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Abstract—The multiplication of a variable by a single constant
selected from a set of fixed constants at a time, called the time-
multiplexed constant multiplication (TMCM), is frequently used
in digital signal processing (DSP) systems. Existing algorithms
implement the TMCM operation using multiplexers (MUXes),
adders/subtractors, and shifts, and reduce its complexity by
merging single/multiple constant multiplication graphs and by
sharing the basic structures. This paper introduces ARION, that
exploits the most common partial terms in the TMCM design
on top of the previously proposed DAGfusion algorithm, which
merges the single constant multiplication graphs. Experimental
results show that ARION obtains significantly better solutions
than prominent TMCM methods.

I. INTRODUCTION

The multiple constant multiplications (MCM) operation,
that realizes the multiplication of fixed constants by a variable,
dominates the complexity of many DSP systems, e.g, filters
and linear transforms. Since the implementation of a multiplier
in hardware is expensive in terms of area and the constants are
determined beforehand, the constant multiplications are gen-
erally realized using shifts and adders/subtractors. Note that
shifts can be implemented using wires without representing
any hardware cost. The prominent MCM algorithms [1]–[4]
find the fewest number of adders/subtractors by sharing the
partial products among the constant multiplications.

However, realizing constant multiplications simultaneously
in a parallel architecture increases the design complexity
significantly as the number and size of constants increase.
Hence, constant multiplications are generally implemented in
a folded architecture, where at each time, a single constant
selected from a set of constants is multiplied by an input
variable, which is called the TMCM operation. In addition to
its straightforward implementations given in [5], the TMCM
operation can be realized using a set of basic structures that
consists of an adder, a subtractor, or an adder/subtractor (de-
termined by a select input), all of which may include MUXes
at its inputs. Thus, the TMCM problem is defined as finding
a set of basic structures that realizes the TMCM operation
and leads to a TMCM design with minimum complexity. In
existing algorithms [5]–[10], the complexity of the TMCM
operation is determined based on the design platform, i.e.,
field programmable gate arrays (FPGA) or application specific
integrated circuits (ASIC). However, the exact algorithm [6]
can only be applied to a small number of constants and there
exists no approximate method that ensures the best solution on
every TMCM operation. The reader is referred to [5], [10] for a
detailed overview on previously proposed TMCM algorithms.

This paper introduces our algorithm, called ARION, that
targets single-output TMCM operations for the ASIC design
and combines both the exploitation of the most common partial
terms and merging of single constant multiplication (SCM)
graphs which is realized by DAGfusion [5].

II. ARION: A TMCM ALGORITHM

ARION takes a set of multiple positive1 constants C of
the TMCM operation as an input and returns a set of basic
structures realizing TMCM. Its main steps are as follows:

1) Find a solution to C using DAGfusion and compute its
implementation cost costDAG as described in [5].

2) In a preprocessing phase, determine the non-redundant
target set T , that ARION will be applied to, from C.

3) Add T to an empty set, called Y , that will include the sets
of constants which are required to realize T . Determine
the initial node(s) of the decision tree that will be used
to decide which realization of a set of constants will be
chosen in order to have the minimum design complexity.

4) Take an element from Y , Yi. Find alternative possible
realizations of Yi using a basic structure with the smallest
cost. Add the partial sets of constants (PSC) required to
realize Yi to the set Y . Update the decision tree with
these realizations and their implementation costs.

5) Find the implementation of Yi using DAGfusion and
compute its cost.

6) If all elements of Y are not handled yet, go to Step 4.
7) Find a set of basic structures that realize C with mini-

mum complexity, costARION , using the decision tree and
the solution of DAGfusion on each Yi found in Step 5.

8) If costARION < costDAG, return the solution found by
ARION. Otherwise, return the solution of DAGfusion.

These steps are explained briefly through a simple TMCM
example with C = {8,46,58,32} in the next subsections.

A. Step 1: Finding a Solution with DAGfusion

The solution of DAGfusion on C is given in Fig. 1(a), where
a number next to an edge denotes the amount of left shift and
select inputs of MUXes are not given for the sake of clarity.

