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Towards the Secrecy Capacity of the Gaussian MIMO
Wire-Tap Channel: The 2-2-1 Channel

Shabnam Shafiee, Nan Liu, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We find the secrecy capacity of the 2-2-1 Gaussian
MIMO wiretap channel, which consists of a transmitter and a
receiver with two antennas each, and an eavesdropper with a
single antenna. We determine the secrecy capacity of this channel
by proposing an achievable scheme and then developing a tight
upper bound that meets the proposed achievable secrecy rate. We
show that, for this channel, Gaussian signalling in the form of
beam-forming is optimal, and no pre-processing of information is
necessary.

Index Terms—Information-theoretic security, multiple-input
multiple-output (MIMO), multiple antennas, secrecy capacity,
wiretap channel.

1. INTRODUCTION

HE inherent openness of wireless communications makes
T it vulnerable to eavesdropping and jamming attacks. This
vulnerability has to be addressed through secure communica-
tions. The eavesdropping attack was first studied by Wynerin [1],
where he considers a single-user wiretap channel. The measure
of secrecy is the message equivocation rate at the wire-tapper,
which is defined as the entropy rate of the message at the wire-
tapper, given the wire-tapper’s observation. Wyner models the
wire-tapper’s channel as a degraded version of the channel from
the transmitter to the legitimate receiver, which is a reasonable
assumption in a wired channel. For this channel, Wyner identifies
the rate-equivocation region and therefore, the secrecy capacity.
Wyner’s result was extended to the Gaussian wiretap channel in
[2], and it was shown that Gaussian signalling is optimal. The
secrecy capacity was found to be the difference between the ca-
pacities of the main and the eavesdropping channels.

Csiszar and Korner [3] studied the general, i.e., not nec-
essarily degraded, single-transmitter, single-receiver, single-
eavesdropper, discrete memoryless channel with secrecy con-
straints, and found an expression for the secrecy capacity, in
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the form of the maximization of the difference between two
mutual informations involving an auxiliary random variable.
The auxiliary random variable is interpreted as performing
pre-processing on the information. The explicit calculation of
the secrecy capacity for a given channel requires the solution
of this maximization problem in terms of the joint distribution
of the auxiliary random variable and the channel input.

The use of multiple transmit and receive antennas has been
shown to increase the achievable rates when there are no secrecy
constraints [4]. The Gaussian multiple-input multiple-output
(MIMO) wiretap channel is a special case of the single-trans-
mitter, single-receiver, single-eavesdropper wiretap channel.
Since the Gaussian MIMO channel is not degraded in general,
finding its secrecy capacity involves identifying the optimum
joint distribution of the auxiliary random variable representing
pre-processing and the channel input in the Csiszar-Korner
formula. However, solving this optimization problem directly
for non-degraded channels is difficult, forcing researchers
typically to follow a two-step solution, where in the first step
a feasible solution is identified (an achievable scheme), and
in the second step a tight upper bound that meets this feasible
solution is developed (tight converse).

The first paper studying secrecy in MIMO communications is
[5], which proposes an achievable scheme, where the transmitter
uses its multiple transmit antennas to transmit only in the null
space of the eavesdropper’s channel, thereby preventing any
eavesdropping. Reference [6] studies the Gaussian single-input
multiple-output (SIMO) wiretap channel, and shows that it is
equivalent to a scalar Gaussian channel, and gives the secrecy
capacity using the results of [2]. An achievable scheme has been
proposed for the Gaussian multiple-input single-output (MISO)
wiretap channel in [7], and independently and concurrently in
[8]. In both of these papers, the achievable secrecy rate is ob-
tained by restricting the channel input to be Gaussian, with no
pre-processing of information. The secrecy rate found in [7],
[8] is shown to be the secrecy capacity of the Gaussian MISO
wiretap channel in [9], [10]. Further, [9], [10] allow the eaves-
dropper to have multiple antennas (MISOME).

In all of the above papers, the secrecy capacity of MIMO com-
munications is specified only in the cases where the receiver has
a single antenna. The next step towards finding the secrecy ca-
pacity of the general Gaussian MIMO channel is to consider
multiple antennas at the receiver. In this paper, we consider
a MIMO channel where both the transmitter and the receiver
have multiple antennas. More specifically, we focus on a simple
special case where both the transmitter and the receiver have
two antennas each, and the eavesdropper has a single antenna,
hence we call this channel the 2-2-1 MIMO wiretap channel.
We find the secrecy capacity in two steps: we first propose an
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achievable scheme, which is a Gaussian signalling scheme with
no pre-processing of information, and then, we develop a tight
upper bound that meets the rate achieved with our proposed sig-
nalling scheme.

