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Abstract

Glioblastoma multiforme (GBM) is the most aggressive and malignant among

brain tumors. In addition to uncontrolled proliferation and genetic instability,

GBM is characterized by a diffuse infiltration, developing long protrusions that

penetrate deeply along the fibers of the white matter. These features, combined

with the underestimation of the invading GBM area by available imaging tech-

niques, make a definitive treatment of GBM particularly difficult. A multidisci-

plinary approach combining mathematical, clinical and radiological data has the

potential to foster our understanding of GBM evolution in every single patient

throughout his/her oncological history, in order to target therapeutic weapons in a

patient-specific manner. In this work, we propose a continuous mechanical model

and we perform numerical simulations of GBM invasion combining the main

mechano-biological characteristics of GBM with the micro-structural information

extracted from radiological images, i.e. by elaborating patient-specific Diffusion

Tensor Imaging (DTI) data. The numerical simulations highlight the influence

of the different biological parameters on tumor progression and they demonstrate

the fundamental importance of including anisotropic and heterogeneous patient-

specific DTI data in order to obtain a more accurate prediction of GBM evolution.

The results of the proposed mathematical model have the potential to provide a

relevant benefit for clinicians involved in the treatment of this particularly aggres-

sive disease and, more importantly, they might drive progress towards improving

tumor control and patient’s prognosis.

1 Introduction

Malignant brain tumors are among the most aggressive and lethal forms of cancer, with

and estimated prevalence of 138,054 cases in 2010 in the United States [62]. Malig-

nant gliomas (MG), which are derived from transformed glial cells, represent almost

80% of primary brain tumors, with an incidence of 4.11 new cases every 100,000 in-

habitants in adult population, that increases two to four times in people from the sixth

to eighth decades of life [28]. Glioblastoma multiforme (GBM), World Health Orga-

nization grade IV [50], is the most common and biologically aggressive type of MG.

Characteristic features of GBM are uncontrolled cellular proliferation, diffuse infiltra-

tion and invasion, necrosis, angiogenesis and genetic instability. These conditions, to-

gether with a putative role of a subpopulation of Cancer Stem Cells (CSCs), make a

definitive treatment particularly difficult. In particular, the infiltrated nature of tumoral

glial cells, with difficulty in distinguishing intraoperatively the viable tumor tissue at

the margin of the resection [82], makes a complete surgical resection feasible only in

a low percentage of cases [47, 53]. Some advances in technology, in particular the use

of fluorophore like 5-ALA [71] or fluorescein [1, 2], or intraoperative MRI [68] have

led to an increase in resection percentage. However, GBM still harbors a very poor
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prognosis with a median survival of only 18 months even when maximal therapy con-

sisting of complete surgical removal, radiotherapy (RT) and chemotherapy (CHT) is

performed [72]. In fact, GBM almost invariably recurs at the margin of the resection

cavity, independently from the post-operative treatment administered. The biological

characteristics of the GBM together with the tight relationship of the tumor with elo-

quent areas of the brain make it difficult to develop aggressive local therapies that could

theoretically allow a better local tumor control. In addition, the impossibility to predict

the areas where tumor cells will regrow after treatment is one of the factors that limit

the chance of targeting the therapies toward these areas immediately at the beginning

of the clinical history and during disease progression. A multidisciplinary approach in-

cluding new strategies of radiological diagnosis associated with mathematical modeling

of tumor growth in a patient-specific manner would probably allow a better definition

of the therapeutic options in every single patient with GBM, with a possible impact

on tumor control and survival. Indeed, biomathematical modeling could be helpful to

clinicians in developing therapeutic strategies as it potentially offers a predictive tool

for investigating the dynamics of cancer formation and evolution. In particular, the

ultimate goal of biomathematics for cancer is the identification of the most suitable

theoretical models and simulation tools, both to describe the biological complexity of

carcinogenesis and to predict tumor evolution, in order to improve therapeutic strategies

and, ultimately, patients’ quality of life. Therefore, during the last decades, the capabil-

ity of tumor to grow and invade the surrounding tissue has gained the attention of the

mathematical and the physical research communities and numerous mathematical mod-

els have been proposed. Without loss of general characteristics, GBM growth models

can be classified into three categories, based on their observation scale [22, 90]: cellu-

lar and microscopic models (discrete models), that describe the behavior of individual

cells and eventually the interactions between cells and their environment [20, 54]; hy-

brid discrete-continuous models [43, 66], in which a continuous deterministic model is

coupled with a discrete cellular automata-like approach and, finally, macroscopic (con-

tinuous) models [14, 22, 66, 73, 77, 84], in which tissue level processes are described by

macroscopic averaged quantities, e.g. volumes, densities or flows. A more exhaustive

description on mathematical modeling in tumor research is reported by the extensive

reviews [6, 15, 34, 65].

The most widely used continuous GBM models are reaction-diffusion models, encap-

sulating a simple diffusion-reaction equation for the tumor cells [14, 85, 88]. These

diffusive models can eventually account for the heterogeneity of the brain tissue thanks

to a space-dependent glioma diffusion coefficient [75,77,79], whose value in the white

and in the grey matter can be estimated using in vivo post-contrast T1- weighted and

T2-weighted MRI data [55, 76]. These reaction-diffusion models, despite their sim-

plicity, have been applied also for predicting survival of individual patients following

resection or other treatments, such as RT or CHT [9, 23, 55, 73, 76, 78].

Some efforts to include the anisotropic motion of cells, which have been shown to play

an important role in brain tumor invasion [26,33], can be found in the reaction-diffusion

GBM model proposed in [39], where the cancer cell diffusion tensor was estimated us-

ing the diffusion tensor imaging (DTI), an imaging technique introduced in the early
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90s [83]. DTI is based on Diffusion Weighted Magnetic Resonance Imaging (DW

MRI), which measures the magnitude of water diffusion in biological tissues and pro-

vides indirect information on fibers structure, since the random brownian motion of

water molecules is highly restricted by the surrounding geometry. In the DW images,

the local magnitude of water diffusion along a specific direction is described by an

apparent diffusion coefficient. For anisotropic tissues, such as white matter, a single

coefficient is not sufficient to describe the whole diffusive process and at least six in-

dependent components are required, which are encapsulated in the symmetric diffusion

tensor D. Therefore, DTI is nowadays the only non-invasive method for characterizing

the micro-structural architecture of the brain bundles, for deriving the preferential di-

rection of water diffusion and, at the same time, of cell migration. Indeed, Deisboeck

et al. [26, 91] experimentally proved that also the motion of glioma cells, as the one of

water molecules, follows white matter fiber tracts.

