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Abstract

Written language is a complex communication signal capable of conveying information en-
coded in the form of ordered sequences of words. Beyond the local order ruled by grammar,
semantic and thematic structures affect long-range patterns in word usage. Here, we show that
a direct application of information theory quantifies the relationship between the statistical dis-
tribution of words and the semantic content of the text. We show that there is a characteristic
scale, roughly around a few thousand words, which establishes the typical size of the most infor-
mative segments in written language. Moreover, we find that the words whose contributions to
the overall information is larger, are the ones more closely associated with the main subjects and
topics of the text. This scenario can be explained by a model of word usage that assumes that
words are distributed along the text in domains of a characteristic size where their frequency is
higher than elsewhere. Our conclusions are based on the analysis of a large database of written
language, diverse in subjects and styles, and thus are likely to be applicable to general language
sequences encoding complex information.

1 Introduction

Among the higher functions of our brain, language stands as a unique ability conferring us a
distinctive trait from the rest of living beings [8, 15]. Language has developed following the laws
of natural evolution [14, 18, 19] with the functional goal of encoding and transmitting information
between humans. Although the information to be encoded is usually highly complex, it can be
readily projected onto a string of words. It has been argued that this is possible due to the
presence of long-range memory in word sequences, which in turn creates organisational structures
that go beyond the scope of sentences and paragraphs, and can extend for hundreds or thousands
of words [1]. Although, the suggestion of statistical macro-structures associated with the semantic
content of linguistic communication has been suggested before [13], it has not yet been accounted
for with the use of information theory.
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In recent years the use of tools drawn from statistical physics has quantitatively revealed rich
linguistic structures at many scales, ranging from the domain of syntax to the organisation of
whole lexicons and literary corpora [5, 4, 6, 9, 10, 16, 24, 25]. However, a fundamental question
that has not directly been addressed so far is how statistical structures relate to the function of
encoding complex information. The earliest attempt to address this question was probably due
to Claude Shannon, soon after the inception of information theory [22]. He represented language
as a communication channel encoding information in the sequence of its basic symbols, which
in his analysis were 26 letters and the blank space, and obtained an estimate of the entropy of
written English [23]. However, his analysis was not designed to relate an information measure
to the semantic function of language. Instead, it was aimed at reflecting the statistical structure
of linguistic sequences independently of the specific information that was being encoded. More
recently, we showed that an entropy measure of the word distribution over a text bears information
about the specific linguistic role of some word classes [17]. This approach disclosed that, for
instance, adverbs and most verbs tended to be more uniformly distributed than nouns or pronouns.
Thus, simply by associating the entropy measure with a word, it was possible to know whether
that word was, for example, more likely an adverb or a noun.

Here, we take a significant step further and propose a measure, based on Shannon’s mutual
information [22], that captures the relationship between the statistical structure of word sequences
and their semantic content. First, we show that words typically appear distributed in domains, so
that in certain sections of the text the frequency of a word is consistently higher than elsewhere.
This structured heterogeneity in the distribution of words encodes information about the sections
of the text in which the words appear. We then use information theory to quantify the relationship
between the distribution of words and the sections in a given partition of the text. We find that
there is a typical size of the parts for which the information in word distribution is maximal, thus
revealing a characteristic scale that can be shown to be related to the semantic content of language.
This scale is built up from contributions of all the different individual words, as a direct consequence
of the domain structure in their distributions. Finally, we show that the words that contribute the
most to the total information are those more closely related to the main topics and subjects if the
text.

2 Domain structure in word distribution

Although it is evident that different words appear with variable frequency in different parts or
sections of a text, it has only recently been pointed out that the patterns of frequency variability
are related to the linguistic role of words [17]. Additionally, by analyzing the statistics of the
distance between consecutive occurrences of the same word in a text, it was shown that many
words exhibit a phenomenon of clustering or “self-attraction” [12, 20]. Below, we quantify these
results within the framework of information theory and show that the long-range distribution of
words in written language bears the imprint of the semantic content encoded in the text. First,
however, we show that the variability in the frequency of word usage is characterized, for many
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words, by the presence of a series of domains where the frequency of use of the word is higher than
outside the domains. Moreover, these domains have a typical size that depends on the specific
word. As we shall see below, they contribute to determining the scale of the most informative
structures in written language.