We first show that the optimal Gaussian signalling scheme has
a unit-rank transmit covariance matrix, hence with Gaussian sig-
nalling, beam-forming is optimal. The transmitter beam-forms
in a direction that is as orthogonal to the direction of the eaves-
dropper, and as close to the two directions of the receiver as
possible. Then, we develop an upper bound by considering a
channel where the eavesdropper’s signal is given to the receiver.
The secrecy capacity of this channel is an upper bound to the se-
crecy capacity of the original channel. In addition, this channel
is degraded, and no pre-processing of information is needed.
Furthermore, Gaussian signalling is optimal for this channel.
We further tighten this bound by allowing correlation between
the additive noises of the receiver and the eavesdropper. For a
certain such correlation, we prove that the optimal Gaussian sig-
nalling is unit-rank in this upper bound also. We then evaluate
our upper bound and show that it meets the rate achievable with
our proposed signalling scheme. In this 2-2-1 system, the fact
that both in our achievable scheme and in our upper bound, the
optimal transmit covariance matrices turn out to be unit-rank,
proves to be crucial in enabling us to characterize the lower and
upper bounds explicitly and showing that they are equal.

Secure communications in multi-user networks, e.g., mul-
tiple access channel [11]-[15], broadcast channel [16], relay
channel [17], [18], interference channel [19], and two-way
channel [20], and in fading channels [7], [21]-[25] have been
considered recently.

We use the following notations throughout this paper: Bold
face lower and upper case letters are used to represent vectors
and matrices, respectively. 7 and ||z|| denote the transpose and
the Euclidean norm of the vector z, respectively. tr(X) and | X|
denote the trace and the determinant of the square matrix X, re-
spectively. The notation [z]* means max(z, 0). Whether a vari-
able is deterministic or random will be clear from the context.

II. SYSTEM MODEL

The 2-2-1 Gaussian MIMO wiretap channel is characterized
by

y=Hzx +n, (1)
z2=g'c+n. 2)

where z is the transmitted signal, and y, z are the received sig-
nals at the legitimate user and the eavesdropper, respectively.
n, is a Gaussian random vector with zero-mean and identity
covariance matrix, while 7., is a Gaussian random variable with
zero-mean and unit-variance. n,, n. are assumed to be inde-
pendent. The transmitted signal satisfies an average power con-
straint

1 n
- Zz?mi <P (3)
n =1

The secrecy capacity C(P) is defined as the maximum number
of bits that can be correctly transmitted to the intended re-
ceiver while the eavesdropper is essentially no better informed
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about the transmitted information after observing the received
signal than it was before [2]. The secrecy capacity of the 2-2-1
Gaussian MIMO wiretap channel as defined in (1) and (2) is
given by the following general expression [3]:

max [I(w;y) — I(u;2)]" @

p(u,x)

where the maximum is over all distributions that satisfy
% — & — yz. The problem studied in this paper is to find the
maximizing p(u,z), and provide an explicit formula for the
secrecy capacity. The expression in (4) shows that the secrecy
capacity only depends on the marginals of the two channels
p(y|z) and p(z | z), and is independent of the correlation be-
tween the two channels, i.e., the correlation between n, and n...

When H is not full-rank, by performing singular value de-
composition (SVD) on H and obtaining an equivalent channel
by rotation, it can be shown that the system is equivalent to a
2-1-1 system, whose secrecy capacity has been found in [9],
[10]. Therefore, without loss of generality, for the rest of the
paper, we assume that H is full-rank, and hence is invertible.
When

|H "g| <1 (5)

z can be written as a noisy version of ¥, i.e., 77y 4+ n, which
means that the channel is degraded. In this case, no pre-pro-
cessing of information is necessary [3], and also it can be shown
that Gaussian signalling is optimal. Thus, in this paper, we con-
centrate on the more interesting and difficult case where H is
full-rank and satisfies

|H "g| > 1. (6)

III. AN ACHIEVABLE SCHEME

By [3], the following secrecy rate is achievable
[1(u:y) — I(u; 2)]* ™)

where 4 — & — yz. By taking 4 = x and constraining the
input signal £ to be Gaussian with covariance matrix S such
that tr(S) < P, the following secrecy rate is achievable

1 1 +
S log|T+ HSH"| - 5 log(1+ g'Sg)| . ®)