B. Step 2: Preprocessing Phase

We eliminate the repeated constants of C because they are
redundant. Note that this elimination requires a combinational
logic to map the primary select input of the TMCM operation

1It is always assumed that the sign of a constant is handled where the
constant multiplication is required using an adder/subtractor.
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Fig. 1. Some results obtained by ARION on {8,46,58,32}: (a) solution of
DAGfusion; (b) decision tree constructed in ARION; (c) solution of ARION.

into the select inputs of MUXes and adders/subtractors. The
smallest amount of left shift lsc on the constants of C is deter-
mined, and the constants are divided by 2lsc . The constants of
C, that are 1, denoting the input variable, or its shifted versions,
are removed from C to a set called I and the elements of the
target set T are determined as the elements of C. Note that
when ∣I∣ ≥ 1 and T is not empty, we need a MUX, whose
inputs are the elements of I and the output of the TMCM
operation realizing T which will be found. When ∣I∣ ≥ 2 and
T is empty, a MUX is also required. Otherwise, no MUX is
needed. For our example, lsc is 1, I is found as {4, 16}, T is
determined as {23, 29}, and the MUX, whose output is shifted
by lsc times, is depicted at the bottom of Fig. 1(c).

C. Step 3: Determining the Initial Nodes of the Decision Tree

We add the target set T to Y and determine the initial node(s)
of a decision tree. As shown in the decision tree of Fig. 1(b)
constructed for our example, it includes three different types of
nodes: i) an S node denotes a set of constants in Y , Yi; ii) an R
node stands for a realization of Yi; and iii) a X node represents
a set of constants including only 1, i.e., the input variable, or
its shifted versions. An edge presents a connection between
an R node and an S or X node, where its value denotes the
cost of an operator realizing the S or X node. If no operator
is required for the realization of the S or X node, the value of
the associated edge is zero, which is not shown in Fig. 1(b).

Thus, if a MUX is used in Step 2, the decision tree starts
with an R node that is connected to an S node denoting Y1,
i.e., T , with an edge whose value is the cost of this MUX.
Otherwise, its initial node is an S node denoting Y1. For our
example, the initial nodes can be found in Fig. 1(b).

D. Step 4: Finding Promising Realizations

This step is applied to Yi including more than one constant.
Otherwise, the solution of DAGfusion (Step 5) is used.

As done in [4], we find all possible realizations of each
constant of Yi by decomposing its nonzero digits in two partial
terms when it is defined under minimal signed digit (MSD)
representation. Note that a signed digit number system uses
the digit set {1, 0 1}, where 1 denotes -1, and in MSD, a
constant may have alternative representations, all with mini-
mum number of nonzero digits. Fig. 2(a) presents the possible
realizations of the elements of Y1 = {23,29}. Removing the

same realizations of 23 and 29, i.e., −1 + 24 and 32 − 3,
respectively, there exist 5 implementations for both constants.

Our aim is to find a realization (an adder or a subtractor)
for each constant in Yi such that these operations include the
minimum number of distinct partial terms at their inputs. The
reason behind this is common partial terms reduce the sizes of
MUXes in the basic architecture and the number of elements
in PSC. This problem is formalized as a 0-1 integer linear
programming (ILP) problem.

We represent the possible implementations of constants in
a Boolean network that includes only AND and OR gates. An
operation (an adder or a subtractor) realizing the constant is
represented by an AND gate. For an adder, two AND gates are
generated and are denoted as ANDp1+p2 and ANDp2+p1 due to
the commutative law of addition. These two AND gates are also
combined with an OR gate, denoted as ORp1&p2 , indicating that
both of them generate the same constant with the same partial
terms, but on different inputs. For a subtractor, we assume
that the first input is the partial term with the positive sign
and the second input is the one with the negative sign, and
we generate an AND gate denoted as ANDp1−p2 . For each
constant c j of Yi, an OR gate, ORc j , is generated to combine
all possible realizations of c j. Each partial term pk at the first
or second input of an operation is denoted as an optimization
variable, O1∣pk∣ or O2∣pk∣, respectively. The network generated
for Y1 = {23,29} is shown in Fig. 2(b).