In a given text of N words in length, we denote the position of every word by the variable
t = 1, . . . , N . Then, we can represent the occurrences of a particular word w by a sequence of
sharply peaked functions located at the positions where the word w appears. A local average of
this sequence, defined as a convolution with a narrow bell-shaped function, allows us to define a
rate of occurrence of word w (see Appendix A).

The left panels in Fig. 1 show the rate of occurrence of three words from The Origin of the

Species, by Charles Darwin. Panel A shows for the word plants. With its 335 occurrences, this
word is considerably frequent in The Origin of Species, but its use is strongly heterogeneous. It
tends to appear in localized sections of the text, exhibiting higher frequencies within a number of
domains spread throughout the text. The second word we analysed is instinct, shown in panel B.
This word appears 69 times, with strongly localized occurrences limited to essentially two sections
of the text. The region where it occurs with the highest frequency spans approximately 104 words.
The third word, shown in panel C, is for. This is a common English word, appearing 1123 times
in the text. Its usage is not directly linked to any specific thematic context. Therefore, apart from
seemingly random fluctuations, the rate at which for is used is roughly uniform.

The presence of domains in the distribution of words can be quantitatively revealed by com-
puting the normalized autocorrelation of the rate of occurrence, defined as

cw(τ) =
〈ρw(t)ρw(t + τ)〉t − 〈ρw(t)〉t〈ρw(t + τ)〉t

〈ρw(t)2〉t − 〈ρw(t)〉2t
(1)

where 〈. . .〉t indicates an average taken over all text positions. If the occurrence of a particular word
w is concentrated in localized domains, the autocorrelation function will be significantly different
from zero up to a value of τ of the order of the typical domain size [3]. Panels D, E, and F show
the autocorrelation computed for the words of the left-hand panels (black curve). We also show
the autocorrelation obtained for the same words after all the words in the text have been randomly
shuffled, thus destroying any pattern in word appearance (gray curve).

The autocorrelation for the word plants (panel D) shows that its usage is organized into spans
extending 2000-3000 words, in agreement with the domain structure shown in panel A. A similar
situation occurs in the case of instinct, for which correlation structures extend over a scale of
approximately 5000 words. On the other hand, the autocorrelation for the word for falls to the
random level at very short distances, thus indicating no pattern of domains in its usage.

Heterogeneity in the rate of word occurrence over the text is directly related to the specificity of
that word to certain sections of the text. For instance, the use of the word instinct directly tags a few
parts where, due to the specific subject being treated there, it occurs more frequently than elsewhere
in the text. If the word instinct is found in the text, it is likely that that particular occurrence
belongs to one of the sections in which the rate of instinct is higher. Likewise, the distribution of
plants also offers hints about which part of the text the word is found in. The variability in the
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Figure 1: Distribution of three words in The Origin of Species, by Charles Darwin. Left
panels (A, B, and C) show the rate of occurrence of the words plants, instinct, and for as a function
of the position in the text measured in number of words (black line), its average (gray full line) and
one standard deviation above the average (grey dash line). Right panels (D, E, and F) show the
autocorrelation of the rate of occurrence of the same words as a function of the distance between
text positions. The black line shows the autocorrelation for the word as it appears in the original
text. The gray line corresponds to a random shuffling of all words in the text.
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frequency of word usage can therefore be exploited to discriminate between different sections of the
text. Our aim in the following is to quantify how efficiently this discrimination can be carried out,
giving a statistical measure of the amount of knowledge that the word distribution carries about
the parts of the text where each word appears.

3 Information in the distribution of words

As discussed above, the heterogeneity in the distribution of individual words can be used to tag
different sections of the text. In what follows, we consider a text divided into contiguous sections of
equal length, and then define an information-theoretic measure that captures the information con-
tributed by the distribution of all individual words in the text. We then show that this information
is maximal for a characteristic size of the parts into which the text is divided –typically, of a few
thousand words. We thus show that information theory can be used to characterize a new scale
for linguistic structures, much longer than the range of application of grammar rules but still much
shorter than, for instance, most books. As we shall see below, this scale turns out to be related to
the size of semantic domains in written language.

