rand(N,L) <=> N>0 | L=[1|L1], N1 is N-1, rand(N1,L1).

The transformation will result in the following program:

extend @ rand(V2,V1) <=> rand(V2,V1,_).

r1 @ rand(N,L,Id0) <=> N =:= 0 | L = [].
match-r2_50 @ rand(N,L,Id0),id(Ni)==>N>0 | cand(r2_50,[Id0],50).
match-r3_50 @ rand(N,L,Id0),id(Ni)==>N>0 | cand(r3_50,[Id0],50).
trigger @ trigger, id(Ni) ==> start.

start @ cand(R,IDs,N),start <=> random(0,100,Random),
cand(R,IDs,0,N,N,Random).

normalize @ cand(R,IDs,N,M,UB,Random),cand(R1,IDs2,N1)
<=> M2 is M+N1,UB2 is UB+N1,

cand(R1,IDs2,M,M2,UB2,Random),
cand(R,IDs,N,M,UB2,Random).

drop @ id(Ni)\ cand(R,IDs,M,M1,100,Random) <=> Random<M | true.

Towards the Implementation of a Source-to-Source Transformation Tool 155

drop @ id(Ni)\ cand(R,IDs,M,M1,100,Random) <=> Random>=M1| true.
choose @ cand(R,IDs,M,M1,100,Random), id(Ni)

<=> M=<Random,Random<M1
|fire(R,IDs),Ni2 is Ni+1,id(Ni2).

apply-r2_50 @ fire(r2_50,[Id0]),rand(N,L,Id0)
<=> N>0 | L=[0|L1] , rand(N-1,L1).

apply-r3_50 @ fire(r3_50,[Id0]),rand(N,L,Id0)
<=> N>0 | L=[1|L1] , rand(N-1,L1).

The rule start triggers the probability normalization by replacing the first can-
didate rule cand/3 by cand/6. The additional arguments are a list of the con-
straint identifiers that were matched in the head of the rule, the lower bound and
the upper bound of the rule probability interval. In addition, the last argument
is a random number in the interval from 0 to the sum of all rule probabilities cal-
culated by the built-in Prolog predicate random/3. The rule normalize keeps on
replacing the rest of the candidate rules represented through cand/3 constraints
by the extended constraint cand/6, each with the lower and upper bound inter-
val of the corresponding probability of the rule. The arguments of fire/2 are
the rule name and the list of constraints identifiers that were matched in the
head. Otherwise, the cand/6 constraint is replaced by true by the rules drop
which means that this rule will not be applied.

4.2 Transformation for Constraint Handling Rules with
User-Defined Rule Priorities

CHRrp extends CHR with user-defined rule priorities [8]. Rule priorities improve
the expressivity of CHR as they allow for a different choice for rule application
depending on the respective rule priority, resulting in a more flexible execution
control. The operational semantics wp for CHRrp only adds restrictions to the
applicability of the “Apply” transition of the abstract CHR semantics wt. The
rest of state transitions are equivalent in both semantics. For CHRrp programs in
which all rule priorities are equal, every execution strategy under wt is consistent
with wp. Thus, such programs can be executed using the refined operational
semantics as implemented by the current CHR implementations.

In [8], a source-to-source transformation approach that uses some of the com-
piler directives is presented. In [8], constraints are not activated when introduced
to the store by the default transitions of the refined operational semantics, which
are the “Activate” and “Reactivate” transitions [3]. Instead, they remain passive
using the compiler directive passive/1 and are scheduled for activation with the
corresponding rule priority. After trying all the possible matching rules with the
constraints in the query, the highest priority scheduled constraint is activated.

CHRrp is implemented using the proposed approach with forward execution,
multiple-rules matching and a rule priority candidate set resolution strategy. The
following example [8] shows the difference in the execution of the refined opera-
tional semantics and CHRrp . For the same initial query a, the refined operational
semantics will apply the rules in the following order: 1,2,4,3. While in CHRrp ,

156 G. Fakhry et al.

rule 3 has higher priority than rule 4. Therefore, the rules will be applied in the
following order: 1,2,3. Rule 4 will not be applied anymore because constraint
a is removed by rule 3. The same example is used to illustrate the proposed
transformation approach.

r1_1 @ a ==> print(’rule 1 \n’),b .
r2_2 @ a , b ==> print(’rule 2 \n’).
r3_3 @ a <=> print(’rule 3 \n’).
r4_4 @ a , b ==> print(’rule 4 \n’).