The objective function of the 0-1 ILP problem is obtained
as a linear combination of optimization variables, where the
cost value of each optimization variable is 1. Its constraints
are obtained by finding the conjunctive normal form (CNF)
formulas of each gate in the network and expressing each
clause of the CNF formulas as a linear inequality, as described
in [11]. For example, a 2-input AND gate, c = a ∧ b, is
translated to CNF as (a+ c)(b+ c)(a+ b+ c) and converted
to linear constraints as a− c ≥ 0, b− c ≥ 0, −a−b+ c ≥−1.
Also, the outputs of OR gates associated with constants, ORc j ,
are set to 1, since they need to be implemented.

This problem is given to a generic 0-1 ILP solver SCIP
(http://scip.zib.de/) and a minimum solution is found. If the
solution does not include any common partial terms, then this
process is terminated and the solution of DAGfusion (Step 5)
is determined to be the only realization of Yi. Otherwise, the
operation in the basic structure is determined as: an adder, if
all selected operations (the outputs of AND gates set to 1 by
SCIP) are adders; a subtractor, if all selected operations are
subtractors; and an adder/subtractor, otherwise. Also, the PSC
and the set of shifted versions of the input variable (SIV) are
determined based on the first and second inputs of all selected
operations. To do so, the partial terms on the first (second)
inputs of all selected operations are grouped in a set G1 (G2),
and the procedure given in Step 2 is applied, where G1 (G2),
PSC, and SIV correspond to C, T , and I in Step 2, respectively.
For our example, according to a solution of SCIP, 23 and 29
are realized as 31−8 and 31−2, respectively, which require a
basic structure including a subtractor, leading to G1 = {31,31}
and G2 = {8,2}. For G1, PSC is found as {31} and SIV is
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23=

⎧⎨
⎩

101001 =

⎧⎨
⎩

100000+001001 = 32−9
001000+100001 =−8+31
000001+101000 =−1+24

011001 =

⎧⎨
⎩

010000+001001 = 16+7
001000+010001 = 8+15
000001+011000 =−1+24

29=

⎧⎨
⎩

100101 =

⎧⎨
⎩

100000+000101 = 32−3
000100+100001 =−4+33
000001+100100 = 1+28

100011 =

⎧⎨
⎩

100000+000011 = 32−3
000010+100001 =−2+31
000001+100010 =−1+30
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(a) (b)
Fig. 2. (a) Possible implementations of 23 and 29 under MSD; (b) Boolean network generated for the realizations of 23 and 29 under MSD.

empty. For G2, PSC is empty and SIV is found as {4,1} which
requires a MUX whose output is shifted by 1 times.

There may exist more than one minimum solution to this
problem, all of which lead to different realizations of Yi

with different costs. We iteratively obtain another minimum
solution by adding a single constraint to the 0-1 ILP problem,
that prohibits the previous solution to be a solution again, and
by solving this problem. In general, this constraint has the form
of AND1+AND2+ . . .+ANDm ≤ m−1, where m denotes the
number of constants in Yi and AND j with 1 ≤ j ≤ m denotes
the AND gate set to 1 for each constant of Yi in the previous
solution. If all operations in the previous solution are adders,
rather than the AND gates, the OR gates ORp1&p2 , combining
two possible realizations, are stated in this constraint to avoid
a similar solution. If this solution includes a number of distinct
partial terms greater than the minimum (found without any of
these constraints in the first 0-1 ILP problem), the process of
finding alternative solutions is stopped. It is also terminated
when up to 100 minimum solutions2 are considered. All other
realizations of 23 and 29 with minimum number of distinct
partial terms at their inputs are found as i) 24−1 and 30−1;
ii) 24−1 and 28+1; iii) 32−9 and 32−3.

After possible realizations of Yi are found, the actual cost of
each basic structure is computed as described in [5]. The cost
values of all PSC in each realization of Yi are also estimated.
It is assumed that max(Oscm(c j)) adders/subtractors, where
Oscm(c j) denotes the minimum number of operations required
to realize SCM of c j in the PSC [1], are needed and both inputs
of an adder/subtractor include a MUX. Thus, all realizations
of Yi are sorted according to the actual cost value of the basic
structure plus the estimated cost values of its all PSC. Then, at
most 5 realizations3 with the smallest cost value are selected
to be possible realizations of Yi. All PSC required in these
realizations are added to Y .