Consider a text of N words in length, and with a lexicon of K different words. In our analysis,
two words are considered to be different if they are spelt differently, in particular, even if they are
inflected variations sharing a common root. We divide the text into P parts of identical length,
each part containing s = N/P words. Our aim here is to define an information-theoretical measure
to quantify the relationship between the heterogeneities in the distribution of words due to their
linguistic function and the text partition.

We define our measure of relative information as the difference between Shannon’s mutual
information [7, 22] evaluated in a given text and in a surrogate version of it. The surrogate text is
built form the original one by randomly shuffling all its words. In this way, the random text will
have exactly the same overall word frequencies as the original text, but will lack any linguistically
relevant order in the sequence of words. The basic assumption behind our definition is that the
constraint of encoding linguistic information determines the degree of order by which the original
text exceeds its random counterpart. In other words, our measure establishes the amount of
information required to re-arrange the words of the random text to recover the word distribution
over the parts of the original text. The more heterogeneous the word distribution in the original
text, the more information will be required to re-order its words from the random shuffling. A
direct application of Shannon’s mutual information leads to the following definition (see Appendix
B):

∆I(s) =
K

∑

w=1

p(w)
[

〈Ĥ(J |w)〉 − H(J |w)
]

, (2)

where the sum runs over the lexicon of the text in question, i.e. over its K different words. For a
word w with a total of n occurrences, the coefficient p(w) = n/N gives its frequency over the whole
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text. The entropy-like quantity H(J |w) is given by

H(J |w) = −
P

∑

j=1

nj

n
log2

nj

n
, (3)

where nj is the number of occurrences of word w in part j of the real text, and the sum runs over
all the parts. Meanwhile, 〈Ĥ(J |w)〉 is the same quantity calculated for a random shuffling of all
the words in the text, and averaged over the all possible realizations of the random permutation of
words. This average can be computed analytically (see Appendix C).

The behavior of the entropy quantities can be illustrated with an example. In Fig. 2 we show
the value of the entropy for all the words appearing in The Origin of Species as a function of word
frequency (black dots). We also plotted the entropy for the words in one realization of the random
permutation of word positions (grey dots), and the value of the same entropy when it is averaged
over an infinite number of realizations of the random text (black line). The latter corresponds to
the exact analytical calculation of the entropy.

There are two important observations in regard to the comparison between the entropy of the
real text and that in the random version. First, the entropy of words in the real text is on average
lower than in the random version of the text for the same frequency range. The lower value of the
entropy for words in the real text is a consequence of the more structured distribution of words
sequences conveying complex information in contrast to the randomly located words in the shuffled
text. Second, the fluctuations across different words in the same frequency range vary over a much
larger range in the real text than in the shuffled one. This is due to the fact that the large variations
in word distribution are not stochastic but imposed by linguistic and thematic constraints in the
text. Therefore, even groups of words having the same frequency can show sharp variations in their
patterns of occurrence due to their different linguistic roles.

For a specific text, the relative information defined by Eq. 2 depends only on s, the number of
words per part, through the number of parts P . The variable s sets a scale for the coarseness with
which the distribution of words over the text is determined. At a given scale, ∆I(s) quantifies how
much information about specific parts of the text is contained in the distribution of words with
respect to that in the random text. Words that tend to appear evenly over the text will contribute
little information about different parts. On the other hand, words with non-uniform distributions
that cannot be simply associated with random fluctuations will have a significant contribution to
the total relative information. As given by Eq. 2, ∆I(s) will have units of bits per word.

As an example, we describe as a function of the scale s for three texts: The Origin of Species

by Charles Darwin, Analysis of the Mind by Bertrand Russell, and Moby Dick by Herman Melville.
The lengths of the texts were, respectively, 155800, 89586, and 218284 words. Figure 3A shows
that, in all three texts, there is a scale at which the information ∆I(s) is maximal. In these
examples, the maximal information values occur at a scale of approximately 3000 words for The

Origin of the Species, 700 words for Analysis of the Mind and 1200 words for Moby Dick. For each
text, starting from scales of around 100 words, the information encoded in the word distribution
increases with s up to a specific most informative scale. This means that the distribution of words
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Figure 2: Word entropy for a real and a random text. The black dots show a scatter plot of
the entropy in bits for all the words in The Origin of the Species as given by Eq. (3) and using a
partition of the text in P = 64 parts. The gray dots show the entropy of the words in randomly
shuffled realization of the original text. The full line is the result of the analytical expression for
the entropy (see Appendix C) of the words in the random version of The Origin of Species.
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better discriminates between different sections of the text for a characteristic size of the parts. It is
for this particular size that the mutual information of the word distribution and the text partition
differs maximally between the real and the random texts. The scales at which the information
is maximal, roughly between 1000 and 3000 words in length, are much larger than the scope of
grammatical rules. As we shall argue below, they are rather related to the semantic structure of
the texts.