The transformation will result in the following program:

extend @ a <=> a(_).

extend @ b <=> b(_).

match-r1_1 @ a(Id0),id(Ni),history(L)

==> \+ member((r1_1,[Id0]),L)|cand(r1_1,[Id0],1).

match-r2_2 @ a(Id0),b(Id1),id(Ni),history(L)

==> \+ member((r2_2,[Id0,Id1]),L)|cand(r2_2,[Id0,Id1],2).

match-r3_3 @ a(Id0),id(Ni) ==> cand(r3_3,[Id0],3).

match-r4_4 @ a(Id0),b(Id1),id(Ni),history(L)

==> \+ member((r4_4,[Id0,Id1]),L)|cand(r4_4,[Id0,Id1],4).

trigger @ trigger,id(Ni) ==> start.

start @ start <=> candList([]).

collect @ candList(L),cand(R,IDs,N) <=> candList([(N,R,IDs)|L]).

choose @ candList(L),id(Ni) <=> sort(L,[(P,H,IDs)|T]),fire(H,IDs),

N2 is Ni+1,id(N2).

apply-r1_1 @ a(Id0)\ fire(r1_1,[Id0]),history(L)

<=> print(’rule 1’), b, history([(r1_1,[Id0])|L]).

apply-r2_2 @ a(Id0),b(Id1)\ fire(r2_2,[Id0,Id1]),history(L)

<=> print(’rule 2’),history([(r2_2,[Id0,Id1])|L]).

apply-r3_3 @ fire(r3_3,[Id0]),a(Id0) <=> print(’rule 3’).

apply-r4_4 @ a(Id0),b(Id1) \ fire(r4_4,[Id0,Id1]), history(L)

<=> print(’rule 4’),history([(r4_4,[Id0,Id1])|L]).

In the transformed program, the rule with the highest priority among the
set of applicable rules is chosen to be applied. The three rules start, collect,
and choose are added to the transformed program to perform the candidate
set resolution according to the priorities of the rules. The rule start initalizes
an empty priority list such that the applicable rules represented by cand/3 are
added to this list by the collect rule. After all cand/3 constraints are added
to the list, the rule choose sorts the list and the rule with the highest priority is
chosen for application. The chosen rule is represented by a new CHR constraint
fire/2, whose first argument is the rule name and the second argument is a list
of identifiers of the head-constraints of the rule. The list of constraint identifiers
is added to ensure that the rule will only be applied with the specific combination
of constraints. In addition, the argument of constraint is incremented to allow
match rules to be tried again.

Towards the Implementation of a Source-to-Source Transformation Tool 157

4.3 Transformation for CHRiSM

CHRiSM is a probabilistic extension of CHR that is based on CHR and PRISM
[9]. The main difference between the semantics of CHRiSM and PCHR is that the
rule probabilities have a localized meaning. The probability of a rule application
does not depend on the other applicable rules. CHRiSM semantics adds two
features to CHR [9]. First, a defined probability for the entire rule application
given by the “Maybe-Apply” state transition. In the “Maybe-Apply” transition,
according to the probability of the rule, it is either applied or not. However, if
the rule is not applied, the propagation history is updated to prevent further
rule application with the same combination of constraints that matched the rule
head. The second feature is the ability to define a probability for each disjunct
in the rule body in CHR∨ [1] given by the “Probabilistic Choice” transition. In
“Probabilistic Choice”, one disjunct is chosen probabilistically according to its
probability relative to the other disjuncts.

In this paper, the transformation for CHRiSM implements programs with
a user-defined rule probability for the entire rule application, corresponding to
the “Maybe Apply” transition only. In CHRiSM operational semantics, a rule
with a probability p means that whenever the rule is applicable, it will only be
applied with a probability p. If the rule probability is not defined, it is set to
uniform distribution 0.5. CHRiSM is implemented using the proposed approach
with forward execution, single-rule matching and a probabilistic rule application
choice.

The following example illustrates the transformation of CHRiSM to the
refined operational semantics (wr). Starting with initial query a, it is proba-
ble that the first rule is applied. If the first rule is applied, then the constraint b
will be added to the constraints store. Consequently, there is a chance to apply
the second rule with probability 0.5, removing constraint a and adding c to the
constraint store. The program is:

r1_50 @ a ==> b .
r2_50 @ b \ a <=> c .

The transformation will result in the following program:

extend @ a <=> a(_).

extend @ b <=> b(_).

extend @ c <=> c(_).

match-r1_50 @ a(Id0)==>cand(r1_50,[Id0],50).

match-r2_50 @ a(Id0),b(Id1)==>cand(r2_50,[Id0,Id1],50).

start @ cand(R,IDs,N) <=> random(0,100,Random),cand(R,IDs,N,Random).

choose-apply @ cand(R,IDs,M,Random) <=> Random=<M | fire(R,IDs,1).

choose-ignore @ cand(R,IDs,M,Random) <=> M<Random | fire(R,IDs,2).

apply-r1_50 @ a(Id0)\ fire(r1_50,[Id0],1) <=>b.

apply-r2_50 @ b(Id1)\ fire(r2_50,[Id0,Id1],1),a(Id0) <=> c.