Despite providing the preferential direction of cell migration, DTI does not give a di-

rect measurement of the extent of cell motion and growth along the fiber paths, which is

regulated by different chemical and mechanical cues [21, 44, 69]. Since the interaction

of tumor cells with white matter fiber bundles is far more complex than simple water

diffusion, a pure reaction-diffusion model such as the one proposed in [39, 76, 78] can-

not take into account the generation and accumulation of forces occurring between the

host and the malignant tissue and within the tumor itself [32].

Mechanical and biochemical interactions occurring inside the tumor cells and between

the solid tumor and the external environment can be easily incorporated in discrete/hybrid

models and in continuous mechanical models. In particular, at the cellular scale, no-

table examples can be found in the discrete patient-specific agent-based glioma model

proposed by Chen et al. [20] and in the hybrid model defined in [43] by the coupling of

a cellular automaton model for brain tumor growth and the diffusion of nutrients. Even

if the limitation in the number of entities (and thus in the tumor dimension) that can be

simulated by a discrete/hybrid model might be circumvented considering that a single

voxel represents several thousand cells [20], a continuous representation of the tumor

evolution might still be preferable, since it allows modeling with low computational

costs the temporal and spatial macro-scale evolution of the tumour, which is the key

feature required in clinical practice.

Indeed, continuous mechanical models and multiphase models [3, 4], based on the the-

ory of mixture [12], seem more suitable to correctly describe tumor growth process at a

macroscopic scale, as they incorporate the mass, momentum and energy balances that

drive the system evolution [16,17,25,87]. Even though some recent attempts to include

mechanical balance laws into the mathematical description of GBM growth and evolu-

tion have been done [10, 22, 36], patient-specif heterogeneous and anisotropic data in

continuous mechanical models have never been considered.

Therefore, in the present paper, starting from the work done in [19, 87], we propose

and numerically simulate a patient-specific mechanical model of glioblastoma tumor

growth with diffuse interface. The model is derived considering the mass and mo-

mentum balance of a binary mixture composed by tumor cells and healthy environ-

ment (including interstitial liquid and healthy cells) and it consists of a fourth order
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non-linear advection-reaction-diffusion equation for the tumor phase coupled with a

reaction-diffusion equation for the nutrients. Enforcing thermodynamic consistency,

the model takes into account the viscous interactions among the phases and the mechan-

ical interactions responsible of cell-cell and cell-matrix adhesion forces. An interesting

aspect of the proposed approach is the introduction of the directed motion of tumor

cells towards increasing gradient of nutrients (i.e. chemotaxis) and along fibers path,

that leads to the definition of a modified chemotactic flux [45]. In this way, patient-

specific heterogeneous and anisotropic DTI data not only define the components of the

diffusion tensor D representing nutrients’ diffusion, but they also describe the tensor

of preferential directions, T used to describe the local cell motility in response to the

diffusing nutrients [45]. Consequently, the model is not only capable of describing the

different advective and diffusive behavior of cancer cells into the white and gray matter,

but it also directly represents the active motion of cells along preferential directions in

response to nutrients’ concentration.

2 Materials and Methods

2.1 Collection of Clinical Data

Image acquisition. Imaging data of a patient with a right parietal GBM were acquired

in the context of normal clinical practice at the Fondazione IRCCS Istituto Neurologico

Besta by using a 3T Magnetic Resonance (MR) imaging scanner (Achieva; Philips

Healthcare) equipped with a 32-channel phased array coil. Clinical imaging sequences

included pre- and post-contrast axial volumetric T1 spin echo (SE) sequences, axial

volumetric T2-turbo spin echo (T2-TSE) and a sagittal volumetric fluid attenuated in-

version recovery (FLAIR). Pre-contrast whole-brain DTI data-sets were acquired using

a single shot spin-echo echo planar imaging (EPI) sequence (TR shortest (4687 ms),

TE 80 ms, voxel 2.20x2.20x2.20 (mm3), slices 90, SENSE 2, FAT SAT SPIR 200 Hz).

The DTI protocol was multi-shell. Diffusion gradient encoding was applied in 44 non-

collinear directions with maximum b-value = 1100 smm−2, in 12 noncollinear direc-

tions with b-values = 50, 250, 350, 600, 800 smm−2 and 3 noncollinear directions with

b-value = 0 smm−2 (107 imaging volumes total). The patient signed a written consent

to the MRI test in the context of normal clinical practice, including clinical researches.

The patient was not submitted to any specific procedure different from normal clini-

cal practice and the collected patient data was anonymized and de-identified prior to

analysis, so that no specific approval by Ethical Committee was considered necessary.

Anonymization was performed by the neuroradiology unit of the Besta Neurological

Institute, independently from the researchers involved in the paper. Furthermore, the

authors involved in this study did not act as treating doctors for the clinical case from

which the neurological images were taken.

Data processing. Diffusion data were processed using a comprehensive correction

pipeline with TORTOISE [60]. T2-TSE images were used as the structural target for
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DTI data processing. T2-TSE image were aligned to the hemispheric mid line and

the anterior and posterior commissure planes using MIPAV [52]. DTI dataset were

corrected to reduce the effects of rigid body motion, eddy current distortions [64], and

EPI distortions [89]. Corrections were performed in the native space, and appropriate

rotations will be applied to the b-matrix [48, 64]. Then, robust estimation of tensors by

outlier rejection (RESTORE) [18] were used to estimate the diffusion tensor and tensor

derived metrics. The RESTORE algorithm have been selected for its ability to detect

and remove artifactual data points on a voxel-wise basis, correcting for subtle artifacts

such as cardiac pulsation and respiration signal drop-outs, which has been shown to be

an important consideration in clinical analyses of DTI data [86].

2.2 The Mathematical Model

The tumor lesion and the surrounding environment are described though incompressible

binary mixture model, composed by a cellular phase of proliferating cancerous cells,

with volume fraction φc and a liquid phase, with volume fraction φℓ, modeling the

host cells, the extracellular matrix, the interstitial fluid environment and necrotic cells.

