
Towards the Principled

Engineering of Knowledge

Mark Stefik and Lynn Conway

Xerox Palo Alto Reseurch Center

3333 Coyote Hz11 Road

Palo Alto, Calzfornia 9~Xl,j

Abstract

The acquisition of expert knowledge is fundamental to t,he cre;ltion of

expert syst,ems The conventional ~pp1oach to building expert syst,ems

assumes that the knowlcdgc exists, and that iL is feasible to find 2x1 cx-

pert who has the knowledge and can articulat,e it in rollaboraLion with

a knowlcdgc engineer This al title considers i.he practice of knowledge

enginerling when t,hesc asslm~ptions can not bc strictly jusi,ified It

tllaws on our cxpcricnccs in the design of VLSI design methods, and

in the prototyping of an expert assistant fol VI31 design WC suggest.

rncthods for expanding the practice of knowledge engineering when ap-

plied to fields t.hat ale fragmrnt,ed and undergoing rapid evolution We

ouf,line how the expanded practice can shape and accelerate the process

of knowlcdgc generation and refinement Ollr examples also clarify

some of (.he una~ ticulatcd present pl ad.ice of knowledge cnginccring

Thanks cspccially to Daniel Boblow for helping us to discover, refine,

and al ticulate many of these ideas We are also grateful to John Se+

Brown, Douglas Lcnat, C:hrist.opher Tong, and Michael Williams for

their t.horough reviews of drafts of this article Thanks also to the

n~emhe~s of t,he KBVLSI project: Alan Bell, IIarry Uarrow, Daniel

Hohrow, ilarold Brown, Phil Gerring, Gordon Foystel, Cordon Novak,

Christopher Tong, and Narindcr Singh, who have participated in the

knowlcdgc cnginccl ing and expel t systems aspec1.s of t.he I.“oject The

synergist.ic cornhinxf,ion of their contributions to the project, merging

idcns from a wide variety of viewpoints, has given us all a sense of ex-

citcmcnt and common pul pose

Thanks to the Xerox CTorporation for providing the intellectual and

computat.ional environment, in which this work could Ix done This re-

search is hcing rondllcted as pal t of the KBVLSI project, in collabora-

Con with the Hcuristir Programming Project at Stanfold University

The Stanfold component of the research is funded by the Defense Ad-

va uced Research PI oje(%s Agency

A STRONG MOTIVATION for Al rcscarch on expert syskm

is that, these problem domains provide an appropriat,e lcvc

of complexity for studying problem solving. Toward thi:

end, knowledge acquisition is sometimes considered a ncces-

sary burden, carried out under protest so that one can gel

on with t,he study of cognitive processes in problem solving

In this article we argue that, t,he two activities-knowledge

acqisitSion and cognitive modeling-are necessarily inter-

woven, and provide interesting opportunities when t,akcr

Logether. Knowledge acquisition shapes cognit,ive model-

ing because operatzonnl knowledge cont,ains assurnpt,ions nnc

directions for its use, t,hat, is, a.11 implicit, processing model

In return, problem solving models can profoundly shape

knowledge acquisition by providing a framework for the ar-

ticulation and creation of domain expertise This int,ro-

dllces the theme of this article, t,hat, one can engzneer bodie:

of knowledge for various purposes, such as learnability, OI

cfEcient use in problem solving. To the knowledge engineer-

ing slogan “knowledge is power,” we add “knowledge is an

artifact,, worthy of design ”

The organization of this article is as follows: We first

consider the pract,ice of VI,SI design and find difl%:ult,ies wit,h

the building of expert, syst,ems for that a.rea using conven-

tional methods. The second section relat,es some cxpcricnces

in t,hc taansformation of design pract,ices in VLSI design com-

munities. ‘I’hrse experiences suggest, Lllat knowlcdgc em-

bedded in these transformed methods gives practitioners a

4 TIE AI MAGAZINE Summer 1982

AI Magazine Volume 3 N umber 3 (1982) (© AAAI)

Figure 1 The demographics of VLSI clan structure To a first approxima-

tion, the design community is divided into a number of clans Each clan is

divided by specializations of labor, and works on a particular type of application

(e g , microprocessor chips) Secrecy barriers between firms inhibit flow of

knowledge between clans, although some specialties may find common practice in

several firms

“cognitive advantage ” III the t,hird section we suggest some

prinr,iples and measurements that can be applied to the en-

gineering of knowledge, in order to impart advantages foi

cognitive processing We then present examples of the prin-

cipled engineering of knowledge drawn from our experiences

with VLSI design methodology. Finally, we offer speculations

on possible roles for knowledge engineers working on new

bodies of knowledge.

A Shift in Viewpoint from Experts to Clans

Over the past decade t,hcrc have been trcmcndous ad-

vances in the fabrication of integrated circuits (Robinson,

1980a). Circuits have become smaller and manufacturing

costs have dropped dramatically. Design is becoming the

dominant cost (Robinson, 19801~) with the current round of

miniaturization, which goes by the name of VLSI for very

large scale integration. This is leading to a substantial int,cr-

est in undcrst,anding design processes.

The tendency t,o specialize and the shifting of the t,ech-

nological base are forces for diversity in the integrated cir-

cuit design community. To a first, approximation, the com-

munity can he viewed as a collection of sometimes indepen-

dent and sometimes compet,ing clans having different prac-

tiers, identifiable by their tools and methods Digital system

architects and integrated circuit designers often specialize in

different kinds of systems and circuits, such as microproces-

sors or digital signal-processing chips (just as mechanical

system designers may specialize in domains such as aircraft

or automobiles). The picture is further complicated by

the traditional stress on secrecy within t,he integrated cir-

cuit industry-designers in tlilrercnt firms find themselves in-

itiated into the local craft practices of their particular firms.

Cultural drift occurs, gradually widening the gap between

practices of different firms. Therefore, many separate clans

in diffcrcnt firms use diflcrcnt methods to work different, part,s

of the space of possible designs (see Fig. 1).

The practice of VSLI design has further evolved and frag-

mented in response to shifts in the technological base of in-

tegrated circuit processing-technology As companies have

explored and invested in different fabrication technologies,

the design community has become divided hy another dimen-

sion, that of the particular technology of illlplelrlelltatioll

(nMOS, CMOS, I”L, etc.).