For the three texts considered above, there is no direct relation between text length and the size
of the most informative scale. However, in principle, longer texts allow their semantic structures to
span longer scales. To investigate this hypothesis more in detail, we analysed a corpus consisting
of 5258 books in English, including English and American literature, as well as texts on science,
engineering, technology, history, philosophy, and religion. All the texts were obtained from the
Project Gutenberg internet site 1. In Fig. 3B we show a scatter plot of the scale at which the
information ∆I(s) is maximal versus the length of the text, for all of the books in our corpus.
Although the data exhibit a large dispersion, there is a clear pattern of slow growth of the most
informative scale with text length. As a guide to the eye, we also plotted two straight lines with
slopes 0.65 and 0.4 which, in this log-log plot, correspond to power-law functions. The most
informative scale of books around 105 words in length typically lies between 300 and 3000 words.
This means that, for such texts, the size of the parts at which the information ∆I(s) attains its
maximum is roughly 100 times less than the text length.

It is interesting to identify which are the books that fall in extreme regions of the cloud of
points in Fig. 3B. For instance, at the lower-left corner, which corresponds to short books with
a small most informative scale s, we find works like Quotations of Lord Chesterfield, Quotes and

Images From The Novels of Georg Ebers, which consist of a collection of short quotations with no
thematic unity building up along the text. Consistently, the scale associated to these books lies
in the range between 50 and 70 words. At the opposite extreme, at the upper-right corner of the
cloud of points, which corresponds to long books and large most informative scales, we find long
treatises on subjects with clear thematic unity. In particular, the three works with the largest most
informative scale were History of The Decline and Fall of the Roman Empire, Vol. 3, by E. Gibbon,
A History of Rome, Vol. 1, by A. Greenidge, and Civilization of the Renaissance in Italy, by J.
Burckhardt.

Notwithstanding the large dispersion of the most informative scale, the maximum value of the
information ∆I(s) for each book was surprisingly consistent across the corpus. Figure 3C shows a
histogram of the maximum information for the books in the corpus. It turns out to be narrowly
centred at 0.2 bits/word. This suggests that, in written English, words tag different parts of the text
with very consistent accuracy, although the size of those parts may vary substantially between texts.
However, when looking at the books within a given range of values of the maximum information per
word we found a tendency for literary and history books to have lower values of the information per
word than many of the books on science and engineering. The pattern becomes evident in Fig. 3D
where we show the normalized histograms of the maximum information computed on three subsets

1www.gutenberg.org
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Figure 3: Information encoded in whole texts. A. Information ∆I(s) in bits per word for
three texts, as a function of the scale s. The texts are Analysis of the Mind, by Bertrand Russell
(circles); The Origin of Species, by Charles Darwin (squares); and Moby Dick, by Herman Melville
(diamonds). B. Scatter plot of scale at which the total information is maximal as a function of the
text length for all the texts in a corpus of 5258 books in English. The straight lines are power-law
functions (note the logarithmic scales) whose slopes approximately confine the speed of growth of
the most informative scale with text length. C. Normalized histogram showing the distribution of
the maximum total information for all the books in the corpus. D. Normalized histogram showing
the distribution of the maximum total information for each of the three partitions in which the
corpus was divided. The number of books in each division of the corpus was as follows: literature,
3329 books; history and philosophy, 1374 books; science and engineering, 555 books.
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of the whole corpus. Whereas the information for the literary, and history and philosophy books
has a very similar distribution characterized by a narrow peak around 0.2 bits/word, the values for
science and engineering books have a broader distribution that extends over higher values of the
information. This shows that ∆I(s) can quantify the similarities and difference in language styles
in the different components of the corpus. In particular, it indicates that the usage of language
in scientific and engineering books is such that the distribution of words tags more efficiently the
different parts of the text.