158 G. Fakhry et al.

ignore-r2_50 @ a(Id0),b(Id1)\ fire(r2_50,[Id0,Id1],2)<=> true.

ignore-r1_50 @ a(Id0)\ fire(r1_50,[Id0],2)<=> true.

In CHRiSM, each rule is given one chance for application with every com-
bination of constraints. In order to achieve that, the constraint id(Ni) is not
added to the head-constraints in the match rules similar to PCHR and CHRrp .
In addition, since the choice is whether to apply the rule or not, there is only
one candidate rule at each computation step, therefore no need to add the rule
trigger.

Whenever a rule is applicable, the cand/3 constraint of the applicable rule
will fire the rule start in the candidate set resolution rules. Similar to “Maybe
Apply” transition in the CHRiSM operational semantics [9], the body of the rule
gets applied with a probability P. The rule start generates a random number
between 0 and 1 and replaces cand/3 with cand/4. The additional argument is
the randomly generated number. The rules choose-apply and choose-ignore
determine whether the rule will be applied according to the randomly generated
number. In both cases, the cand/4 constraint is replaced by fire/3 constraint.
If the randomly generated number is less than the rule probability, the third
argument in fire/3 is set to 1, otherwise it is set to 2.

For simplification and simpagation rules, if the rule is chosen not to be applied
then the removed head-constraints should not be removed from the store. In
order to keep the same instances of removed head-constraints in store when the
probabilistic rule is not applied, each rule in the source program will have an
additional ignore rule in the transformed file. The rule ignore is a simpagation
rule where the head-constraints are added as kept head-constraints. Only the
fire/3 constraint with the last argument set to 2 is to be removed. In addition,
the body of the rule is replaced by true.

4.4 Transformation for Inverse Constraint Handling Rules

The execution of traditional CHR starts from the initial state and applies pro-
gram rules until reaching a fixed point or a final state where no more rules
are applicable. Inverse execution of CHR rules starts from a state and applies
the inverse of program rules in order to reach the initial state. The “Apply”
transition of the inverse CHR is the same as “Apply” transition of the abstract
semantics of CHR but with exchanging the left and right hand side states of the
transition [14]. Inverse CHR is implemented using the proposed transformation
approach with inverse execution of rules, multiple-rules matching and rule pri-
ority candidate set resolution, where the rule priority is the textual rule order.
Thus, the first rule in the program has the highest priority. However, different
resolution strategies could be used. The following example [14] is an exchange
source for elements in a list. Elements are represented by constraint a/2, the
first argument is the index of the element in the list and the second argument is
the value of the element.

eSort @ a(I,V),a(J,W) <=> I>J , V<W | a(I,W),a(J,V).

Towards the Implementation of a Source-to-Source Transformation Tool 159

The transformation will result in the following program:

extend @ a(V2,V1) <=> a(V2,V1,_).

Imatch-eSort @ a(I,W,Id0),a(J,V,Id1),id(Ni)

==> I>J,V<W | cand(eSort,[Id0,Id1],1) ; true.

trigger @ trigger, id(Ni) ==> start.

start @ start <=> candList([]).

collect @ candList(L),cand(R,IDs,N) <=> candList([(N,R,IDs)|L]).

choose @ candList(L),id(Ni) <=> sort(L,[(P,H,IDs)|T]),fire(H,IDs),

N2 is Ni+1,id(N2) ; true.

Iapply-eSort @ fire(eSort,[Id0,Id1]),a(I,W,Id0),a(J,V,Id1)

<=> I>J,V<W | a(I,V) , a(J,W).

The current implementation of the transformer does not distinguish between
user-defined and built-in constraints in reverse execution of programs. Accord-
ingly, the transformation is limited to programs with rules whose body contain
user-defined constraints only.

5 Equivalence Proof

In this section, we will show how the newly transformed file program is able to
capture the needed operational semantics. In other words, we will introduce how
the execution of the rules in the new solver is equivalent to the corresponding
semantics. For proof of concept, we will show the equivalence of the execution of
the transformed program under wt[5] with the execution of the original program
under wp for CHRrp [8].