Within each clan in the community, expert,ise is fur-

ther split according to specialized divisions of labor For

example, microprocessor design has traditionally had fom

levels of specialization system architecture, logic design,

circuit design, and finally, layout design. Such division of

expertise among coopcrating specialists is observed in many

problem domains. However, in integrated circuit, design

the specializations of expertise oft,en carry over many prac-

tices from earlier, non-integrated, circuit technologies. The

layered accumulation of past practices has led to a situat,ion

where most, integrated system architects are una.blc to un-

derstand circuit layouts, and most layout, designers are un-

able to understand the function of the chip as a whole

All these factors---the different design domains, the

evolution of the miderlying fabrication technologies, and the

diffcrcnt spccializcd divisions of cxpcrt, practicePhave led to

a state where design pract,ices appear 1.0 be extremely con-

TIIE AI MAGAZINE Summer 1982 5

practitioners artifacts
of practice

t

time

Figure 2 Knowledge diffusion and evolution This figure shows two competing technologies (e g , sailing

ships and steam ships) labeled A and B Social historians of technology (Sahal, 1981) measure the population

of practitioners and their artifacts over time In this example, technology B is gradually displacing technology

A as indicated by the size of the population diagrams and by the slope of the S-curve on the right Actual

diffusion of technology can follow more complicated patterns as new areas open up, and as groups displace

each other or expand to compete in other areas

plex and in a const,ant state of tumultuous change (if com-

plexity is measured by sunmling the observed knowledge, and

change is measured by the differences in knowledge observed

over time).

From the perspective of convent,ional thought in the

knowledge engineering community, such a problem domain

is not, ready for an expert system. The knowledge is chang-

ing too rapidly, and community practice is too fragmented.

Across clans, practice and knowledge vary radically and

there is a widely shared belief that there are many open ques-

tions and opportunities for developing design methods. If

durable expert knowledge about how to design VLSI systems

exists at all, it has not been widely recognized in the design

community. This lack of convergence is in conflict with the

conventional approach to building expert systems, which as-

sumes that the knowledge exists and that it is feasible to

find an expert who has the knowledge and can articulate

it in collaboration with a knowledge engineer (Fcigenhaum,

1977; Barstow and Buchanan, 1981; Duda and Gaschnig,

1981; Davis, 1982).

Conventional knowledge engineering, even as applied in

arcas such as medicine, has historically dealt with selected

subsets of knowledge that are relatively stable over time,

and that are not highly fragmented into different clust,crs of

specializations carried by competing clans By repeated ap-

plication of these conventional methods, the field has evolved

a thought style that fails to recognize the presence and

significance of the fragmentation, competition, and transfor-

THE AI MAGAZINE Summer 1982

mation phenomena inherent in the underlying evolution of

the knowledge itself.

The Design of Design Knowledge

Over the past three or four years, a new clan of VLSI

system designers has been emerging, using dcsign methods

described in the Mead and Conway text on VLSI design

(Mead and Conwa,y, 1980) Courses hascd on this hook

arc now offered in over one hundred universities and by

a number of commercial training organizations. hs Mead-

Conway designers have succeeded in completing interesting

designs in substantially less time than practitioners of other

methods, the phenomenon has a.ttra.cted considerable attcn-

tion (Marshall, Waller, and Wolff, 1981), and the met,hods

have propagated rather rapidly

It is from the success of the Mead-Conway work 011 the

design of VLSI design methods t,hat we gain confidence in

the new line of thought stressed in this article, namely, that

knowledge can he designed, and that reusable principles can

be developed for the principled practice of knowledge en-

gineering (see Fig. 2)

The Mead-Conway methods can be visualized as a cover-

ing by one simple body of knowledge of the previously

separate bodies of knowledge used by the system architect,

logic designer, integrated circuit designer, and chip layout

designer. Those existing layers of specialized knowledge had

incrementally accumulated over many years, without reor-

ganization; while tracking a large accumulation of technol-

ogy change. Mead and Conway seized the opportunity in-

herent in the accumulated technology for a major restruc-

turing and redesign of digital system design knowledge.

When using the methods, an individual designer can con-

ceptualize a design and make all the decisions from architec-

ture to chip layout. Furthermore, it becomes possible to

explore t,he design space and optimize an overall design in

ways precluded when the design is forced through the usual

sequence of narrow specialties. The new knowledge is ap-

plicable in a wide variety of design domains. We suggest that

the knowledge embedded in this method gives practitioners

a cognitave advantage, characterized as a simpler cognitive

mapping from architectural concepts down through layouts

in silicon. We will return to this claim and its implications

in the next section.

Conway has given an account of the process by which the

textbook and the new met,hods were created, tested, and then

integrated into the design community (Conway, 1981). Much

of that account deals with ways of refining new methods by

promoting their experimental use in the design community,

and then responding to feedback from designers. A great

deal of novel infrastructure was created to encourage the

substantial amount of exploratory use required to debug,

evaluate, and refine design methods, and to stimulate the

dif?usion of methods into the engineering community. The

ideas for creating and refining methods per se were described

anecdotally in terms of a generate-test-revise cycle.

The Mead-Conway example illustrates the deliberate

design of a system of knowledge intended to replace an ex-

isting body of ud hoc design practice. Conway’s account

deals mainly with the social dimensions of the phenomenon-

the evolving demographics of the knowledge during its test-

ing, refinement, and propagation. As part of a recent

knowledge engineering enterprise, we have begun to ob-

tain interesting insights into properties of the Mead-Conway

knowledge itself We have a.lso begun to further engineer

that, knowledge under the guidance of certain new principles.

These knowledge engineering activities arc the subject, of the

following sections of this article.

Developing Principles for the

Engineering of Knowledge

The VLSI System Design Area at Xerox PARC and the

Heuristic Programming Project at Stanford [Jniversity have

undertaken a collaborative Knowledge-based VLSI Design

(KBVLSI) Project. The aim of the project is to explore

possibilities for application of AI methods and expert system

technology towards the creation of an expert assistant for

the VLSI designer. The pro.jcct’s leaders considered this

to be a difficult application area, one that would test the

state-of-the-art of expert system technology. On the other

hand, VLSI design wa.s also seen as an application a,rea. of

strategic importlance, one that promised great leverage of

any successes that, might occur.

Because of the observations discussed above, the project

leaders chose to focus on mechanization of the Mead-Conway

VLSI design methods. When the project began, that design

communit,y had not produced a formal body of design

knowledge, from the knowledge engineering point of view.