Assuming that these two phases fill all the available space, the saturation relation φc +
φℓ = 1 holds.

We consider a bounded domain Ω ∈ R
3 representing the whole brain, with boundary

∂Ω, and a time period [0, T ], T < ∞, representing the time interval in which the

tumor is evolving. We define the tumor region Ωt(t) = {x ∈ Ω : φc(x, t) ≥ εt}, with

εt > 0, and the healthy host tissue region Ωh(t) = Ω\Ωt(t). The two regions Ωt(t) and

Ωh(t) evolve in time, accordingly to the dynamics of the cellular phase. We associate a

convective velocity vi, i = {c, ℓ}, to each phase and we treat the cellular and the water

phases as incompressible fluids whose true mass densities [12] are constant and equal

to water density γ. The mathematical model is obtained defining the mass balances for

both phases

γ

[

∂φi
∂t

+∇ · (φivi)
]

= Γi +∇ ·Ki, with i = {c, ℓ}. (1)

In eq.(1), Γi and Ki represent the volumetric source of mass production/loss and the

non-convective mass flux of the i-phase, respectively. Since the mixture is closed, we

impose Γc = −Γℓ and Kc = −Kℓ in order to guarantee the conservation of mass and

flux exchanged among the phases. For instance, the liquid phase contains both dead

cells and healthy living cells: when a cancerous cell dies, it becomes part of the liquid

phase and, vice versa.

Since growth processes and mass transport phenomena in living materials are driven by

the local concentration of nutrients and growth factors, we introduce proper constitutive

equations for Γi and Ki based on nutrient availability. We consider oxygen as the main

nutrient source for tumor cells and, defining n its concentration and ρc := γφc the

apparent cell mass density [12], we model the net cell proliferation rate Γc with

Γc

γ
= νc

ρc
γ

(

n

ns
− δc

)

(1− φc) = νcφc

(

n

ns
− δc

)

(1− φc) .
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In the above equation, νc is the cancer cell proliferation rate, ns is the physiological

concentration of oxygen inside the tissue and δc is the rate of apoptosis in hypoxic

conditions. The factor (1− φc) mimics the decrease of the cellular proliferation rate

due to contact inhibition, as the tumor approaches the saturation condition.

Furthermore, the mass flux Kc, which represents the chemotactic movements up to an

increasing gradient of nutrients, is expressed by

Kc = −knρcT∇n, (2)

where kn is the chemotactic coefficient and T is a tensor defining the alignment of

fibers. The expression in (2) has the same form of the chemotactic term introduced

by [45] and widely used in mathematical models of cell motion [35, 58]. Here, we

modify the original Keller-Segel model [45] including the tensor T into the original

expression, so that we are able to model the biased motion of cells along fibers. The

introduction of T in the chemotactic term is particularly important in tumors growing

in an highly heterogeneous environment, such as the preferential paths of GBM cell

motion along the white matter fibers. In other words, Kc is able to describe, at the same

time, both the directional motion of glial cells in response to nutrient concentration and

their tendency to anisotropically move along the white matter fibers.

In order to close the equation system, it is necessary to define proper laws for the con-

vective velocities vc and vℓ, appearing in eq.(1). Following the work done in [19], we

make use of a thermodynamically-consistent approach, modeling the viscous interac-

tions and mechanical forces resulting from the cells’ ability to adhere to each other or to

the extracellular matrix, through adhesion molecules called CAMs located at the cellu-

lar membrane [56]. Thus, we define a Helmholtz free energy which takes into account

both local and long-range interactions among the components and we assume that the

energy dissipation in the system is due only to the viscous interactions between the

phases. Then, we use Rayleighs variational principle to derive the system dynamics,

minimizing the Rayleighian with respect to vc and vℓ as in [27]. Thus, we obtain the

following relation between the convective velocities:

vc − vl = −K(φc)∇
(

f(φc)− ǫ2∆φc
)

. (3)

In eq.(3), the motility coefficient K(φc) =
(1−φc)2

M
is related to the inverse of the fric-

tion parameter M , f(φc) is the derivative of the bulk free-energy per unit of volume,

ψ, with respect to the cellular volume fraction, i.e. f(φc) = ∂ψ/∂φc, and the term in

ǫ2 represents a surface potential energy penalizing large gradients of cellular volume

fraction [87]. If we call Σ = f(φc) − ǫ2∆φc the excess of pressure exerted by the

cells and we assume that no external forces act on the highly viscous mixture, the cen-

ter of mass does not move and the velocity of the cellular phase can be expressed by a

Darcy-like law vc = −K(φc)∇Σ. A proper expression for f(φc) can be empirically de-

fined considering that, for physical and biological consistency, the cell-cell interaction

should be attractive within a certain low range of cell density and repulsive at higher

values. Therefore, it is possible to mathematically define a threshold value φe, called

state of natural equilibrium [4], for which f(φe) = 0 and no excess pressure is exerted
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Figure 1: Excesses stress Σ exerted by the cells in the case of homogeneous tissue,

i.e. ∇φc = 0. For physical and biological consistency, when φc < φe cells experience

an adhesive force (f(φc) < 0), whereas for φc > φe, as cells are very close, a repul-

sive force acts among them and f(φc) > 0. The threshold value φe is called state of

mechanical equilibrium. The repulsive force becomes infinite in the limit that cells fill

the whole volume.

on neighbors, whereas for φc < φe cells are attracted to each other, i.e. f(φc) < 0 , and

for φc > φe, cells experience a repulsive force, i.e. f(φc) > 0. Therefore, a suitable

form of f(φc) is [4, 16, 19]

f(φc) = E
φc

2 (φc − φe)

1− φc
, (4)

where E is the Young’s Modulus of the brain matter, as sketched in Fig. 1.