The realizations of Yi (denoted as R nodes) and all PSC
(denoted as S nodes) and SIV (denoted as X nodes) in its
realizations are added to the decision tree with the implemen-
tation cost of an operator. While the edge value between an S
node and an R node represents the cost of an operation, the

2Although more solutions can yield less complex TMCM designs, the
runtime of ARION is increased due to more 0-1 ILP problems to be solved.

3Although more possible realizations can lead to better solutions, the
runtime of ARION is increased due to more PSC to be considered.

edge value between an R node and a X or S node stands for
the cost of a MUX if it is required (Fig. 1b).

E. Step 5: Finding an Alternative Realization with DAGfusion

We apply DAGfusion to Yi, find a solution, compute its
implementation cost, and record this value. The reason behind
that is it may obtain a realization of Yi which is never
considered in Step 4, since the possible implementations of
each constant in Yi are limited to its MSD representation.
DAGfusion is also used to realize Yi including one constant
with minimum number of operations, e.g., 31 in Fig. 1(b).

F. Step 7: Finding a Solution with Minimum Complexity

After all elements of Y are considered, starting from the X
nodes in the decision tree, the minimum implementation cost
of each Yi is computed considering its possible realizations.
Then, this value is compared to that found using DAGfusion on
the same Yi and the implementation (the one obtained in Step
4 or in Step 5), that has the minimum value, is determined.
This process iterates level by level on the decision tree until the
initial node is reached. Then, starting from the initial node, we
choose the implementations with the minimum cost, forming
a set of operations and MUXes, and return costARION . For our
example, these implementations are shown in bold lines in
Fig. 1(b) that lead to Fig. 1(c).

G. Step 8: Determining the Final Solution

If costARION is smaller than costDAG, then the solution found
in Step 7 is returned. Otherwise, the solution of DAGfusion
found in Step 1 is returned. For our example, final solution is
the one obtained in Step 7.

III. EXPERIMENTAL RESULTS

In this section, we present the results of ARION on randomly
generated instances and on two benchmark sets, and compare
with those of prominent TMCM algorithms. Note that ARION

was written in MATLAB and was run on a PC with Intel Xeon
at 2.4GHz and 10GB memory.

For the comparison of ARION with DAGfusion, we used
randomly generated instances where the bitwidth of constants
(bwc) varies in between 6 and 14 in increment of 2 and the
number of constants (n) ranges between 4 and 20 in increment
of 4. For each group, there were 30 instances, a total of 750
instances. Table I presents the results of algorithms, where #BS

330



TABLE I
SUMMARY OF ALGORITHMS ON RANDOMLY GENERATED INSTANCES.

bwc n 4 8 12 16 20

6

#BS 19 24 13 17 19
Avg Gain 10.1 9.4 5.0 7.5 6.5
Max Gain 26.1 22.2 15.2 25.1 16.7
CPU DAGfusion 0.2 0.7 1.1 1.6 2.2
CPU ARION 5.8 17.8 33.5 36.7 25.2

8

#BS 23 25 13 18 15
Avg Gain 10.8 7.4 5.0 4.5 4.8
Max Gain 29.7 17.2 21.0 21.8 19.3
CPU DAGfusion 0.2 1.2 1.8 2.7 3.1
CPU ARION 16.2 50.8 83.0 137.1 206.9

10

#BS 14 20 15 15 11
Avg Gain 5.9 8.7 5.1 5.4 5.5
Max Gain 28.8 20.6 22.5 15.6 16.7
CPU DAGfusion 0.2 2.3 7.2 16.8 30.3
CPU ARION 40.9 102.6 228.4 439.2 718.9

12

#BS 22 20 19 15 12
Avg Gain 9.0 9.1 8.2 5.0 6.9
Max Gain 28.8 25.0 33.4 19.6 26.8
CPU DAGfusion 0.2 6.8 32.5 63.5 82.7
CPU ARION 80.5 218.4 417.9 607.3 1159.1

14

#BS 26 19 20 18 16
Avg Gain 11.6 12.5 7.5 7.5 8.2
Max Gain 34.5 32.0 25.2 19.3 30.9
CPU DAGfusion 0.3 15.1 55.1 94.9 160.5
CPU ARION 174.2 838.0 955.6 1087.9 1184.1

TABLE II
AREA COST ESTIMATION FOR DATA SET A.