The community’s methods were relatively simple, and a

descriptive textbook existed. Most of the embedded knowl-

edge was informal, and was communicated in the traditional

manner--by way of examples.

It was clear from the examples that the designers worked

within multiple design levels ranging from abstract system

descriptions to chip layouts, However, most of the levels were

not recorded in a formal notation, and were only informally

shared within the design community. During KBVLSI project

efforts to formalize these abstraction levels, we gained insight

into how certain of the levels were different from those tradi-

tionally used in integrat,ed circuit design. We then began to

study the general properties of sets of abstractions, hoping

to find bases for comparing and understanding the relative

utility of different sets of abstractions, and to perhaps even

find principles for designing sets of abstractions. In this scc-

tion we describe some results of that study.

The combinatorics of problem decomposition

The importance of effective problem decomposition for tam-

ing large search problems has been recognized in AI for many

years. This idea was quantified by Minsky, who explained the

combinatorial advantage of introducing plannang islands for

reducing search by what he called a “fractional exponent,:”

In a graph with 10 branches descending from each node,

a 20 step search might involve 10” trials, which is out of

the question, while the insertion of just four . . . sequentzal

subgoals might reduce the search to only 5 x 10” trials,

which is within reason for machine exploration. Thus

it will be worth a relatively enormous effort to find such

“islands” in the solution of complex problems. Note that

even if one encountered, say lo6 failures of such proce-

dures before success, one would still have gained a fac-

tor of perhaps lOlo in over-all trial reduction. (Minsky,

1961, pp. 441-442)

The islands in this example decompose the search into a set

of subprohlems. Although the search reduction is dramatic,

it depends heavily on the placement of the islands. For

example, if the islands were located at levels 16, 17, 18,

and 19 in the tree, the search would still require 1016 trials.

Merely breaking a problem into subproblems is not nearly as

powerful as breaking it into well-spaced slrbproblems.

Languages and problem decomposition. Although

this enumeration illustrates tho power of well-spaced sub-

problems, it gives no advice about how to find them. It is

intuitively clear that big steps are better than little ones, but

how do we find the st,eps? Must the decomposition process be

determined anew for every problem? This section presents

two ideas that bear on this. The first idea is that a language

that, describes suitable abstractions of problems, can guide

the decomposition of problems into subproblems. This idea

can be iterat,ed to yield an ordered set of languages providing

THE AI MAGAZINE Summer 1982 7

illt c>rmc>diatc abstractions The second idea is that the order

of the set of languages matters. The languages should be

arranged to yield a low degree of hackt,racking in problem

solving When an ordering of languages can be found that

provides low backtracking across a broad spectrum of prob-

lems in a domain, the languages can be used to effectively

guide problem decomposition in the domain.

The first idea can be illustrat,ed by the problem of finding

a route from Palo Alto to the San Francisco Airport,. A

methodical street at a tzme approach would search a widen-

ing circle of city blocks until the airport was found. In con-

trast,, if a map is available that shows only main roads and

connections, then the search can be confined to t,he points on

the map, The map helps us to decompose the original prob-

lem into separate routing subproblems through intermediate

points (e.g., Embarcadero and El Camino, the Embarcadero

entrance to the Bayshore Freeway, and the airport exit from

the Bayshore Freeway). The search of the map can be cx-

pressed in terms of a language whose “terms” are the points

on the map and whose “syntax” is the set, of rules for con-

necting adjacent points into routes Such languages should

preserve some important characteristics of the problems, but

suppress much of t,he detail For example, the map would he

of no use for decomposing problems if it failed to show the

freeway exits, or if it showed minor streets but omitted the

main traffic arteries

This idea of abstraction can bc applied iteratively in

problem solving, as in the hierarchical planning systems

reviewed in Stefik, Aikins, Balzcr, et al., (1982). Rbstrac-

tion can take several forms, such as d&ail suppression, or

implementation relationships. We use the term implcmenta-

tion to indicate relationships between abstract constructs of

completely different types In such cases it is convenient for

the abstract,ion levels to be reified in terms of distinct lan-

guages. Search reduction results when there is an ordered

sequence of languages such that an abstract construct can

be implemented in terms of expanded constructs at lower

levels The search for candidate solutions in the abstract

languages, and the early elimination of some of them, yield

suhst,antial economies for problem solving. By eliminating a

particular ahst,ract, construct from consideration, a problem

solver avoids pursuing the members of an equivalence class

of detailed solutions

Even if an abstracted problem is not a perfect mor-

phism of the original, its solution may prove useful as a

guide. What matters is that a language (or ordered set

of languages) provides a guide to decision making so that

the average retraction of decisions is low. For example, in

multiple languages for a top-down design process, each lan-

guage facilitates the composition of constructs that need

to be implemented in the language at the next level down.

Typically, much knowledge must bc brought to bear in mak-

ing the implementation decisions In any particular prob-

lem, knowledge gained during the implement,ation process

may suggest the riced to reconsider some of the decisions

made at a higher level, t,hat is, a repartitioning of sub-

problems. For languages to bc generally effective across prob-

lems in a domain, t,hc relative rate of such retraction must,

be low. This amounts to a uniformity requirement, on cleci-

sion making --on average, the same kinds of decisions must,

be critical for all problems, so that making them first will

efficiently guide problem decomposition.

When the languages successfully guide the partitioning

of subproblems, we say that the languages cxhihit the plan-

ning &and effect. We claim that the influence on a problem

solver is akin to that proposed in the Whorfian hypothesis

language shapes the patterns of habitual thought (Whorf,

1956). For example, a designer who systematically carries

a design through several implementations in different lan-

guages is guided by an “invisible hand” that, determines the

kinds of decisions that are made at each step

A comparison of design methods In creating their

textbook, Mead and (jonway worked to simplify VLSI design

practice hy reducing the amount, of knowledge required,

and by restructuring the form of the knowledge. Tradi-

tional integrated circuit, design proccsscs have four levels of

specialization System architects perform the highest level

of design, specifying the function blocks, registers, and data

paths of a design The next level is carried out, by logic de-

signers, who work out, the details of the logic implementing

the functional blocks. Circuit designers then specify t,hc cir-

cuit devices and interconnections to be used to implement the

logic designs. Finally, layout designers specify the geomrtric

patterns to be conveyed int,o the various layers of the in-

tggrated circuit, chips to implement, t,he devices and intercon-

nections. Implicit in this division of labor is a set of informal

abstraction levels, one per specialty, that, convey a planning

island effect into the design process (see Fig. 3).