Thus, the following secrecy rate is achievable

max
S>0:tr(S)<P

1 1

3 log|I + HSH"| — 3 log(1+¢78g). (9
Here, we are able to remove the [ - | sign because the maximum
value in (9) is always strictly positive. The reason is as follows:
By picking 8§ = Pg*(g+)T, where g is the unit-norm vector
that is orthogonal to g, an achievable secrecy rate is

1
5 log(1+ P Hg[*). (10)
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Based on the fact that H is full rank, i.e., Hg* # 0, the secrecy
rate in (10) is strictly positive. Since the secrecy rate in (9) is the
maximum over all § satisfying tr(8) < P, we conclude that it
must be strictly positive as well.

Ignoring the 1/2, we may rewrite the cost function in (9) as

log |[I + HSH™| —log(1 + g7 Sg)
=log|[I + H'HS| —log(1+ ¢g"Sg). (11)

We first use the following lemma to show that the S that maxi-
mizes (9) is unit-rank.

Lemma 1: If D is a2 x 2 invertible matrix that satisfies

g'D'g>1 (12)
then the optimal S that solves the following optimization
problem

log |I + DS| —log(1 +g" Sg)

max

13
5-0,tr(S)<P (13

is unit-rank.
Proof: The KKT necessary conditions for the optimization
problem in (13) are

S =0 (14

tr(8*) < P (15)

C-0 (16)

A>0  (17)

Atr(8)=P)=0 (18)

CS* =0 (19

—~(I+DS*)™'D + ﬁggT—ch,\I: 0 (20

We will prove the claim by contradiction. Assume that the op-
timal 8 is full-rank. Then, from (19), it follows that C = 0, i.e.,
(20) becomes

1
I+DS " 'D=——_ gg7 + ). 21
(I+DS") T g754% + (21)
Since D is invertible
I+DS)y'=——_g¢"D '+ DL 22
(I+DS7) 15 g76°9% + (22)
Using the matrix inversion lemma [26, p. 19], we have
1 1
I+DS" =-D- Dgg™ (23
+ S U Cr eI PR A
i.e.,
1 1
L g T_p~' (4
N T N1 azgTS g+ AglEY? @4

We multiply both sides of (24) with g7 on the left and g on the
right. Let us define v = g7 S8™g, which is a nonnegative real
number. Then, we have

_ llglP? llgll*

_ _TD—l
PR U Y P R

0l 25)
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i.e., we have
¥+ (1+¢"Dg)y+9"D g

lgll® [ 711
+T(g D g—1) —0. (26)
Because gTD_1 g — 1 > 0, all coefficients in the second order
equation in (26) are positive. Hence, the second-order equation
has no non-negative roots, i.e., it either has no real roots, or it has
two negative roots. Thus, we arrive at a contradiction. Therefore,
C cannot be equal to 0, and consequently, S cannot be full-rank,
and it has to be unit-rank. O

Since H” H is invertible and satisfies (6), D = H™ H sat-
isfies the condition of Lemma 1. Hence, the optimal S for the
optimization problem in (9) is unit-rank.

Given that the optimal S is unit-rank, it can be written as

S = Pqq". (27)
The corresponding achievable secrecy rate is
1 1
R= 3 log |I + PHqq"H" | — 3 log(1+ Pg*qq"g) (28)

_1 ¢"(I+ PH"H)q
T2 (I + PegT)q

(29)

where (29) is now in the Rayleigh quotient [26, p. 176] form and
the optimal achievable g, which we will call q,, is
B Y2y,

1B P, e

4.

where w, is the eigenvector that corresponds to the largest
eigenvalue of B~'/>AB~"/? with

A=I+PH'H
B =1+ Pgg".

€19
(32)

In other words, g, is the unit-norm eigenvector that satisfies

(I+Pgg")'(I+PH H)g, = Mg, (33
where \; is the largest eigenvalue of the matrix
(I + Pgg™)~'?(I+ PHTH)(I + Pgg")~/%2. (34
Written explicitly, the achievable secrecy rate is
1 1+ Pq"H " Hq 1
-1 ——— 2| = —log A1. 35
2" ( I+ Pglegq, ) 27" 2
Based on the argument made after (10), we have
1 1
51og A1 > Slog(1+ P HgH|*) > 0 (36)
which also means that
A > 1. 37
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IV. A TIGHT UPPER BOUND

The following theorem provides an upper bound on the se-
crecy capacity of the wiretap channel described in (1) and (2).