Method Add Sub Add/Sub MUX Cost

DAGfusion 0 0
1 (12-bit) 1 (14-bit) 3×1

4704
1 (14-bit) 1 (16-bit) 7×1

[9] 1 (10-bit) 1 (12-bit)

1 (8-bit) 2×1

9578

1 (10-bit) 1 (9-bit) 2×1
2 (11-bit) 2 (10-bit) 2×1
1 (12-bit) 1 (11-bit) 2×1
1 (16-bit) 1 (12-bit) 2×1

1 (16-bit) 2×1

[10] 0 0
1 (12-bit) 1 (14-bit) 3×1

46481 (14-bit) 1 (11-bit) 4×1
1 (16-bit) 4×1

ARION 1 (12-bit) 0 1 (14-bit)

1 (10-bit) 2×1

4500
1 (11-bit) 2×1
1 (14-bit) 2×1
1 (16-bit) 6×1

denotes the number of better solutions that ARION found with
respect to DAGfusion in terms of design complexity, computed
using the 0.18-μm standard cell library as described in [5]
when the bitwidth of the input variable (bwi) was 16. Also, Avg
Gain and Max Gain denote the average and maximum gain in
percentage obtained by ARION over DAGfusion, respectively.
The average runtime of both methods is presented in seconds.

Observe that ARION can find significantly better solutions
than DAGfusion, where the maximum gain is 34.5% obtained
on a TMCM instance with 14-bit 4 constants. On average, it
obtains better solutions than DAGfusion, where the maximum
#BS value is 26 out of 30 instances found on 14-bit 4 constants.
However, its runtime increases as n and bwc increase, since the
number of sets of constants considered in ARION is increased.
At most, it is 555 times slower than DAGfusion, obtained on
TMCM instances with 14-bit 4 constants.

For the comparison of ARION with prominent TMCM
algorithms, it was applied to two data sets, A and B, used
in [10]. Tables II and III present the results of algorithms,
where Cost is computed using the 0.18-μm standard cell
library when bwi is 8 as in [10]. Note that the results of other
algorithms were taken from [10] as reported.

TABLE III
AREA COST ESTIMATION FOR DATA SET B.

Method Add Sub Add/Sub MUX Cost

DAGfusion 1 (19-bit) 1 (16-bit) 1 (12-bit)

2 (12-bit) 2×1

6365
1 (19-bit) 2×1
1 (16-bit) 3×1
1 (20-bit) 3×1

[9]
1 (11-bit)

0 1 (11-bit)
3 (11-bit) 2×1

50741 (12-bit) 1 (14-bit) 2×1
1 (17-bit)

[10] 1 (17-bit)

1 (11-bit)

0

1 (14-bit) 2×1

5986
1 (12-bit) 1 (16-bit) 2×1
1 (14-bit) 1 (17-bit) 2×1

1 (18-bit) 3×1

ARION 1 (10-bit)
1 (15-bit)

0
1 (11-bit) 2×1

47131 (18-bit) 1 (12-bit) 3×1
1 (18-bit) 3×1

Observe that the solutions of ARION lead to the least
complex TMCM designs on sets A and B, where the gain over
the second best solution is 3.18% and 7.11%, respectively.

IV. CONCLUSIONS

This paper introduced a TMCM algorithm ARION that finds
alternative basic structures realizing a given set of constants
with the smallest complexity and incorporates an efficient
TMCM method DAGfusion to consider another possible im-
plementation of the set of constants. In ARION, finding such
basic structures was formalized as a 0-1 ILP problem and the
alternative realizations were handled with the use of a decision
tree. Experimental results showed that ARION can find signif-
icantly better solutions than prominent TMCM algorithms.
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