4 The information of individual words

We deal, in this section, with the contribution of individual words to the information ∆I(s). It
turns out that each word has its own characteristic scale, at which the information it provides about
specific parts of the text is maximal. By means of a heuristic model, we show that the existence of
that scale is a consequence of the domain structure of word distribution.

Equation 2 shows that ∆I(s) is additive over the whole lexicon. Thus, each term in the sum
can be interpreted as the contribution of a single word to the total information. For a word w,

its contribution to the total information equals ∆Iw(s) = p(w)
[

〈Ĥ(J |w)〉 − H(J |w)
]

. This means

that we can not only compute the overall information as a function of the scale s, but also associate
a measure of information with every different word appearing in the text. Thus, by using the
single-word information ∆Iw(s), it is possible to identify the most informative words in a given
text. Remarkably, as we shall illustrate below for The Origin of Species, the most informative
words coincide with those words that any human reader would choose as most representative of
the subject of the text. Therefore, summing the contributions of every word, the total information
∆I(s) can be interpreted as a measure of the overall semantic information in the text in question.

The mathematical form of ∆Iw(s) also suggests another interpretation of the meaning of the
overall information ∆I(s). The contribution of each word to the total information is proportional
to both the frequency of the word and to the difference in entropy of the word distributions in the
random and real texts. The difference in entropies is a direct measure of the degree of order that
exists in the word distribution in the real text beyond that determined by the word frequencies
alone. Ultimately, that order has an origin in the semantic role of the word. That means that for a
word of a given frequency p(w), the more heterogeneous the distribution of the word compared to
its stochastic counterpart in the random text, the larger its contribution to the total information.

To capture the role of individual words in determining the semantic information of the text, we
analysed the information encoded in single words as a function of the scale s. In Fig. 4 we show
the results obtained for The Origin of Species.

Symbols in Fig. 4A stand for the single-word information ∆Iw(s) as a function of s for the
words plants, instinct, and for. The profile of ∆Iw(s) vs. s is qualitatively the same for the three
words, with a maximum at an intermediate scale. The maximum is located at 1216 for plants, at
4864 for instinct, and at 76 for the word for. Thus, the most informative scale is different for each
word, but roughly lies in the interval where the total information ∆I(s) of different texts attains
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Figure 4: Information encoded in single words. A. The three subpanels show the information
of single words for the three examples shown in Fig. 1, as a function of the scale s. The full lines
are fittings obtained using the model described in the text. B. Probability density of the most
informative scale for all the words in the The Origin of the Species. C. Probability density of the
maximum information for all the words in The Origin of the Species.

its maximum (see panels A and B in Fig. 3). We show below that this scale can be related to the
size of typical domains in the distribution of each word. The most informative scale of a whole text
is ultimately determined by the interplay between the positions of the maxima of its individual
words.

In Fig. 4B we have plotted a normalized histogram of the most informative scale for all the
words in the book. It exhibits a flat maximum spanning scales between 100 and 1000 words
approximately, after which it decays sharply. In Fig. 4C we show a histogram of the value of the
maximum information for the individual words. As it was the case in Fig. 3C, the distribution is
narrowly cantered around a typical information value of about bits/word.

The behavior of the single-word information as a function of the scale s can be heuristically
explained by means of a simple model. It consists of a stochastic representation of the distribution
of the n occurrences of a given word over the text of length N . Our main assumption is that the
word in question has a uniform random distribution all over the text, except for a localized domain
where its frequency is larger than in the rest. The distribution is specified by giving the length L
of the domain where the word is more concentrated, the place N0 in the text at which the domain
begins, and the excess ne of occurrences of the word in the domain.

Once the three parameters L, N0, and ne have been specified, the distribution is built by
allocating the n occurrences of the word along the text, following two steps: (i) A number n−ne of
occurrences are uniformly distributed at random all over the text. (ii) The remaining ne occurrences
are uniformly distributed at random over the concentration domain, i.e. between places N0 and
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N0 + L − 1. Of course, only one occurrence per place is allowed. Also, the domain length L is
supposed to be large enough as to allow for the ne excess occurrences once step (i) is completed.
The expected number of occurrences inside the domain is ne +(n−ne)L/N while, in the remaining
of the text, any portion of length L contains, on the average, just (n − ne)L/N occurrences. The
random distribution is build numerically, and the value of ∆Iw(s) as a function of the number of
words per part is averaged over realizations of the allocation process.