Finally, we propose a time dependent diffusion-reaction equation for the nutrient con-

centration. We assume that the vasculature is homogeneously distributed in the whole

domain and we do not take into account the angiogenesis, i.e. the formation of new

blood vessels. In this situation, tumor cells receive oxygen and growth factors only

via diffusion inside the brain tissue. We assume also that the net nutrient uptake in the

healthy tissue and in the fluid region is negligible compared to the uptake in the tumoral

environment and, whenever oxygen is consumed by the host cells, it is instantaneously

replaced by the normal vasculature supply. On the contrary, the cellular uptake gener-

ally exceeds the supply in the tumor region. Thus, calling δn the rate of consumption of

nutrients by tumor cells, Sn the nutrient transfer rate between blood and tissue, the evo-

lution in space and time of the nutrient concentration can be described by the following

partial differential equation

∂n

∂t
= ∇ · (D∇n) + Sn(ns − n)− δnφcn , (5)
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that, substituting the mass balance of the cellular phase, simplifies as

∂φ

∂t
= ∇ ·

(

φ(1− φ)2

M
∇(f(φ)− ǫ2∆φ)

)

+

+ νφ(
n

ns
− δ)(1− φ)−∇ · (knTφ∇n) . (6)

For the sake of simplicity, hereafter we drop the subscript c to denote the cellular tumor

fraction.

The system of eqs. (5)-(6) allows to determine the evolution of the unknown fields

φ(x, t) and n(x, t), ∀ x ∈ Ω and ∀ t ∈ [0, T ], if proper initial and boundary conditions

are provided. GBM differs from many solid tumors because it is characterized by a

smooth gradient of tumor cell density instead of presenting a sharp interface at the

host/tumor boundary. Thus, it seems reasonable to hypothesize that φ(x, 0) = φ0(x)
follows a normal smooth distribution in space with a maximum slightly higher than φe
reached in the center of the tumor. In order to obtain the initial oxygen concentration

n(x, 0) = n0(x), we solve the steady version of the nutrient governing equation (5),

corresponding to the initial cellular distribution, φ0. The solution obtained is equal to

ns outside the tumor area and decreases getting closer to the core of the glioblastoma,

in accordance with the increase of φ0 in this area.

Finally, it is mandatory to define boundary conditions for the governing equations. We

impose a null Dirichlet condition and a null Neumann condition for the cell volume

fraction at the boundary of the cranial skull:

φ = 0, on ∂Ω, ∀ t ∈ [0, T ] (7)

∇φ · n̂ = 0, on ∂Ω, ∀ t ∈ [0, T ] (8)

where n̂ is the outward boundary normal. For the nutrients, we impose the Dirichlet

condition

∀ t ∈ [0, T ] n = ns, on ∂Ω, (9)

since we suppose that the brain boundary is far enough from the tumor location and

consequently the oxygen concentration is maintained equal to the physiological value

by the vasculature.

2.3 Numerical Implementation

Mesh Generation. The creation of computational grids able to reproduce the patient-

specific brain geometry without exceeding in the computational costs is a challenging

task. The first step to generate a patient-specific computational mesh is the medical

image segmentation, which is the process of identifying and labeling regions of in-

terest within an image. To generate the anatomical mesh of the brain and tumor we

use the post-contrast T1-MR sequence (Fig. 2(A)). Using an expectation maximization

approach [61] implemented in the open source software package 3D Slicer [59], the

anatomical structures are automatically segmented and the four areas of interest (i.e.

gray matter, white matter, cerebrospinal (CSF) fluid and background) are identified and
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labeled. The segmented image obtained is depicted in Fig. 2(B). Once the brain seg-

mentation is done, we manually segment the GBM region, since voxels occupied by

the tumor have an intensity comparable to ones occupied by grey matter an automatic

process cannot be implemented.

After the creation of the brain labeled map and the identification of the tumor re-

gion, the computational mesh is obtained first by extracting the external brain surface

using the marching cube algorithm, then operating a Taubin surface smoothing and

a uniform mesh refinement with the scripts implemented in The Vascular Modeling

Toolkit (www.vmtk.org) [5]. Thirdly, we build the tetrahedral mesh using the TetGen

library [70]. The mesh is then refined near the area of interest (e.g. in the region in

which the tumor grows) in order to control the numerical error without exceeding in

computational costs. After the mesh refinement, we assign the information contained

in the labeled map to the computational grid in order to obtain a labeled mesh. This

procedure is implemented in Python using the Visualization Toolkit (www.vtk.org) li-

brary.

Figure 2: Post-contrast T1-MR of a patient affected by GBM and corresponding

segmented slices. (A) Axial, sagittal and coronal slices of post-contrast T1-MR in a

patient with right parietal GBM (white arrow), used for image segmentation. (B) In

the segmented brain image, the white region represents the white matter, the grey areas

indicate the grey matter, while the cerebrospinal fluid is labeled by the blue color.

Finite Element discretization. Once the brain mesh is created, it is possible to pro-
ceed to the spatio-temporal discretization of the system (5)-(6). In particular, we per-
form a spatial discretization with linear tetrahedron P1 elements and a time discretiza-
tion with the Crank-Nicholson algorithm [24]. Once the equations are discretized, they
can be easily implemented using the open source software FEniCS [49], using Python
as programming language. The only required mathematical trick is to rephrase the
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fourth-order equation (6) as the following second-order equations

∂φ

∂t
−∇ · (φK(φ)∇Σ)− νφ(

n

ns
− δ)(1− φ) +∇ · (knφT∇n) = 0 (10)

Σ = f(φ)− ǫ2∆φ . (11)

One of the main advantage of using FEniCS as computational resource is that it of-

fers built-in classes and an automatic approach to nonlinear variational problems. Fur-

thermore FEniCS allows the introduction of real patient-specific data, taken from the

medical images, as discussed in the next subsection.