In contrast with traditional practice, the Mead-(jonway

methods bypass the requirement for Boolean logic gat,c rep-

resentation as an intermediate step in design They thus

eliminate an unneeded step in the design process, a step that

often introduces unwanted complications while precluding

important design constructs. The methods also advocate the

consistent use of simple charge-storage methods instead of

cross-coupled gates for saving state between register transfer

stages A simple “primitive switches” design step, which can

generate not only logic gates when needed, but also steering

logic and charge-storing registers, replaced both the logic-

gate step and the detailed electrical circuit-design step of prc-

vious methods Mead and C:onway also proposed simplified

electrical models, timing models, and layout rules for guid-

ing design under t,he resulting methods. The methods are

sufficiently simple to learn and to USC so that an individual

designer can now rapidly carry a design from architecture

to layout in silicon, whereas previously a team of specialists

would have been required.

We hypot,hesizc that further analysis of the new sys-

tem of abstraction levels embedded in the Mead-Conway

methods, as cont,rasted with the traditional levels, will reveal

the sources of the advantages of the m&hods in terms such

as the planning island effect. However, in order to conduct,

8 THE AI MAGAZINE Summer 1982

INFORMAL ABSTRACTION LEVELS FORMALIZED LEVELS

Functional

Blocks

Register

Transfer

Logic

Doaign

Circuit

Design

Layout

Functional

Block8

Register

Transfer

Switchoa

And Wires

M-C

Layout

LMA

CRL

CPS

M-C

Layout

More
Abstract

A

I
More

Datailed

Figure 3 Comparison of relative placements of abstraction levels

The sequences of levels are shown for traditional IC design methods,

informal Mead-Conway methods, and for re-engineered, formalized

Mead-Conway methods

such analyses, and also in order to embed t,he methods in an

expert syst,em, we must formalize these abstraction levels.

Creating synthesis languages. The design practices

described in the previous section are largely informal, both in

the Mead-Conway methods and in more traditional methods.

By this we mean that the rules of design are not written

down in terms of a formal language having precise rules of

syntax Although informal notations seem to accommodate

open-ended specificat,ions, they are usually inadequate as

documentation, either for a designer of a large project,, or

for teams of designers.

Many formal languages for describing hardware have

been proposed. For example, t,here are many proposed

logic descriptions and register transfer descriptions in the

hardware descriptzon language literature. However, these

hardware description languages have had very limited accep-

tance in act,ual design practice. WC believe that the reason

for this is that the languages were designed for the wrong

purposes. They were designed for documenting, describing,

and verifying the propert,ies of existing hardware.

These observations lead us to take a closer look at the

properties of notations used in the integrated circuit design

culture. One widely used formal notat,ion in integrated cir-

cuit design is the artwork or layout notation. This notat,ion

describes integrated circuits in terms of “colored rectangles”

(representing material on a chip) that car1 be composed to

build up large designs. Combined with the layout notation is

a set of composztzon rules, called layout design rules. Designs

created under these rules are guaranteed to have adequate

physical spacing on a chip.

The layout language has several important properties

which make it useful for the synt,hesis of designs First,

primitive terms can be combined to form larger terms and

subsystems (“design by composition”) Second, there are

rules of composition t,hat define the allowed compositions of

these terms These rules apply both t,o composite objects

and primitive terms. Third, there is a well characterized

set of bugs that are avoided when the composit,ion rules are

obeyed. At the layout level, these bugs correspond to tbc

function and performance problems caused hy inadequate

physical spacing. The composition rules provide a simple

shallow model of composition that is based on a deep model of

electrical properties and fabrication tolerances (Lyon, 1981).

With these propert,ies in mind, we have crea.ted the set

of synthesis languages charact,erized in Figure 4. The set

of languages can be viewed as a re-engineering a.nd then

formalization of the Mead-Conway abstraction levels, with

the inclusion of a new type of top abstraction level (see

Fig. 3) Each language provides a vocabula.ry of terms and

a set of composit,ion rules that define legal combinations of

the terms. The concerns of each language are characterized

by specific classes of bugs that can be avoided when the

composition rules are followed.

Collectively, the synthesis languages factor the concerns

of a digital designer. (See Stefik, Bobrow, Bell, et al., 1982 for

a discussion and more details) The lanked module abstrac-

tzon @MA) language is concerned with the sequencing of

computational events. II, describes the paths along which

THE AI MAGAZINE Summer 1982 9

Description
Level

Linked
Module
Abstraction

LMA

Clocked
Registers
and Logic

CRL

Clocked
Primitive
Switches

CPS

Concerns Terms
Composition Bugs

Rules Avoided

Event
Modules
Forks

Token Deadlock

Sequencing Joins
Conser\lation Data not

Buffers Fork/Join Rules Ready

Stages Mixed Clock

Clocking Connection Bugs

Register Transfer of Stages Unclocked

2 Phase Transfer Functions Feed back

Digital
Pull-Ups Connection Charge

Behavior
Pull-downs of switch Sharing
Pass networks Switching

Transistors Ratio Rules Levels

Layout
Physical Colored
Dimensions Rectangles

Lambda
Rules

Figure 4 Synthesis languages of an expert system for aiding VLSI design Each language has a set

of terms that can be composed to form systems and a set of composition rules that define legal

combinations of the terms The concerns of each language are characterized by specific classes of

bugs avoided when the composition rules are followed

data can flow, the sequential and parallel activation of com-

putations, and the distribution of registers. The LMA level

provides a simple covering of ideas from many sources includ-

ing Petri nets and the design of speed-independent modules.

The LMA composition rules preclude bugs of starting com-

putations before the data are ready, and deadlock bugs that

arise from t,hc use of shared modules. The clocked registers

nnd logic (CRL) language is concerned with the composition

of stages of combinational logic and registers. The CRL

rules preclude various bugs related to clocking in a two-phase

system The clocked prim&we switches (CPS) language dis-

tinguishes between different uses for logic, such as steering,

clocking, and restoring, and is concerned with the dzgital be-

havior of a system The composition rules of t,his language

prevent bugs of non-digital behavior caused by charge shar-

ing and invalid switching levels.

The charactnristics of these synthesrs languages stand in

contrast to the hardware description languages (i e , analyszs

languages) mentioned earlier. The logic description lan-

guages are too isolated and the register transfer (RT) lan-

guages arc incomplete and insufIiciently formalized. For

example, it, is dificult t,o find clocking specifications in a

typical ~‘1’ description. The composition of partial RT

descriptions does not yield a test of correctness for clocking.