Theorem 1: An upper bound on the secrecy capacity of the
wiretap channel described in (1) and (2) is

max U(S,a) (38)
§-0,tr(S)<P
for any a with ||a|| < 1, where U(S, a) is defined as
I+ N~'HSH"|
U(s, 39
U(S,a) = 5 log (114789 (39)
with N defined as
I a
S (40)
and H defined as
— H
H = 41
] o

The Proof of Theorem 1 is provided in the Appendix. Intu-
itively, this upper bound is obtained by considering the secrecy
capacity of a new channel where the legitimate receiver also has
access to the eavesdropper’s signal. Since the legitimate user is
more capable in the new channel, the secrecy capacity of the new
channel will serve as an upper bound on the secrecy capacity of
the original channel. The new channel is degraded, and there-
fore the secrecy capacity is easier to obtain.

The vector a introduced in Theorem 1 is the correlation be-
tween the Gaussian noises at the legitimate user and the eaves-
dropper, i.e.,

a = E[nyn.]. 42)

We note that a thus defined has to satisfy ||a|| < 1 for N in (40)
to be positive semi-definite. Introducing correlation between n,
and n, does not change the secrecy capacity of the channel as
can be seen from (4), but changes the upper bound in (38). In
fact, (38) remains a valid upper bound for any a, with ||a|| < 1.
Thus, we will smartly pick an a vector, and show that the upper
bound with this a vector is in fact tight, to establish the secrecy
capacity.
We rewrite U(S, a) as

I+ H N 'HS)
4
U(S.) = jloe e @)
By the definition of N in (40), we have
1,7 _1
N~l= Iff:ﬁ I (44)
[z k

where k = 1 — ||a||?. Then

H'N'H
=H'H+ HTaaTH —ga TH - ;HTag + ]liggT
(45)
=H"H + l(I-ITa—g)(I-IT(;z—g)T (46)

k
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Let us define A(a) as

Ale)—=H'N~'H - H"H + %(HTa _g)(H a—g)".
47
Then, U(S, a) in (43) is written as
U(S,a) = % log |I + A(a)S| — % log(1+g7Sg).  (48)

Let us also define ¢ to be the unit-norm vector that is orthog-
onal to g,, which is defined in (30).
We pick a to be of the form
a=H "(aq" +9) (49)
for any real number « that makes ||a|| < 1. @ = 0 results in
a=H _Tg, which is a vector with norm greater than 1, and
therefore, is not permissible.
Then, with this selection of a, A(a) in (47) can be written as

A(a) = H"H +6(0)qy (g)" (50)
where 6(«) is defined as
2
(0%
0(a) = 1—a’a (5D
2
- — S . (52)
1—(H " (agqz +9)"(H " (agz +9))
Then, we have
L T T g—1,L
a(a)_ (qa> (H H)
29" (H"H)"'q;
o
-1
4 (HTH) g-1
- 5 (53)
(0%

This is a second-order polynomial in terms of 1/, and it is easy
to see that 1/a* maximizes 6(«), with
1 T(H"H) 'q*
1 9 T) T (54)
o T 1 gT(HTH)!

Finally, we call the a vector that we pick a*, which is given as

a* = H T(a*q" +9). (55)
First, we will prove that @* has norm no greater than 1. Let

us define aq to be

g '
ag = an (56)
|[Hg,|?
ao satisfies the form of a in (49) because H” ag— g is orthogonal

to q,,, hence, it is along the direction of g;-. Therefore, ay must
correspond to an «, which we call «y. It can be seen that

197 q.|

llaol| =
|Hq,||

<1 7
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because of (37) and the fact that g, satisfies (35), i.e.,

1+ P||Hg,|?
1<\ = ——FF"2—. 58
T 15 PlgTq,)? e
Hence, (57) means that «vg # 0 and furthermore, we have
2
«
O(ag) = — % — (59
(20) 1 —afag
Therefore, we have
1 (@ 1
— 2> —>0 (60)
f(a*) ~ 6(ao)

where (a) follows because a* maximizes ﬁ. Finally, (60)
implies [|a*|| < 1 because of (51).