The effect of varying any of the three parameters L, N0, and ne, leaving the other two fixed, can
be qualitatively described as follows. The domain length L controls the position of the maximum
of ∆Iw(s), which roughly coincides with L. Simultaneously, since as L grows the difference in
frequency between the domain and the remaining of the text decreases, larger values of L imply
smaller values of ∆Iw(s). Conversely, a growth in the excess ne increases the difference in frequency,
and therefore implies a growth in ∆Iw(s). Finally, changes of the domain position upon variation
of N0 have practically no effect on the position and height of the maximum of ∆Iw(s), but control
the form in which ∆Iw(s) decays at both sides of the maximum.

The grey curves in the three sub-panels of Fig. 4A show the single-word information for plants,
instinct, and for, estimated using our model. The agreement is excellent, strongly suggesting that
the domain-like distribution pattern of words along the text is the most relevant factor determining
the characteristic behavior of ∆Iw(s).

Finally, we provide evidence that the information captured by ∆Iw(s) is related to the semantic
role of words. With this aim, we computed the single-word information for all the words in The

Origin of the Species, in Analysis of the Mind, and in Moby Dick, at the scale s where the total
information ∆I(s) was a maximum for each of the texts (see Fig. 3A). In Table 1, we present the
first words of the three texts ranked by the information ∆Iw(s) encoded by each word. Note, from
Eq.refDI, that the contribution of each word to the total information is weighted by its frequency
in the whole text, p(w). Nonetheless, very few of the most frequent words –such as the, and, of,
or– appear at the top of the lists. This is because, in real texts, the most common words have
distributions which do not differ much from that of a typical realization of the randomly shuffled
text. Remarkably, on the other hand, the words with largest information are specifically relevant to
the main subjects of the text. Among the top ten words of The Origin of Species, for instance, we
find species, varieties, hybrids, forms, islands, selection and genera. Those words would certainly
be signalled out by a reader as some of the most representative of the message conveyed by the
text. In Analysis of the Mind we recognize a very similar situation. Its top words are essential
to the philosophical subject of the book. The comparison with Moby Dick is interesting because,
it being a novel, its style is very different to that of Darwin’s and Russell’s treatises. As in other
novels, much of the structure is built up around its characters, through a network of relationships
that change throughout the text. This is evidenced in the list of Table 1 by the prominence of
pronouns and proper names, in addition to the nouns that set the thematic focus of the book.
A small number of words in the example listings have been assigned a large value of information
without being representative of the main subject of the texts. That is likely due to fluctuations in
the distributions of those words, that affect the estimation of their information. We have obtained
listings like those of Table 1 for a variety of texts in different languages, with highly consistent
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Table 1: Most informative words for three books.

The Origin of Species Analysis of the Mind Moby Dick

on image I
species memory whale
varieties images you
hybrids word Ahab
forms belief is
islands words ye

of desire Queequeg
will sensations thou

selection object me
genera you of
plants past he
seeds knowledge captain

sterility box boat
fertility content the

characters consciousness Stubb
breeds appearances his
groups movements Jonah
water mnemic was
the feeling whales

formations proposition my
pollen general him
bees particulars Starbuck

instincts thought sir
new experience white
he objective sperm

rudimentary meaning bildad
cells laws her

organs introspection we
intermediate animal Peleg

crossed vague said
natural sensation fish
birds physical Pip
would habit old

I the a
domestic matter cook

wax we flask
formation response aye

organ propositions ship
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results. In all cases, the words with the largest values of ∆Iw(s) were among the most relevant
to the respective subjects. It is remarkable that a simple measure based on Shannon mutual
information can readily identify the most important words in individual texts.

5 Discussion

The richness and diversity of linguistic structures pose a challenge to the characterization of the
complex information conveyed by language using the quantitative techniques. Here we used a
direct application of information theory to quantify semantic information in language sequences.
Our main hypothesis was that the key signatures of the semantic content of a text will be reflected in
long-range statistical patterns in the use of words, and thus should be captured by basic information
theoretic quantities. In particular, we introduced a measure of relative information, ∆I(s), that
gauges a degree of order in written language based on the statistical description of word frequencies
in sections of the text of a given size s.