Those hardware description languages provide no composi-

tion rules, optimization rules, or bug characterizations, and

fail to provide enough leverage for designers.

We believe that the practice of creating synthesis lan-

guages for different, design domains may eventually be un-

derstood in terms of a relatively small number of common

principles. To r&urn to the map example, the process of

10 THE AT MAGAZINE Summer 1982

making maps is not radically different, for different cities

Our search for such abstract synthesis languages has been

aided by our interest in their formal properties. For example,

the articulation of nearly indcpcndent concerns arises, in

part, from generalizing about categories of design bugs. The

characterizations of design bugs arise from the articulation

of composition rules. The composition rules arise from the

need to determine when the compositions of t,crms are valid.

Quantifying the abstraction power of synthesis

languages. Given a set of synthesis languages, we would like

to be able to quantify their utility for crea.ting well-spa&

planning islands. The spacing of zslands is a metaphor fol

branching factors bet,ween levels. We have found it useful

to define two such factors, termed the choice factor ant1

the expansron factor The choice factor is a measure of

t,he alternatives in decision making. It) is defined as the

average number of possible alterna.tive implementa.tions for a

primitive term at the next lower level. The expansion facto1

is a measure of the expansion of detail. It is defined as the

average multiplicative increase in the amount of informat,ion

for specification of a primitive term at the next lower level

If there are typically 20 ways to implement an 1,Mh t,crm in

CRT, and t,hc average increase in the amount of information

is 200, then the choice factor is 20 and the ewpa.nsion factor

is 200 (see Fig 5)

In the Minsky example for computing the power of plan-

ning islands, we saw factors on the order of 10”. When the

computation is extended to consider multiple levels, the fac-

tors for the individual pairs of levels can be mult,iplied to

obtain factors for t,he entire set of languages For example,

wit,h four levels an average choice factor of 22 provides ;1

total choice factor of 10”

choke factor

I+2

Figure 5 Choice and expansion factors for synthesis languages The choice

factor and the expansion factor are two measures of the abstraction power

of a synthesis language The choice factor measures the number of alternatives

in decision making, and the expansion factor measures the expansion of detail

For an ordered set of levels, the total choice and expansion factors of the set

correspond to the products of the individual factors

Accurate quantifications of the choice and expansion

factors of the synthesis languages being developed for the

KBVLSI project arc still a ways off and it is clear that

the quantification of these factors depends on a careful

information-theoretic analysis As we complet,e our knowl-

edge bases and expand our experience with these levels, WC

will be interested in developing systematic means of applying

the new measures to our work, and will perhaps further tune

our abstraction levels in response to the results.

Examples of the Engineering of Knowledge

By suggesting that knowledge is subject to design, we

place knowledge engineering among the sciences of the

artificial (Simon, 1981). Designed objects are artificial in

that they arc man-made and shaped to suit a designer’s pur-

poses for use in some environment As an engineering prac-

tice develops, engineering principles emerge that account for

the constraints imposed by designer goals and an environ-

ment. Since there can he antagonistic goals (Tong, 1982),

the principles need to account for examples of tradeoffs. Al-

though no substantial body of knowledge engineering prin-

ciplcs has yet been articulated, a partial picture of some of its

elements is starting to appear. This sectlion presents several

examples of t,he engineering of knowledge from the KRVLSI

project, and the reasons for the shaping of knowledge that

we have found compelling. These examples suggest that a

reusable body of practice may eventually emerge

Example: Composition and optimization. The.

“design by composition” model characterizes a design process

that is dominated by the composition of terms. The terms

can be primitive in some synthesis language, or they can

be previously created composite terms known to be correct

(relative to some classes of bugs). Observations of prac-

ticing system architects and circuit designers confirm that

this technique is a significant part of t,ypical practice. This

section argues that knowledge about design should be en-

gineered to separate composition knowledge from optimiza-

tion knowledge (see Fig. 6).

The following composition rule about, clocking is taken

from rules at the CRL-level:

Data outputs from a stage must be valid during the

opposite clocking interval than the data input to that

stage

This rule, combined with others, prevents creation of stages

having distinct input lines holding data valid on different

clocks (mixed clock bugs) and also creation of unclocked

feedback loops. This insures correct, alternation of clocks on

successive stages as shown in Figure 6a. Figure 6b shows two

versions of a circuit for a memory cell. The optimized version

omits a clocking switch, thus violating a compositJion rule.

But, given some assumptions about output line loading and

clock speed, the optimized circuit can be shown to be correct.

The proof observes that a signal going through two inverters

is restored to its original value. A more general form of

the argument would accomodate any “identity transform”

(e.g., as implemented by an even number of serially-connected

invcrters) The composition rule by itself employs the worst

case assumption that data changes on lines, and misses this

optimization. If the composition rule had to account for all

possible optimizations, it would riced many more exception

clauses as in:

All of the data inputs to a stage must be valid during the

high interval of the same clock unless (I) they are derived

from an unclocked stage yielding an identity transform

and the loading of the line is . and the capacitance is

less than . . , and the speed of the unclocked stage is . . .

or (2) . .

THE AI MAGAZINE Summer 1982 11

Phi 1 Phi 2 Phi 1 Phi 2

Sequence of Stage8

Phi 2

@

Phi 1

(a)

Clocked Feedback Loop

Straight-forward

Version
Phi 1 l G

I

Phi 2

Optimized Version Phi; l G

(b)

Clocking Switch
Omitted

Figure 6 Optimization example from the CRL level Figure 6a shows the usual composi-

tion of stages at the CRL level The lines labeled Phil and Phi2 represent clock lines The

key observation is that the clock lines alternate for successive stages Figure 6b shows two

versions of a memory cell circuit The optimized version violates the composition rule The

text argues that the optimization of the cell is correct, but that its correctness depends on

properties of the memory circuit that are not true in general The price of simplicity in the

composition rules is that they make worst case assumptions But later optimizations

can take account of special cases

A serious disadvantage of this approach is that it dznzzlz-

ishes the leverage conferred by nmltaple abstructzon levels

Verifying the opt,imization clauses in the complicated form

of the rule is not generally possible from only a CRL descrip-

tion, because the capacitance information is not known un-

til another level of implementation is done (a layout). As a

consequence, designs could not always be verified to be free

of clocking bugs at the CRL level. This would diminish the

effectiveness of the CRL level in producing planning islands.