Reconstruction of patient-specific data and parameters’ estimation. The clinical

usefulness of mathematical models mainly relies on the identification of the correct

biological parameters to be included in the model. Indeed, a model is potentially pre-

dictive if all parameters are measured or estimated from specific biological experiments

on the system under study. Furthermore, as the evolution of a tumor can be significantly

affected by the different environmental conditions, the possibility to specify the math-

ematical model on a single patient, through the introduction of patient-specific data,

is a mandatory request for a clinical use. In principle, all the parameters appearing

in eq. (5)-(6) can be either estimated from in-vitro and in-vivo biological experiments

or extracted from clinical exams, as for D and T, whose components can be obtained

from the DTI images of the patient. In particular, assuming that the oxygen diffuses co-

herently with the water molecules, its behavior can be described by the water diffusion

and thus the nutrients’ diffusion tensor D, appearing in eq. (5), can be directly obtained

from the DTI measurements. Being the tensor D symmetric, i.e. Dij = Dji, all the

necessary information on the diffusion coefficients is provided by the six DTI-maps in

greyscale, each of which represents a component of the diffusion tensor. In Fig. 3(A)

we report, as an illustrative example, the components of the tensor D on a slice along

the xy-plane in the middle point of the z-axis of the brain, as they are obtained from

the DTI medical examination. In Fig. 3(A), brighter voxels (e.g. the ones in the ven-

tricles area) correspond to higher diffusion values, while darker ones represent lower

values of the corresponding Dij component. Once the six DTI images are registered

with the T1-MRI image used for creating the computational mesh [59], we associate

each value of a specific voxel in the DTI image to the tetrahedron which occupies the

same location of the voxel in the computational mesh. The resulting data, which are

reported in Fig. 3(B) for the same slices considered in Fig. 3(A), are then simply in-

cluded in the model thanks to a specific FEniCS function. Besides, supposing that cells

can chemotactically move along the same fiber paths of water diffusion, the tensor of

the preferential directions T can be obtained from the same DTI maps, defining each

component as

Tij =
Dij

Dn

=
Dij

1/3(Dxx +Dyy +Dzz)
, with i, j = x, y, z . (12)

The mean diffusivity Dn := 1/3Tr(D) is a scalar denoting the measure of the total

amount of diffusion inside a voxel and it is related to the inverse of the local tissue
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Figure 3: Patient-specific medical and numerical DTI data, depicted on a slice cut

along the plane xy. (A) A single component of the tensor D, obtained from the DTI

medical images, is represented for each image: the intensity of the voxels is related

to the diffusion coefficient along the relative direction (see the gray-scale at the bot-

tom). (B) Numerical patient-specific components of the diffusion tensor D depicted

on the same slice of the medical images: the diffusion coefficient is higher in the re-

gion occupied by the cerebrospinal fluid (red colored areas), where the diffusion is

unconstrained. (C) Corresponding patient-specific components of the tensor of prefer-

ential directions T: in isotropic region, e.g. the cerebrospinal fluid and the grey matter,

Txx ≈ Tyy ≈ Tzz ≈ 1 and Txy ≈ Txz ≈ Tyz ≈ 0, while in the white matter, instead,

0 < Tii < 3 with i = (x, y, z) and 0 < Tij < 1 with i, j = (x, y, z) and i 6= j, denoting

an anisotropic region.

density. Dn does not contain any information on the anisotropicity of the region under

consideration and it is thus very similar for both grey matter and white matter, whereas

it is higher in the CSF region, where water diffusion is unconstrained. Thus, rewriting

the diffusion tensor as D = DnT, it is clear that the tensor T takes into account the

preferential directions of the biased random movements of water molecules and, thus,

it can also be used to describe the chemotactic motion. Fig. 3(C) illustrates the compo-

nents of tensor T on a slice clipped along the xy-plane in the middle point of the z-axis

of the brain.

In Table 1, we summarize the values (or the ranges of values) for the different pa-

rameters appearing in the equation system (5)-(6). Let us now briefly discuss how we

extrapolated the parameters in those cases in which the desired values were not explic-

itly found in literature. First of all, we dealt with the friction parameter M , that can be

computed as the inverse of the hydraulic conductivity studied by [74], and we obtained

values between 1377.9 and 4286.7 mm−2 Paday. In order to estimate ǫ appearing in

eq. (5), we referred to the measurements of the interstitial fluid pressure (IFP) χ and

to the characteristic distance of interaction between cells, modeled by ǫ/
√
χ and typ-

ically estimated to be in the order of the cell size [19]. In particular, [11] reported a

IFP for healthy brain of 106.64 Pa, while [7] reported a mean IFP of 960 Pa for brain
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tumors by averaging the IFPs for meningiomas, glioblastomas and brain metastases.

Consequently, knowing the values of χ and the size of a cell, which was experimen-

tally estimated to be between 10 and 20 µm [80, 81], it was possible to obtain the

value of ǫ. The proliferation parameter νc varies between 24 h and 48 h [31, 40] for

well oxygenated glioblastoma cells in vitro. However, since the proliferation rate relies

significantly on the nutrient availability, also smaller value seems to be biologically ad-

missible in the real condition and thus, in the case study presented in the following we

hypothesized νc = 0.3 day−1. Regarding the threshold for cell death rate due to anoxia,

its value is given in the range of 0.28 - 0.5 [31, 41, 80]. Accordingly, we used the value

of 0.3 in the numerical simulations. The mean uptake rate can be extrapolated from bi-

ological measurements of the oxygen diffusion coefficient Dn in human brain and the

distance, ln, covered by a molecule of oxygen before being uptake by a cancerous cell.

The mean oxygen diffusion coefficient Dn in human brain reported in literature varies

between 86.4 mm2day−1 [31, 51, 81] (which is also in agreement with the maximum

mean diffusivity recorded in the DTI data in Fig. 3(A)) and 156.5 mm2day−1 [41],

while [31] estimated ln ≈ 100µm. Thus, being δn = Dn/l
2
n, an admissible range for

δn is 8640 − 15650 day−1. The parameter Sn is quite difficult to be estimated from

biological experiments, we referred to the value of 104 day−1 reported in [19] for the

human skin and we assume the same value for human brain. The physiological oxygen

concentration ns has been evaluated to be in the range 0.07-0.28 mM in [46]. Unfor-

tunately, data on the chemotactic coefficient kn of glioma cells in response to oxygen

concentration are not present in literature and we had to refer to the typical chemotac-

tic coefficient found for bacterial cells in response to glucose. Finally, [22] reported a

Young’s Modulus E for both grey matter and white matter of about 694 Pa.

3 Results

3.1 Sensitivity Analysis

In this section, we focus both on testing the physical soundness of the proposed model

and on identifying which parameters in the model play a key role in the diffusion of

nutrients and in the anisotropic growth of the tumor, evaluated measuring the ratio be-

tween the major semi-axis and the minor ones of the grown tumor ellipsoid (see Fig.