Next, we will show that the optimal S for max U(S,a*) in
(38) is unit-rank. Since the upper bound and achievable scheme
differ only in replacing A(a*) with H" H, as shown in (9) and
(48), we will use Lemma 1 again to show the optimality of unit-
rank 8 in (38). Since H' H is invertible and #(a*) > 0, matrix
A(a*), in the form of (50), is invertible. In addition, in order to
use Lemma 1, we need g A(a*)~1g > 1. In the following, we
will show that g7 A(a*)~'g = 1. Using the matrix inversion
lemma [26, page 19] on (50), we have

Ala*) L = (HTH) ! — 1
R Ly
x(H"H) 'qy(q2)"(H"H)™'. (61)
Also, from (53) and (54), 1/6(a*) is equal to
L T T - (¢"(H"H)"'q,)’
9<a*)__(qa,) (H H) +gT(HTH)_1 (62)
Tr\-1,,T(HT )1
e ((HTH)_1_<H H) 99" (H"H) ) "
g"(H H)™!
(63)
=—(¢;)"(H"H—g9")"q; . (64)

Now, using straightforward algebra, starting from (61) and (62),
it is easy to verify that

9" A(@)™!

Thus, D = A(a*) satisfies the conditions of Lemma 1, and
therefore, arg max U (S, a*) is unit-rank.

Thus, for the selected a*, the optimization in the upper
bound in (38) over S > 0 reduces to an optimization over ¢, as
S = Pqq”

=1. (65)

U(S,a")

max
S>0,tr(S)<P

1. q"(I+PH"H + Py(

= ~log
m;xx2 og

a*)e, (92)")a
q"(I + Pgg™)q

where (660) is again in the Rayleigh quotient [26, p. 176] form,
and the solution to this optimization problem is the largest
eigenvalue of the matrix

(66)

(I+ Pgg")™">(I+ PH"H + P9(a”)q, (g.)")

x(I+ Pgg™)~'/? (67)

4037

which is the largest eigenvalue of the matrix
e (a2)7)

since the two matrices are related by a similarity transformation.
The eigenvalues of the matrix in (68) are given in the following
lemma.

(I + Pgg")y"Y(I+ PH"H + P(a (68)

Lemma 2: The eigenvalues of the matrix in (68) are A\; and 1.
Proof: Note that

(I+ Pgg")"'(I+PH"H + Pt(c”)qy (ar)" ),
— (I+ Pgg™)" (I +PH"H)q, (69)
= \igq, (70)
where (70) follows from (33).
Let us define vector ¢, as
g, =—0(c")(H H - gg") 'q;. (71)
Note that
4 gy = —0(c”)(q)"(H'H—gg")'qy =1 (72)

where the last equality follows from (64). Also, (71) implies that

H"Hq, = gg"q, — 0(a”)qr. (73)
Then, we have
(I+ Pgg")™'(I+ PH"H + P9(a”)qr(g) )y

= (I+Pgg") (I+PH"H)q, + P6(ca*)qr) (74)

= (I+ Pgg™)™!
x (q + Pgg"q, — PO(a*)gy + PO(a)gy)  (75)
= I+ Pgg") "I+ Pgg")q, (76)
—q, (77)

where (74) follows from (72), and (75) follows from (73). From
(70) and (77), we see that the two eigenvectors of the matrix in
(68) are g, and g;, and the corresponding eigenvalues are \q
and 1. O

Lemma 2 indicates that the eigenvalues of the matrix in (68),
and also the eigenvalues of the matrix in (67), are A; and 1.
Since )\1 > 1, as shown in (37), the resulting maximum value in
(66)is 5 1 log A1. Hence, the upper bound on the secrecy capacity,
i.e., maxgyo ir(s)<p U(S,a"),is 5 L 1og A1, which s equal to the
lower bound on the secrecy capacity shown in (35).

V. CONCLUSION

We determined the secrecy capacity of the 2-2-1 Gaussian
MIMO wiretap channel, by solving for the optimum joint distri-
bution for the auxiliary random variable and the channel input in
the Csiszar—Korner formula. First, we proposed a lower bound
on the secrecy capacity by evaluating the Csiszar—-Korner for-
mula for a specific selection of the auxiliary random variable and
the channel input. Our achievable scheme is based on Gaussian
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signalling and no pre-processing of information. Even for this
achievable scheme, which is completely characterized by the
transmit covariance matrix S, a closed-form solution for the se-
crecy rate does not exist. However, in our 2-2-1 case, we have
shown that the optimal transmission scheme is unit-rank, i.e.,
beam-forming is optimal.