An alternative is to use the simple composition rules

and to have a separate pass in the design process that uses

optzmzzataon rules to ideritify and introduce optimizations.

This has several advantages By keeping the composition

rules simple, it is easier to get them right because the special

cases are isolated We have found examples of optimization

conditions like these at every level of description in our work.

In most cases, an optimization combines information from

more than one of our description levels.

The factoring of optimization knowledge helps to defuse

the argument, t,hat “simplified bodies of knowledge must miss

something.” Our approach to this is to first formalize the

knowledge in terms of languages, for which WC can be precise

about exactly what. they cover. The languages can then be

engineered to have appropriat,e properties for synthesis, as

discussed in the previous section. Finally, separate bodies of

optimization knowledge can be developed that extend the

total coverage of the design knowledge by characterizing

opportunities for performance tuning.

12 THE AI MAGAZINE Summer 1982

This example of the cngincering of design knowledge il-

lustrates the influence of a problem solving model on the ac-

quisition and design of knowlcdgc The current framework

admits the possibility of an approach to design that separates

concerns of functional corrcctncss (via composition) from

performance tuning (via optimization). This reflects cogni-

tive economics by enabling the cffcctivc use of planning is-

lands in composition, and by admitting a design process in

which only the critical portions of a design are optimized.

Example: Coverage and simplicity. Two important,

attributes of a body of knowledge arc its covcragc and its

simplicity By coverage we mean a measure of the cases in

the field of interest for which the knowledge is adequate. In

design knowledge for VLSI systems, coverage refers to the

kinds of digital systems and integrated circuit technologies

that can be adequately characterized

The search for simplicity is endemic in science

(e.g., Occam’s razor). In our knowledge engineering, we have

employed several kinds of simplicity measure:

1 basrs simplzcit~the number of kinds of basic ele-

ments;

2 eqression szmplzczty--the length of the average (most

common) expressions;

3. composition. simplzcitlpt,he number and simplicity of

the rules for combining terms with other terms

The first measure is used when we try to reduce the number

of primitive terms by defining some constructs in terms of

others. The second measure is used t,o counteract, excessive

ALL/ALL FORK-JOIN ANY /ANY FORK-JOIN

4 4

SELECT/ANY FORK-JOIN

IKey

Figure 7 Common fork-join combinations used in the LMA language

Forks are elements that map control and data from one module to many

modules They are annotated graphically as the downward-branching

trees in the examples above Joins map control and data from many

modules to one module The all/all combination is used to start a set

of operations going in parallel It indicates completion after all of the

operations are complete The any/any combination starts one of several

operations and finishes when it is complete A select/any combination

uses a key to select a particular operation It is used to implement

if-then and case statements in the LMA language

USC of t,he first measure For example, we would argue for

the continued use of A (conjunction) and V (disjunction) in

introductory logic courses in spite of the fact that logical

expressions c.an be written with fewer kznds of terms using

less familiar connectives. The third mcxsurc attempts to ac-

count for the int,erfacing effects in the design by composition

model. Terms should be excluded if their composition rules

are excessively baroque

These concepts about coverage and simplicity can be il-

lustrated by the knowledge engineering of elements of the

LMA langua.ge (Stefik, Bobrow, Bell, et al., 1982). The

LMA language provides a formal means for synthesizing digi-

tal systems in which the sequencing of operations is given

primary attention. The sequencing is specified in terms of

modules that carry out instructions and links between them

that, determine the flow and control of information. Flow

of control is described in terms of a token-passing protocol

between element,s. Forks are a type of link that, enables one

module to pass data and control to several other modules

(fanout); jozns are a type of link that combines dat,a and

control from several modules into one (fanin). Forks and

joins are typically used in fork-join combinations as shown

in Figure 7.

The selection of the forks and joins included in the LMA

language was intended to provide a small basis set of ele-

ments with substantial coverage. In the current set four

kinds of forks (any-fork, all-fork, synchronizing-all-fork, and

select-fork) and two kinds of joins (all-join and any-join) are

included The fork and join vocabulary is interesting from

the knowledge engineering point of view in t,hat it) illustrates

some of the lcznds of arguments that can he used in deciding

what, to include in a description language. These arguments

arose in the consideration of the possible kinds of “select-

forks” for LMA. At one point, we created a chart of possihlc

characteristics as follows:

Possible Selection Characteristics

1 Outside selection by key.

2 Self-selection by ready status

3. Priority-based selection by precedcncc rules

THE AI MAGAZINE Summer 1982 13

Possible Synchronization Characteristics -

1 All sc1cctrcs slarl.cd nt OII~‘~!

2 S~lccl.c:rs sl.artrtl wlim ready

1n l,hc c11rrcnf. LMA model for select-forks, we chose

“ou1,side sclect,ion by key” as the selection characteristic and

“exactly one sclectcc activated” as the termination condi-

tion If we :~llowod more than one module t,o he sclcct8ed

by ils ready slatSus, a select fork would start, an unpretlict,-

a,hlc number of modules, perhaps dependent on timing.

This would also mea11 t,hat, se&t,-forks would not conserve

t,okens WC have tliscovcred that, the rules for compos-

ing rlon-tolteri-coriserving e1emcnf.s arc remarkably baroque,

and that designs t,hat use such elements seem considerably

more diflicult to understand (con~posztron smrplzcity). Most,

of the design cxamplcs that we considered could bc easily

clescril)e:d using only t,hc simple tokerl-conserving version of

Ihe select-fork The common CRSCS are analogous to zf-then
:md cn~e st,at,ements in conventional programming languages

(czpresszort szmpleczty). In addition, t.hc more corrlplex varia-

tions of thr select-fork can be described in terms of the

simpler version and other LMA elements (bnszs srntplrcrty)