4). Thus, we perform two sensitivity tests studying the combined effects of M and

kn on one hand, and of Sn and δn on the other, whilst keeping the other parameters

fixed. The parameters M and kn weight, respectively, the isotropic and the anisotropic

expansion of the tumor, whereas the ratio between Sn and δn determines the oxygen

availability in the tissues and, consequently, the tumor expansion through chemotactic

motion. For the sake of simplicity, we locate a spherical tumor in the center of the brain

and we impose the x-axis to be the preferential direction for oxygen diffusion and cell

chemotaxis, setting Dxx = Dn, Dii = 0 for i = {y, z} and the off-diagonal compo-

nents Dij = 0. Fig. 5 reports the φ distribution on the xy-plane at time t = 6th day,

for different values of the parameters kn and M , whereas Fig. 6 reports the φ and n
distribution on the xy-plane at time t = 9th day, for different values of the parameters
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Table 1: Estimation of the biological parameters.

Parameter Values Ref.

φe, cell volume fraction at equilibrium 0.39 [13]

M, interphase friction 1377.9-4286.7 mm−2 Paday [74]

χ, IPF in healthy brain 106.64 Pa [11]

χ, IPF in brain GBM 960 Pa [7]
(

ǫ/
√
χ
)

, GBM cell size 10 - 20 µm [80, 81]

νc, GBM cell proliferation rate 0.5 - 1 day−1 [31, 40]

δc, threshold for death cell rate due to anoxia 0.28-0.5 [41, 80]

Dn, oxygen diffusion coefficient in brain 86.4 mm2day−1 [31]

δn, oxygen consumption rate of the brain 8640 day−1 [31]

Sn, blood tissue transfer rate of oxygen 104 day−1 [19]

ns, oxygen concentration in brain vessels 0.07-0.28 nM [46]

ln, oxygen penetration length 100 µm [31]

kn, chemotactic coefficient 1296 mm2mM−1 day−1 [30]

E, Young’s modulus 694 Pa [22]

Estimation of the biological model parameters from the experimental data on healthy

brain tissue and glioblastoma.

Sn and δn. The nutrient concentration has been normalized with respect to the physio-

logical concentration ns, so that the numerical solution for n will range between 0 and

1. In all the simulations, we set Dn = 86.4mm2day−1, ν = 1day−1, ns = 0.07mM,

δ = 0.3, χ = 900Pa, E = 694Pa and φe = 0.389.

Both in Figs. 5 and 6, the grown tumor shape is analyzed in terms of the ratio between

the maximum final cellular volume fraction over the maximum initial one, the ratio

between the final and the initial volume of the tumor and the ratio between the major

semi-axis of the tumor ellipsoid (∆x) and the two smaller ones (∆y and ∆z), which are

good markers of the level of anisotropicity. The values of ∆x, ∆y and ∆z have been

obtained defining the tumor ellipsoid as the region of the brain in which the cellular

volume fraction is over a given threshold ǫt and computing the lengths of its semi-axes,

as illustrated in Fig. 4.

From the tumor data reported in Fig. 5, we observe that the ratio of maximum

cell volume fraction at the final and the initial time increases as M increases, while

the ratio of the major semi-axis on the minor semi-axes and the total volume of the

tumor ellipsoid are not significantly affected. Indeed, higher values of M inhibit the

isotropic diffusive motion of cells (weighting the function f ) and the repulsive interac-

tions among them (weighting the term ε2∇φ), and consequently, cancerous cells tend

to accumulate (increased φM ). Furthermore, the interface host/tumor gets sharper asM
increases. Indeed, as observed also in [87], the ratio ǫ2/M is related to the sharpness of

the interface host/tumor. Regarding the chemotactic parameter, instead, it is possible to

notice that, for small values of kn (e.g. kn = 1mm2mM−1day−1), the tumor is almost
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Figure 4: Tumor size parameters. The anisotropic growth of an initially spherical

tumor is evaluated measuring the ratio between the major semi-axis and the minor ones

of the grown tumor ellipsoid.

spherical. On the contrary, as kn increases the tumor acquires an ellipsoidal config-

uration, characterized by an increasingly bigger ratio between the longer and smaller

semi-axes. Indeed, kn weights the components of the tensor T: an increase of kn has

the effect of intensifying the movement of the cells along that preferential direction (i.e.

the x-axis in the depicted cases). Consequently, considering a fixed proliferation rate

of tumor cells, the maximum value φM reached at a given time decreases, for increas-

ing value of kn, due to the higher chemotactic response experienced by tumor cells,

which is also represented by the increase of the total volume occupied by the tumor.

Therefore we found that the parameter M affects the distribution of φ inside the tumor

region and its maximum value, along with the smoothness of the tumor/host interface,

whereas it does not affect tumor sizes at a given time step. On the other hand, the tumor

isotropic/anisotropic expansion is strongly regulated by the chemotactic parameter kn.

The other two considered parameters, Sn and δn (see Fig. 6), are primarily responsible

of the nutrient spatio-temporal evolution and, as a consequence, of the evolution of the

tumor fraction φ. Indeed, Sn is the parameter that regulates nutrients supply from blood

vessels to tumor cells: thus, if its value is not high enough to overcome the nutrients

consumption, regulated by the parameter δn, the tumor does not receive enough nutri-

ents to further expand. First of all, we observe that if the value of Sn increases, then the

maximum value φM reached inside the tumor region at a given time step increases while

the total volume occupied by the tumor decreases. Conversely, considering the same

value of Sn but increasing δn, we observe that the ratio between φM and φM0 decreases

and the total tumor volume increases. Moreover, for high values of Sn and small values

of δn the tumor grows almost spherically. To explain the behavior observed in tumor

evolution, it is useful to look at the nutrient distribution inside the domain. As a matter

of fact, the ratio between production and consumption of nutrients, i.e. Sn/δn, deter-

mines the minimum value nmin reached by the dimensionless nutrient concentration at
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Figure 5: Sensitivity analysis of the parameters kn and M. The influence of the

parameters kn and M on the cells volume fraction distribution at time t = 6days
is studied. The resulting tumor are characterized in terms of: the ratio between the

maximum volume fraction at the final time, φM , and maximum initial volume fraction,

φM0 ; the ratio between the final and the initial volume; the ratio between the major

semi-axis, ∆x, and the two minor semi-axes, ∆y and ∆z, defined as in Fig. 4.

a given time step and consequently the gradient of n. For the same value of δn, it is

found that as the production term governed by Sn decreases, nmin decreases too and,

consequently, ∇n, which drives the chemotaxis, increases. Therefore in the case of a

small Sn, tumor cells proliferate less and move more, leading to a bigger but less popu-

lated (i.e. having a smaller φM ) tumor region. At the same time, keeping fixed Sn and

increasing δn, nmin decreases and ∇n increases, leading to a bigger final tumor vol-

ume also in this case. Therefore, besides determining the spatio-temporal distribution

of nutrients, both Sn and δn affect the expansion of the tumor, favoring the anisotropic

growth in the case of low values of Sn and high values of δn.