A state in wt[5] is a tuple in the form 〈G,S,B, T 〉n. The components of
the state are defined as follows: The goal G is a multiset of all unprocessed
constraints. The CHR store S is a set of numbered user-defined constraints that
can be matched with rules in a given program. B is the built-in constraints store.
It is the conjunction of built-in constraints that have been added to the built
in constraint store. The propagation history T is a set of tuples (r, I), where r
is the rule name and I is a list of identifiers of constraints that were matched
in the rule head. Finally, n is a counter representing the next free integer for
constraint identifying. For the sake of brevity, only G and S are shown in the
proof [5].

wr[3] provides a deterministic execution strategy for any goal. Therefore,
for any program P and an initial state S, every derivation for P , S

wr�−−→
P

∗S
′

corresponds to a derivation S
wt�−→
P

∗S
′
. The provided sketch proof is based on the

mapping between wt and wr.

Theorem 1. Given a CHR program P and its corresponding transformed pro-
gram T (P) and two states S1 = 〈G,φ〉 and S2 = 〈G⋃

Aux, φ〉 where G contains
the initial goal constraints and Aux is a set of auxiliary constraints. Then the
following holds:

If S1
wp�−−→
P

∗S1
′
and S2

wt�−−−→
T (P)

∗S1
′ ∪ Aux′ then T (P) is equivalent to P .

160 G. Fakhry et al.

Proof. (Sketch)
Table 1 shows the computational steps of executing one rule of the program

P under wp starting with S1. On the other hand, tables 2 to 5 show the com-
putational steps of executing the transformed program T (P) under wt starting
with S2.

Table 1. Computation steps under wp

〈G1, φ〉 G contains initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 G The store S contains all the activated goal con-
straints and the goal G is empty

�−−−→
apply

∗ 〈G,S〉 G contains the added constraints after the rule
application (if any)

Table 2. Computation of step 1 (Constraints Extending)

〈G⋃
Aux, φ〉 Aux contains trigger and id(1) constraints, G

contains initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 The store S contains all the activated goal con-
straints and the auxiliary constraints

�−−−−−−−−→
apply extend

∗ 〈G′, S〉 G′ contains extended constraints after applying
the extend rules on the initial query constraints

�−−−−−−→
introduce

∗ 〈φ, S〉 The store S contains all the activated extended
constraints in addition to the auxiliary constraints

Table 3. Computation of step 2 (Rule Matching)

�−−−−−−−→
apply match

∗ 〈G′′, S〉 G′′ contains cand/3 constraints after applying the
match rules

�−−−−−−→
introduce

∗ 〈φ, S〉 S contains all the activated cand/3 constraints

�−−−−−−−−→
apply trigger

〈{start}, S〉 The goal contains only one constraint(start)
since it is the only applicable rule

�−−−−−−→
introduce

〈φ, S〉 S contains all the activated cand/3 constraints in
addition to start constraint

A rule in wp is fired through the “apply” transition. However, the “apply”
transition is applicable only to a state with an empty goal. This transition also
ensures that the highest priority rule among the set of applicable rules is the one
fired [8].

Towards the Implementation of a Source-to-Source Transformation Tool 161

Table 4. Computation of step 3 (Candidate Set Resolution)

�−−−−−−−→
apply start

〈{candList([])}, S〉
�−−−−−−→
introduce

〈φ, S〉
�−−−−−−−−→
apply collect

〈{candList(L)}, S〉
�−−−−−−→
introduce

〈φ, S〉 This computation step and the one
above are repeated till no more
cand/3 constraints are available in
store

�−−−−−−−−→
apply choose

〈{fire(R,IDs),id(N)}, S〉
�−−−−−−→
introduce

〈φ, S〉 The store S at this step contains
only one fire/2 constraint

Table 5. Computation of step 4 (Rule Application)

�−−−−−−−→
apply apply

〈G,S〉 The goal G contains the body of the fired rule,
and the store S contains the rest of the activated
constraints after applying the chosen rule

As shown in the last step of each of table 3 and 4, the result step contains
an empty goal. Thus before firing any rule in table 5, the state contains an
empty goal. Table 5 shows the rule application step. Therefore, the transformed
program only fires the rule when the goal of the state is empty.

In Section 4.1, we showed how the rule matching step finds the set of all
applicable rules. The set of rules of Table 3 on the other hand chooses the
highest priority rule among this set using the built-in constraint sort/2.

The only difference between the goal of S1 and S2 is the set of auxiliary
constraints. As shown, the conditions required by wp to fire a rule in P are
the same as the conditions required by wt to fire a rule in T (P). Consequently,
the same rules will be fired in both programs with the same order. Thus, both
derivations add the same constraints to the final store. Thus, at the end of both
derivations the only difference in the result states S1

′
and S1

′ ∪Aux′ is auxiliary
constraints. Accordingly, omitting the auxiliary constraints from S1

′ ∪Aux′ will
result in S1

′
. Hence, we proved that the transformed program T (P) is equivalent

to the source program P .