Example: Embedding practice in synthesis lan-

guages St,acks are familiar storage devices i,llat provide

last-in-fir&out. :tccess t,o dat,a They are basic to rnn~ly

fundamental algorithms in computer science There are a

variety of digital archit,ect,urcs that can be 11sct1 t,o crestc

stacks (CR., Guibas md Liang, 1982) For example, one

archit.ect.ure is like a soltCWarc irrlplerrieIlt,:tt.ion, and uses a

counter i,o keep track of pushes and pops. Another archit,ec-

t,ure uses “marker bit,s” instead of a count,er, to mark the

lop, of the stack. Other :trc:hitcct,ures resemble large shift,

rcgistcrs which cit,hcr shift the data all at, once, or allow it

i,o ripple from one end t,o the ot,hcr during pushes and pops

Thcsc archit,ect,llres dificr in ways that, suhst,ant.ially cffcct,

the amount, of st,orage needed, the amount of co&o1 logic,

the f’anollt, of t,he control lines, and t,he pnrformancc charac-

teristics of a large stack

We observe t,hat practicing designers do not, share a

COIIIIIIW architectural notation adquate for synthesizing or

describing these examples. This gap in design knowlcdgc

often makes it difficult t,o share or unclcrsland designs. The

I,MA notation appears expressive enough to admit, architcc-

tural comparisons and :tt)st,ract enough Co provide leverage

for exploring design altcrnalives. For example, all of the

stacks mentioned above have hccn described in LMA (S&k,

Hobrow, Hell, et al., 1982). From Uiese descriptions one can

answer such questions as “how much storage is needed pc.1

clement of capa.cit,y?” , “what fanout, of c.ont,rol logic is re-

quired?” , and “what8 det,ermincs t,hc minimum delay bet,wccn

successive push commands?”

The availaGilit,y of Iangllagcs can provide oppori,unitics

for rcpresent,ing hodies of nd Izor: practice For example,

to tlescribc the design of hit, serial circuits for implemrnt8-

ing digil,al filters, one would begin hy collecting cxarriples of

t,he design practice. Tllis practicr wo~llrl hc pnrl,itioned into

primit,ive and composite t,ernis, aud composition nielhods

drawn from the ad hoc fragmcnlz In this example, t,hc

practice would include a set, of composit,ion rules for com-

bining active element,s and bullcrs according to dab rale

requirements, as well as some theory about, t,hr tzidcolls

in this design arca. A language like LMA would he used

t,o describe the components. Composition knowlctlgc and

1,radeoff knowledge would he described in other suitable lan-

guages. ‘l’llroughont, t,his process a knowlcdgc rnginccr t.ries

to identify concerns that can be isolated and details that, can

1~ suppressed. The example illllstralcs t,wo point,s:

1 one can describe the terms of an architectnrnl pram*-
Lice as constructs in a synt,hcsis language like I,MA,

and

2 011c can augment the practice and create an cm-

txtlded architectural langliage by also creating co7?L-

posifzon rules for the 1,121 ms

Thn base languages simplify t,he process of representing t,hc

specialized larigiiagcs

Significance of these examples. Our intcrcst, in t’or-

malizing knowledge about VLSI design is akin t,o other cur-

rent efforts in AI aimed at, formalixing partic1lliU hodics 0t

l~~~~wledgc, such as t,hc physics of fluids (IIayes, 1979) OI

reasoning about, lime (r.g., Urn, 1981) This article has

lmm concerned wit.h the design of a body of knowlctlgc in

order to give it part,icnlas proprrtics

The examples above illustrate t,hat, knowledge can 1~

engineered to meet, part,icular ohjcctivcs Sometimes t,hcrc

are tensions hetwecn mulliple objectives in t,he design of

knowledge. The composition and optimization example il-

lust,rated a t,ension belween simplicity and coverage WC

sought to keep knowlcdgr simple t.o facilitate compositbn,

without, sacrificing coverage of special cases essential for cir-

cuit performance Our approach was to partit,ion the corn--

position knowledge from the opt,illlizn.t.ion knowledge so t,hut,

they can l)e applied separately.

The second example illust,rated three mcasIlrcs of’ sin-

plic:il,y that CRII he employed in the design of synthesis lall-

guagcs These measures reflect, a tension bct,wcen minimizing

the num her of primitive elements in a language, and keeping

short the length of common rxpressions in the language.

The t,hird example illustrated the idea that, design prar-

tice can be sysl,enl:rt,ically cmhcddcd in synthesis languages,

when there is an appropriate mat,ch bet,ween the import,antJ

distinctions in the practice and the fcat,ures emphasized in

t,hc language.

These examples also illust,ratc progress in coping with

the diticulties discussed in the first, section of t,his article In

that section we noted some characteristics of VT31 design

t,hat, made prospects for expert, syst,cms seem premat,urc

given the conventional methods of knowledge engineering.

14 THE AI MAGAZINE Summer 1982

(i) measure* of practicer, (ii) measure l of practice,,
without KE with KE applied to B

/

t1 DB

I \

+t2 -0

t
J i

t3 -0

loo

0

time *practitioners or artifacta

Figure 8 Knowledge engineering mediating the transformation of knowledge The processes that underlie

the diffusion of technology and knowledge depend on a variety of factors including properties of the knowledge

itself Does it provide economic advantages. 7 Is it too complex to apply? Can it propagate through a

particular culture? Knowledge engineering can potentially augment the infrastructure in which these natural

transformation, displacement, and diffusion processes operate

The main difficulties were fragmentation of the design com-

munity and rapid evolution of the design knowledge. The
fragmentation problem can be eased by the use of common

languages to represent digital systems in uniform notations.
The rat,e-of-change problem can be eased by the use of lan-

guages for abstraction which cover the range of concerns of
existing design methods, and which provide insulation from

changes in fabrication technology. In contrast, the libraries
of standard layout-level cells in current, CAD systems are ob-

soleted quickly by changes in technology. In a multi-level ap-
proach, libraries of abstract constructs will span many tech-
nologies, and only the implementation rules need be changed

as technology shifts.

Speculations on the Potential Impact

of Knowledge Engineering

Some AI researchers (e.g., Nilsson, 1982) caution against
too great an involvement with the knowledge of “expert”

fields, lest hI researchers lose their identities by becoming

absorbed by the fields. In contrast, we sense opportunities
in substant,ial involvement The struggle to formalize and

mechanize knowledge in difficult problem areas can strongly

stimulate the production of new hypothcscs regarding the
foundations of AI and knowledge engineering. Such problem

areas also provide empirical contexts for the experimental

testing of those new hypotheses.

Our examples of the engineering of knowledge have

highlighted roles for AI specialists. In particular, we have

focused on opportunities for exploiting synergy between re-
search on knowledge acquisition and research on problem

solving processes. There are possibilities, however, for a

much wider range of participation in knowledge engineering.