For individual texts, the information ∆I(s) characterizes the presence of an optimal scale s
at which the information attains a maximum. If a text is divided into sections of the size of the
optimal scale, the distribution of words in those parts will be statistically the most diverse. For
single texts with an overall thematic unity, those divisions represent the typical spans in which
lines of argument and semantic structure develop. An empirical support for this interpretation
comes from the inspection of specific written works. Books with the smallest optimal scales were
those made up of collections of disparate short text fragments. On the contrary, the books with
the largest optimal scales were long treatises on well defined subjects. For texts such as Darwin’s
The Origin of Species, Russell’s Analysis of the Mind, and Melville’s Moby Dick, the optimal scales
were in the range between 1000 and 3000 words. This is roughly the length needed to develop a
line of argument in a literary or scholarly text. While it can probably be natural to expect that
complex messages in written language build up on scales of a few thousands words, to the extent
of our knowledge, we proposed the first information-theoretic quantification of those long range
semantic structures.

The information ∆I(s) is built up from the contributions of the information associated with
individual words. The study of the information per word, ∆Iw(s), revealed the presence of a
maximum at a scale that depended on the particular word. That optimal scale is such that the
distribution of the word over the text partition differs the most from that of a word with the
same frequency but otherwise randomly distributed over the text. Using a simple model of word
distribution we showed that the optimal scale for single words is related to the size of the typical
domains, or clusters, in which words tend to appear in written language.

Moreover, when words are ranked according to their information contribution, the most infor-
mative ones are those clearly representative of the message in the text. Remarkably, these most
informative words could be identified by using our information-theoretical measure without any
a priori knowledge of the language or the text, apart from the identification of the elementary
information-carrying tokens words themselves.
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Probably, similar features can be found in other information carriers in nature, where a par-
ticular kind of semantic information leaves its mark on the long-range distribution of the basic
symbols. Much of the insight gained in our study could thus be extended to the analysis of other
biological information structures, like some neural signals, the genetic code, and patterns of animal
communication and behavior. Overall, our results suggest that complex aspects of the information
encoded in symbolic sequences are susceptible of quantitative characterisation and analysis using
the rigorous principles of information theory.
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Appendix A. Rate of word occurrence

In this section we give details about the calculation of the rate of word occurrence shown in
Fig. 1 of the main text.

For a text of length N , we denote the positions of successive words by an index t = 1, . . . , N .
The positions of a particular word w, that appears n times in the text, are then represented by
variables ti, with i = 1, . . . , n. Thus, the density of occurrences of word w can be represented as

νw(t) =
∑

j=1

δ(t − tj) (4)

where δ(t) is the Dirac delta function [2]. In order to reveal the domain-like patterns in the
distribution of words, we define a rate of occurrence for each word as a convolution of the density
νw(t) with a bell-shaped kernel,

ρw(t) =

∫ ∞

−∞
G(t − t′w, σ)νw(t′)dt′, (5)

where for simplicity of notation we assumed that the variable t is continuous. In particular, we
used the following zero-mean Gaussian kernel:

G(t, σ) =
e−

t
2

2σ2

√
2πσ

, (6)

where the parameter σ controls the width. It can be shown that this type of kernel introduces
correlations in the rate ρw(t) over spans of order of σ. To obtain the data for Fig. 1 we used σ = 50
words. Therefore, all the structure show in the figure can be attributed to genuine correlations in
the distributions of words.

Appendix B. Derivation of ∆I(s)

In this section we supply additional details on the derivation of the information measure ∆I(s),
given by Eq.2.

Let us consider a given word w, which appears nj times in part j, with j = 1, . . . , P . We can
then define the conditional probability of finding word w in part j, as p(w|j) = nj/Nj . If K is
the size of the lexicon, the normalization condition for the above probability is

∑K
w=1 p(w|j) = 1.