3.2 Effect of Local Anisotropy in GBM: A Case Study

The sensitivity analysis allowed to understand the model behavior under different sets of

parameters and it is essential in order to check the mathematical validity of the proposed

approach. However it was performed under simplified conditions for the diffusivity

tensor, therefore it is not suitable for clinical use. In the following, we integrate patient-

specific radiological data in order to study the effects of the brain micro-structure on

GBM evolution.

We assume a virtual diagnosed tumor located in a brain region characterized by high

anisotropy, such as the region occupied by the corpus callosum (i.e. between the lat-

16



Figure 6: Sensitivity analysis of the parameters Sn and δn. The influence of the

parameters Sn and δn on the cell volume fraction and on the dimensionless nutrient

concentration is reported at time t = 9days.

eral ventricles, above the thalamus and under the cerebrum). In Fig. 7, we illustrate

the tensor components Tii, with i = x, y, z, over a mesh clipped along each plane, and

we indicate the tumor location with a white cross. Observing the collected snapshots

reported in Fig. 7, we highlight that, in the region of interest, Txx is the component with

the highest value: in fact it ranges between two and three, while Tyy and Tzz are close

to zero. Consequently, the cancerous cells confined in that region will tend to move

along the x-direction snd we expect that the tumor will grow anisotropically, losing its

initial spherical shape.

The results obtained considering patient-specific D and T tensors (anisotropic simu-

lations) are then compared in Fig. 8 to the isotropic growth paths obtained in the case

in which no information on the underlying brain structure is considered (isotropic sim-

ulations), i.e. setting T = I and D = DnI, where Dn is defined as in Table 1 and I

is the identity tensor. All the other parameters in the anisotropic and isotropic simula-

tions are kept the same: M = 5000mm−2 Pa, Sn = 104 day−1, δn = 1000 day−1,

ν = 0.25 day−1, kn = 100mm2mM−1day−1, ǫ = 0.02. We perform the simulation

until the 25th day after the virtual diagnosis.

Fig. 8 reports the spatial distributions of φ and n over the computational mesh cut

along the xy-plane at time steps t = 5, 15, 25 day, both for the anisotropic and the

isotropic simulations. We observe that, in the anisotropic simulation, the expanding

GBM mass loses its initial spherical shape and it assumes a configuration that reflects

the structure of the tensor T, whereas in the isotropic simulation the glioblastoma main-

tains the spherical configuration. The maximum values reached by the cellular concen-
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Figure 7: Diagonal components of the tensor T over the brain mesh cut along each

plane. The components Tii are represented over the brain mesh cut along the xy, xz
and yz planes. The initial location of the virtual tumor, that corresponds to the corpus

callosum, is indicated by a white cross.

tration at a given time step are comparable, with a φM slightly higher in the anisotropic

simulation.

For what concerns the dimension of the glioblastoma at the final time t = 25th day, in

the anisotropic simulation, we measure an extension along the preferential direction of

motion (i.e. the x-axis) equal to ∆x = 10.6mm, whereas in the other directions we

have ∆y = 8.85mm and ∆z = 8.4mm. In the isotropic simulation, on the other hand,

the final tumor area is almost perfectly spherical and smaller, being ∆x = 8.8mm,

∆y = 8.95mm and ∆z = 9.15mm.

Plotting the projection of the tumor volume on the xy-plane in the anisotropic (red

lines in Fig. 8) an the isotropic case (blue lines in Fig. 8), we notice that the mathe-

matical model underestimates the total volume of the cancer if the anisotropic effect of

fiber orientation are neglected. In fact, the resulting tumor shape in anisotropic simula-

tions strongly affected by the underlying fiber orientation: plotting the thresholded φ at

t = 5th, 15th, 25th day overlapped to the Txx components on a mesh cut along the plane

xy (Fig. 9(A)), we can notice that the tumor expansion follows the x-axis in the region

in which Txx is higher (red region) assuming a conical configuration. Observing the tu-

mor volume at the final time step reported in Fig. 9(B), it is clear that the tumor presents

an elongated shape along the x-direction with a flat top due to the fact that Tzz is al-

most null in that region and thus the cells are not allowed to move along the z-direction.
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Figure 8: Comparison between anisotropic and isotropic growth. For both the

anisotropic and the isotropic simulations, we report the tumor volume fraction distribu-

tion, the dimensionless nutrient concentration and the tumor contour plot at t = 5day,

t = 15day and t = 25day over the computational mesh cut along the xy-plane. In

the anisotropic simulation the tensor D and T are the one reported in Figs. 3(B-C),

respectively, whereas in the isotropic simulation we set D = DnI and T = I.