Practitioners in a particular field can apply the techniques to
the simplification and refinement of their methods, enabling

more efficient applica.tion and easier propagation of their
knowledge. Cognitive scientists can develop refined models

of human information processing by studying the process-

ing, propagation, and evolution of knowledge having known
properties. AI specialists, cognitive scientists, and social

scientists can collaborate to develop techniques of demog-
raphy, ethnography, and analysis for identifying areas of ad

hoc practice ripe for knowledge engineering

The generation, selection, and diffusion of knowledge

depend on a variet,y of social, ecological, and economic fac-
tors, including the properties of the knowledge itself. So-

cial structures often mediat,e the generation process t,hrough

complex membership and career feedback processes (Latour

and Woolgar, 1979). Social networks of knowledge car-

riers, sometimes invisible to outsiders, can provide a means
for rapid diffusion of new knowledge (Crane, 1972). Tech-

nological diffusion and displacement are increasingly being

scrutinized under quantitative met,hods, resulting in use-
ful new insights and models of the underlying cultura.1 and

economic processes (Sahal, 1981) As we better understand
these natural processes, we can propose and test how they

might be modified by knowledge engineeering.

We believe that the merging of knowledge engineering

into the existing cultural infrastructure can enable great in-
creases in the rates and extents of knowledge generation

and diffusion processes (as suggested in Fig. 8). A com-

mon literacy regarding the representation and mechaniza-
tion of practical knowledge would encourage placement

THE AI MAGAZINE Summer 1982 15

of more effort into the design of knowledge, rather than

its routine application. Knowledge engineered for good

cognitive matching to receiving cultures will diffuse more

rapidly. Knowledge engineered for more efficient computa-

tional processing will provide cognitive advantages. Of

course, for thcsc results to occur, the field of knowledge en-

gineering must itself successfully integrate into our culture

under the operation of natural displacement and diffusion

processes!

Special opportunities are presented when knowledge en-

gineering takes on bodies of knowledge of strategic im-

portance, such as design methods in critical technologies.

Design methods occupy a central cognitive position for

the engineer, much as systems of natural law hold for

the physicist. Periods of rapid knowledge displacement

among engineers correspond in form to the large-scale cogni-

tive model displacement-processes described by Kuhn (1962)

as shifts of paradigm in natural science. As engineered

knowledge conveys advantages to its human and machine

carriers, the field could modulate and accelerate the cur-

rently ad hoc natural processes of knowledge generation and

diffusion. Our knowledge engineering explorations may ul-

timately help us to understand the causes, measures, and

indeed methods for initiating and controlling, large-scale

shifts in t,he production and application of knowledge

References

Allen, J F. (1981) An interval-based representation of temporal

knowledge IJCAI 7, 221-226

Barstow, D R., & Buchanan, B G (1981) Maxims for knowledge

engineering. Tech. Rep HPP-81-4, Computer Science Dcpt ,

Stanford IJniversity (Also AI Memo 10, Schlumbcrger-Doll

Research Laboratory, Ridgefield, Conn.)

Conway, L (1981) The MPC adventures: Experiences with the

generation of VLSI design and implementation methodologies.

Proceedings of the Second Caltech Conference on Very Large Scale

Integration, 5-28 (Also reprinted as Tech Rep VLSI-81-2,

Xerox Palo Alto Research Center.)

Crane, D. (1972) Invzsible colleges: Dzffuszon of knowledge in scientific

communztzes Chicago: University of Chicago Press

Davis, R. (1982) Teiresias: Applications of meta-level reasoning.

In R Davis & D B Lenat (Eds), Knowledge-based systems zn

artificzal intellzgence. New York: McGraw-IIill

Duda, R 0 , & Gaschnig, J G. (1981) Knowledge-based expert

systems come of age BYTE 6(9):238%281

Feigcnbaum, E A (1977) The art of artificial intelligcncc:

I. Themes and case studies in knowledge engineering IJCAI J’,

1014--1029

Guibas, L J., & Liang, F M (1982) Systolic stacks, queues, and

counters. Proceedings of the Conference on Advanced Research in

VLSI, 155-164.

Hayes, P J. (1979) The naive physics manifesto In 1) Michie

(Ed), Expert systems in the m.icro-electronzcs age Edinburgh:

Edinburgh University Press.

Kuhn, T S. (1962) The structure of sczentific revolutions Chicago:

University of Chicago Press

Latour, B , & Woolgar, S (1979) Laboratory lzfe: The soczal con-

structzon of scientific facts. Beverly Hills, Calif : Sage Publica-

tions.

Lyon, R. F. (1981) Simplified design rules for VLSI layouts

LAMBDA The Magazine of VLSI Design, First Quarter, 54-59

Marshall, M , Waller, I, , & Wolff, H (1981) The 1981 Award for

Achievement Electronzcs 54(21):102 105

Mead, C., & Conway, L (1980) Introduction to VLSIsystems Read-

ing, Mass : Addison-Wesley

Minsky, M (1961) Steps toward art,ificial intclligcnce In E A

Feigenbaum & .J Feldman (Eds), Computers and thought New

York: McGraw-Hill.

Nilsson, N J (1982) Artificial intelligence: Engineering, science,

or slogan? The AI Magazzne 3(1):2-9

Robinson, A I, (1980a) New ways to make microcircuits smaller

Science 208:1019-1026.

Robinson, A. L. (1980h) Are VISI microcircuits too hard to

design? Science 2093258-262

S&al, D (1981) Patterns of technological innovation. Reading,

Mass.: Addison-Wesley

Simon, H A (1981) The sciences of the artzficzal (2nd ed) Cam-

bridge, Mass : The MIT Press

Stefik, M., Aikins, J , Balzer, I< , Benoit, J , Birnbaum, L., Hayes-

Roth, F., Rr Sacerdoti, E (1982) The organization of expert,

systems: A prescriptive tutorial Artzficial Intelligence 18:135-

173

Stefk, M , Bobrow, D , Bell, A , Brown, H , Conway, I,., &

Tong, C. (1982) The partitioning of concerns in digital system

design Proceedangs of the Conference on Advanced Research in

VLSI> 43-52.

Tong, C (1982) A framework for design. Memo KB ~vI,SI-82 16

(Working paper), Knowledge-based VLSI Design Group, Xerox

PARC

Whorf, B. L (1956) The relation of habitual thought and be-

havior to language In R. Whorf, Language, thought, and reality

Cambridge: Technology Press

16 TIIE Al MAGAZINE Summer 1982