6 Conclusion

This paper introduced a source-to-source transformation approach to implement
a set of CHR operational semantics that have a different execution model than

162 G. Fakhry et al.

the refined operational semantics. The source programs written in different oper-
ational semantics are transformed into equivalent programs written under the
refined operational semantics. Moreover, the execution of the transformed pro-
gram does not need accessing the compiler or changing the runtime environment.

The transformation approach allows a different rule application choice when
there is more than one applicable rule compared to the top-down program order
of the refined operational semantics. Moreover, it allows forward and inverse
execution of CHR programs. A sketch proof is provided to show the equivalence
between the transformed programs and the source programs.

For future work, we intend to extend the transformation approach to imple-
ment a larger set of CHR operational semantics by incorporating additional prop-
erties to the current model. In addition, we intend to investigate the result of
combining the properties of the execution model of different operational seman-
tics such as combining inverse CHR and CHRrp .

References

1. Abdennadher, S., Schütz, H.: CHR∨: A Flexible Query Language. In: Andreasen,
T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495,
pp. 1–14. Springer, Heidelberg (1998)

2. Abdennadher, S., Sharaf, N.: Visualization of CHR through Source-to-Source
Transformation. In: Dovier, A., Costa, V.S. (eds.) Technical Communications of
the 28th International Conference on Logic Programming (ICLP 2012). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 17, Dagstuhl, Germany,
pp. 109–118. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

3. Duck, G.J., Stuckey, P.J., Garcia de la Banda, M., Holzbaur, C.: The Refined
Operational Semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz,
V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

4. Frühwirth, T.: Theory and Practice of Constraint Handling Rules, Special Issueon
Constraint Logic Programming . The Journal of Logic Programming 37(13), 95–
138 (1998)

5. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (August
2009)

6. Frühwirth, T., Di Pierro, A., Wiklicky, H.: Probabilistic ConstraintHandling Rules.
In: Comini, M., Falaschi, M. (eds.) WFLP 2002: Proc. 11th Intl. Workshop on
Functional and (Constraint) Logic Programming, Selected Papers, vol. 76 (June
2002)

7. Frühwirth, T.W., Holzbaur, C.: Source-to-Source Transformation for a Class of
Expressive Rules. In: Buccafurri, F. (eds.) APPIA-GULP-PRODE, pp. 386–397
(2003)

8. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for chr.
In: Leuschel, M., Podelski, A. (eds.) PPDP, pp. 25–36. ACM (2007)

9. Sneyers, J., Meert, W., Vennekens, J.: CHRiSM: CHance Rules induce Statisti-
cal Models. In: Proceedings of the Sixth International Workshop on Constraint
Handling Rules, pp. 62–76 (2009)

10. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As Time Goes By:
Constraint Handling Rules - A Survey of CHR Research between 1998 and 2007
10(1), 1–47 (2010)

Towards the Implementation of a Source-to-Source Transformation Tool 163

11. Sneyers, J., Van Weert, P., Schrijvers, T., Demoen, B.: Aggregates in Constraint
Handling Rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670,
pp. 446–448. Springer, Heidelberg (2007)

12. Van Weert, P., Sneyers, J., Schrijvers, T., Demoen, B.: Extending CHR with Nega-
tion as Absence. Technical report CW 452, 125–140 (July 2006)

13. Wielemaker, J., Frühwirth, T., De Koninck, L., Triska, M., Uneson, M.: SWI Prolog
Reference Manual 6.2.2. (September 2012)

14. Zaki, A., W. Frühwirth, T., Abdennadher, S.: Towards inverse execution of con-
straint handling rules. TPLP, 13 (4-5-Online-Supplement) (2013)

	Towards the Implementation of a Source-to-Source Transformation Tool for CHR Operational Semantics
	1 Introduction
	2 Constraint Handling Rules
	2.1 Syntax
	2.2 Operational Semantics

	3 The Transformation Approach
	3.1 The Transformed Program Structure
	3.2 Propagation History Implementation

	4 Source-to-Source Transformation for Different CHR Operational Semantics
	4.1 Transformation for Probabilistic Constraint Handling Rules
	4.2 Transformation for Constraint Handling Rules with User-Defined Rule Priorities
	4.3 Transformation for CHRiSM
	4.4 Transformation for Inverse Constraint Handling Rules

	5 Equivalence Proof
	6 Conclusion
	References