We showed the optimality of the proposed achievable scheme
by constructing a tight upper bound that meets it. The upper
bound is developed by considering the secrecy capacity of a
channel where the eavesdropper’s signal is given to the legiti-
mate receiver. Even though this upper bound is well-defined for
a general MIMO wiretap channel, explicit evaluation and tight-
ening of this upper bound has been possible by restricting our-
selves to the 2-2-1 case. As in the lower bound, and by selecting
a certain correlation structure for the additive noises, we have
shown that beam-forming is optimal for the upper bound as well.
Furthermore, we have shown that the optimal beam-forming di-
rections in the lower and upper bounds are the same. Finally,
we have shown that the two bounds meet yielding the secrecy
capacity.

Our derivation is specific to the 2-2-1 case and we have not
been able to show that these lower and upper bounds meet in the
general MIMO channel. This is because the unit-rank (beam-
forming) property of the optimum transmit matrices is essential
in our derivations, while beam-forming is not likely to be the op-
timal strategy when the number of transmit and receive antennas
is more than two. Shortly after the submission of this work,
the secrecy capacity of the general Gaussian MIMO wiretap
channel has been found by exploring the properties of the saddle
point of the upper bound [27], [28]. Later, an alternataive ap-
proach to the general problem is developed using the channel
enhancement technique [29].

APPENDIX

Proof of Theorem 1: A proof of similar results is presented
for the case of m-1-n system, m,n > 1, in [10, Lemmas 1 and
2]. Our proof utilizes [10, Lemma 1], which generalizes to the
case of multiple antennas at the legitimate receiver easily, and
extends [10, Lemma 2] to the case where there are two antennas
at the legitimate receiver.

An upper bound on the secrecy capacity of the wiretap
channel described in (1) and (2) is [10, Lemma 1]

I(z; . 78
p(@)BlaTa]<P (z:y]2) (78)

Hence, we have
I(z;y|2) = I(z;y,2) — I(z;2). (79

Intuitively, the upper bound is obtained by considering the se-
crecy capacity of a new channel where the legitimate receiver
also has access to the eavesdropper’s signal. Since the legitimate
user is more capable in the new channel, the secrecy capacity of
the new channel will serve as an upper bound on the secrecy
capacity of the original channel. The new channel is degraded,
and therefore the secrecy capacity formula is (79), obtained by
setting w = x as shown in [3].
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In evaluating the right-hand side of (78), we introduce corre-
lation between n,, and n_, i.e., let us define a to be

a = E[nyn.]. (80)

We note that a thus defined has to satisfy ||a|| < 1. To avoid
irregular cases, we will only consider a such that ||a|| < 1.
We also note that a does not affect the secrecy capacity of the
original channel, but it affects the upper bound in (78). Thus,
(78) remains an upper bound for any a with ||a|| < 1.

We evaluate I(z;y | z) as follows:

I(myy|z) = h(y|2) - My|z,2) 81
= h(y|z) — h(ny|n.). (82)
Due to the Gaussianity of the noise
1
h(ny|n;) = h(ny,,n.) — h(n,) = 3 log(2me)?|N|  (83)
where N is defined as in (40). Let us define S as
S = E[zz”) (84)
then
Elyz] = E[(Hz +n,)(z g +n.)]= HSg+a (85)
E[Z*)=1+9¢"Sg (86)
Elyy')=I+HSH". (87)

The linear minimum mean-squared error (LMMSE) estimator
of y using z is

. HSg+a
T o
and the resulting covariance matrix of the estimation error is
r_ L T
I+HSH 1_l_gTS,g(HS'g-I-a)(H.S’g+a) . (89)
Hence
HSg+a
h(y|z)=h <’!/ T 11478¢" Z) (90)
HSg+a
<hly— ——4 1
- (y 1+ gTSgZ) oD
< %log(27re)2 I+ HSH”
1 T
Therefore
I(z;y|z)
1 I+HSH™ - L (HSg+a)(HSg + a)T’
93)
[ I+HSH" HS'g—i—a]
T T T T
:llog g'SH' +a' 1+g'Sg 04)
2 (1+9"Sg)IN|
1. |N+HSH'|
= _log—1 "= 1 95
28 {1+ g7Sg) ] )
| |renrEsHET
= —log (96)

2 (1497 Sg)
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where H is defined as in (41). Thus, we have
I .

p(@):BlaTa]<P (z:9l)

1. |[I+N 'HSH'|

(1+97Sg)

Therefore, an upper bound on the secrecy capacity of the wiretap
channel described in (1) and (2) is

< max —log
5>0,tr(S)<P 2

o7)

U(s, 98
520.0(8)<P (5.9) %)
for any @ with ||a|| < 1, with U(S, a) defined in (39). O
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