If we now call p(j) = Nj/N the a priori probability that the word w appears in part j, then
∑P

j=1
p(w|j)p(j) = p(w), where p(w) = n/N stands for the overall probability of occurrence of a

word in the whole text.
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The probability p(w|j) tells us how likely is to find word w given that we are looking into part
j. Here we are interested in assessing how well a particular word tags a section, or part, in a text.
Such information is given by the inverted probability p(j|w), which tells how likely is that we are
looking into part j given that we saw an instance of word w in the text. This probability is easily
found by means of Bayes’s rule [11], as follows:

p(j|w) =
p(w|j)p(j)

∑P
i=1

p(w|i)p(i)
. (7)

Then, by writing explicitly the probabilities in the right-hand side of Eq. (7), we find that p(j|w) =
nj/n.

With the previous definitions we can write Shannon mutual information between the text sec-
tions and the words [7]:

M(J,W ) =
K

∑

w=1

p(w)
P

∑

j=1

p(j|w) log2

(

p(j|w)

p(j)

)

. (8)

However, as was discussed in the main text, we are interested in a measure that quantifies the
specific linguistic information in the long-range distribution of words. We therefore need to subtract
the residual information contributed by fluctuations in word frequencies over the different parts.
These fluctuations are particularly important for words that occur a number of timesn << N
[17, 21].

Let us call M̂(J,W ) the mutual information computed on one particular random realization
of the text obtained by shuffling all of the words’ positions. In order to obtain a representative
quantity that does not depend on one particular realization of the random shuffling, we take an
average over all the possible realizations of the random text, represented as 〈M̂ (J,W )〉. We can
now define the information in the distribution of words simply as the difference in the value of
the mutual information calculated on the real and the average over the random texts, ∆(s) =
M(J,W ) − 〈M̂ (J,W )〉, where we made explicit the dependency on the scale parameter s. After
expanding and regrouping terms we can write the relative information ∆I(s) as follows:

∆I(s) =
K

∑

w=1

p(w)
[

〈Ĥ(J |w)〉 − H(J |w)
]

, (9)

The first of the entropies appearing in Eq. (9) corresponds to the one computed on the random
text and averaged over all the realizations of the random permutation of words, and is defined as
follows:

〈Ĥ(J |w)〉 = −
P

∑

j=1

〈p̂(j|w) log2 p̂(j|w)〉, (10)

where we denote by p̂(j|w) the probabilities computed on the random text. The second entropy is
estimated directly on the real text, and its definition is the following:

H(J |w) = −
P

∑

j=1

p(j|w) log2 p(j|w). (11)

18



In our approach, the amount of information contributed by single words to the total information
is proportional to the difference in entropies for the word in the random version of text and the one
on the real text. The proportionality factor is given by the a weight equal to the overall probability
of a word in the text, p(w).

Appendix C. Analytic computation of the entropy of the random
text

Here we compute an analytic expression for the entropy 〈Ĥ(J |w)〉, appearing in Eq. (9). As was
discussed above this entropy is computed on a stochastic version of the text obtained by randomly
shuffling all the words’ positions. The brackets 〈. . .〉 denote an average over all possible randomly
shuffled texts.

Again, let us suppose that the random text has a length of N words, and that it is divided in P
parts of equal length. Using Eq. (10), for a word that appears mj times in part j with a frequency
n over the whole text, this entropy takes the following form:

Ĥ(J |w) = −
P

∑

j=1

mj

n
log2

mj

n
. (12)

The average of the entropy Ĥ(J |w) over all possible realizations of the random text is computed
as follows:

〈Ĥ(J |w)〉 = −
∑

m1 + . . . + mP = n
with mj ≤ N/P, j = 1, . . . , P

p(m1, . . . ,mP )
P

∑

j=1

mj

n
log2

mj

n
, (13)

where p(m1, . . . ,mP ) is the probability of finding mj words in part j, with j = 1, . . . , P . We notice
that in Eq. (13), for each of the P terms in the second sum, the first sum can be taken over all
indices except one. This leads to the following simpler form of the average entropy:

〈Ĥ(J |w)〉 = −P

min{n,N/P}
∑

m=1

p(m)
m

n
log2

m

n
. (14)

Finally, the marginal probability p(m) can now be easily computed. It is given by the probability
of finding m instances of word w in one part, together with N/P −m words different from w, and
reads

p(m) =

(n
m

)( N−n
N/P−m

)

( N
N/P

)
. (15)
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