4 Discussion

In this work, we introduced a 3D continuous mechanical model, able to simulate the

growth of a glioblastoma and the invasion of the surrounding tissue. In particular, we

took into account patient-specific structural heterogeneity and anisotropicity and the

evolution of nutrients inside the brain. Unlike other solid tumours, GBM consists of

cells that can infiltrate deeply into the surrounding environment, so that the host/tumor

interface is often not sharp and the density of GBM cells in the stroma at the tumor

margin may not be detectable using existing imaging modalities. Thus, we considered

a diffuse interface model for the GBM, in which no boundary conditions at the interface

between the normal and the diseased region are required. Despite the diffused nature

of the interface, the model is purely mechanical, substantially differing from reaction-

diffusion models, such as the ones proposed in [23, 55, 73, 75–77, 79], since the equa-

tion governing the tumor evolution and motion are determined by thermodinamically-

consistent mass and momentum balances. Furthermore, the motion of cells is not dic-

tated by pure diffusion, but a chemotactic flux is introduced. This term not only repre-

sents the preferential motion of cells towards increasing concentration of nutrients, but

it also reproduces cells motion along fibers directions, thanks to the introduction of the
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Figure 9: Influence of brain fibers’ alignment on tumor growth. (A) Tumor con-

centration plotted over the Txx component (in transparency), at times t = 5day,

t = 15day, t = 25day: the cellular fraction shows an anisotropic distribution that

follows the preferential direction determined by the Txx component. (B) Tumor vol-

ume at t = 25day overlapped to the maps of Txx over the brain mesh cut along xy and

xz planes and to the map of Tzz over the brain mesh cut along xz-plane: the glioblas-

toma assumes an elongated shape along the x direction, whereas it has a flat top in the

z-direction, as Tzz is almost null there.

tensor of preferential directions, T.

The proposed model also differs from previous mixture models [16,31,87] and single-

phase mechanical models [36] because it takes into account both the heterogeneity and

the anisotropy of the brain tissues directly from DTI data.

Concerning the numerical simulations, we first created the computational mesh starting

from a MR image of a patient affected by glioblastoma and, then, we extracted the het-

erogeneous and anisotropic components of the local diffusion tensor and of the tensor

of preferential directions. Then, we discretized the resulting system of equations (5)-(6)

using the finite elements method and we used the open-source software FEniCS [49] to

develop the numerical codes.

Considering simplified conditions, we performed the sensitivity analysis of the model

with respect to the biological parameters appearing in the governing equations to test

their influence on the anisotropic growth of the tumor. We have found that both the

chemotactic coefficient and the ratio between the nutrient supply and the consumption

rate have a huge influence on the anisotropic growth of the tumor. The latter, indeed,

determines not only the availability of nutrients in the environment but also cellular pro-

liferation and migration, leading to an anisotropic cancer expansion in the case of low

Sn/δn ratios. The sensitivity analysis also demonstrated that the parameter M affects

the distribution of φ inside the tumor region and its maximum value, in accordance with

the smoothness of the tumor/host interface and without affecting the tumor size.
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Finally, we tested the model in a biological meaningful situation, including patient-

specific data collected from the DTI images of a patient. In the numerical simulations,

we located the tumor in a region characterized by an appreciable anisotropy and we

studied its development at different time steps, demonstrating that the tumor evolu-

tion is strongly influenced by the preferential direction identified by the tensor T. The

obtained results have been also compared to the homogeneous and isotropic case, high-

lighting the importance of considering real anisotropic and patient-specific data in order

to achieve a more truthful prediction of the tumor evolution and to possibly give indi-

cations for the clinical treatment of all those kinds of tumors, such as the glioblastoma,

that grows in highly heterogeneous and structured environments.

The results presented in this work are promising and, to our knowledge, they rep-

resent the first implementation of a thermodynamically consistent continuous mechan-

ical model on a 3D real geometry with the inclusion of patient specific data. In or-

der to check its suitability for clinical use, the model should be tested under different

biological situations (e.g. tumor resection and possible recurrences) and the numeri-

cal outcomes should be possibly compared to clinical data, obtained from the patient

follow-up. Future refinements might either include anisotropic effects in the convective

cellular velocity or introduce structural changes (e.g. fiber remodeling and mechanical

properties alterations) due to tumor progression. Moreover, the proposed model con-

siders a homogeneous distribution of blood vessels, through the nutrient supply term in

the reaction-diffusion equation, thus neglecting the role of angiogenesis in GBM devel-

opment, which is nowadays considered as a hallmark of the disease [37]. Accordingly,

future refinements shall consider a patient-specific nutrient supply term, elaborating

data on brain perfusion and vessel location, e.g. from Perfusion Weighted Imaging

(PWI) techniques [63], such as the Dynamic Contrast Enhancement (DCE) MRI [8]

and the Dynamic Susceptibility Contrast (DSC) MRI [8, 42].

Finally, the effect of medical therapy, such as chemotherapy or radiotherapy, on the

evolution of the tumor should be introduced.

5 Conclusion

In summary, we developed, analyzed and numerically simulated a diffuse interface bi-

nary mixture model able to describe GBM progression. The system of equations repre-

senting the spatio-temporal evolution of nutrients and tumor cells’ volume fraction was

solved on a patient-specific 3D geometry, reconstructed from the MRI of a patient.

The model took into account not only biochemical factors such as nutrients availability

but also mechanical interactions occurring between the local micro-environment and the

tumor, which play a fundamental role in cancer progression and invasion. Moreover,

for the first time in literature, we succeeded in introducing in a continuous mechani-

cal model, the heterogeneity and the anisotropicity of the brain bundles from patient-

specific DTI-images. The proposed approach represents a relevant improvement with

respect to the current state-of-the-art for continuous mathematical models of GBM, i.e.
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the reaction-diffusion models developed in [10, 23, 55, 57, 73, 76], that do not provide

any information on the stress that the expanding mass of tumour cells and associated

inflammation exert on the healthy brain tissue. The results presented in this work are

promising and make a step towards the ambitious purpose of providing tools to doctors

in the treatment of this lethal tumor, allowing to test, along with standard treatments,

also new therapeutic strategies based on the modulation of the mechanical stresses [38].

Finally, the proposed continuous mechanical model can be a perfect tool for defining a

multiscale model for glioblastoma growth [29], as it potentially allows the upscale of

information deriving from the smaller scales. Whilst subcellular and cellular mecha-

nisms can be easily incorporated in GBM discrete/hybrid models [67] they cannot be

incorporated in simple diffusion-reaction models, since they are controlled by mechan-

ical and chemical interactions at the macroscopic scale. Therefore, future efforts will

be devoted to the definition of a multiscale approach in order to combine the subcellular

and the cellular discrete description into the macroscopic continuous representation of

the whole process.

Indeed, only a multiscale and multidisciplinary approach combining clinical and radi-

ological data with a mathematical model able to capture phenomena occurring at dif-

ferent scales, has the potential to foster our understanding on GBM evolution in every

single patient throughout his/her oncological history, in order to target therapies in a

patient-specific manner.
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