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Abstract The aim of the present paper is a systematic elab-

oration of a three dimensional finite element analysis tool for

discontinuous fracture in brittle solids. Brittle or quasi-brittle

fracture usually occurs when a material reaches the limit of its

strength and no plastic deformation has been observed prior

to failure. In the present approach, this kind of failure is char-

acterized by three sets of governing equations: (i) the elastic

bulk problem and (ii) the cohesive interface problem regard-

ing the solid deformation field and (iii) the crack tracking

problem concerning the crack kinematics. This manuscript

describes a unique modular tool set for the coupled set of

nonlinear equations. We focus in particular on the boundary

conditions for the crack tracking problem of this analysis

tool. We critically discuss important implementation details:

(i) the choice of crack onset boundary conditions for the

additional global field, (ii) the numerical integration, (iii) the

modeling of geometrically exact crack tips for cohesive frac-

ture, and (iv) the post-processing procedure for the disconti-

nuity visualization. The potential of the method to simulate

brittle fracture is demonstrated by qualitative and quantita-

tive comparisons with experiments from the literature as well

as by common benchmark problems.
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1 Introduction

Brittle or quasi-brittle fracture is characterized by an abrupt

collapse of the considered material, or structure. This charac-

teristic behavior takes place when a material reaches the limit

of its strength and no plastic deformation can be observed

prior to failure. This kind of failure ranges from materials like

shattered glasses or ceramics over concrete to faults formed

in the crust of the earth. It has recently drawn increasing

attention in the context of safety and reliability of concrete

buildings, bridges, storage containers, and other engineer-

ing structures subjected to high impact loading or explosion.

Especially the numerical treatment of tensile dominated brit-

tle fracture of concrete has been under extensive research

interest in the past decade, see, e.g., [1–11]. Here, tensile

dominated failure refers to degradation phenomena in which

the tensile failure patterns can be regarded as dominant over

to shear failure which, in turn, is common in metallic materi-

als. As a first approximation to mixed mode failure, fracture

parameters for the opening mode I can be used if the shear

to tension ratio is moderately small. If shear stress becomes

dominant, shear friction and aggregate interlocking can no

longer be neglected. Tensile failure of concrete involves

progressive microscopic cracking, debonding and other com-

plex irreversible processes of internal damage. The associ-

ated softening can coalesce into a discontinuity that separates

the material. The discrete crack concept is the approach that

reflects these phenomena closest.

Considering this brief description of brittle fracture, it is

evident that at least three main building blocks are needed

123



92 Comput Mech (2009) 45:91–107

for the phenomenological numerical modeling of brittle frac-

ture in a truly three dimensional setting. The first building

block regards the description of propagating discontinuities

in a continuum mechanics finite element setting. The sec-

ond building block takes into account the softening material

response whereas the third building block includes the com-

putation of the fracture propagation direction associated with

the geometrical description of the failure surface.

In recent years many promising techniques have been

developed to handle the first building block. For the sake of

clarity, we would like to classify the following most prom-

inent approaches. The easiest strategies which takes into

account real physical crack kinematics, are interface ele-

ments, see, e.g., [12–15]. It is evident that this approach is

appropriate for situations where the crack path is known a

priori whereas for situations where the crack path has to be

predicted this approach will obviously produce mesh depen-

dent solutions. An alternative approach which seems to be

the most common in industrial applications, is the reme-

shing technique, see, e.g., [16,17]. The first approach to truly

simulate arbitrary discrete failure surfaces in finite element

meshes was the embedded discontinuity technique, see, e.g.,

[18–24]. Motivated by the assumed enhanced strain concept,

additional degrees of freedom were introduced locally on the

element level to characterize the failure plane. The embedded

discontinuity technique convinced through its computational

efficiency because the size of the global system of equations

was not affected by the new local enhancement.

A further approach which is not based on additional local

element degrees of freedom is the extended finite element

method XFEM introduced by Belytschko and co-workers,

see, e.g., [25,26]. At the additional cost of successively intro-

duced global degrees freedom, smooth discrete cracks could

finally be modeled anywhere in the domain, see also [27–30]

for two dimensional computations, as well as [31–36] for

three dimensional computations. While the XFEM uses the

displacement jump as additional global unknown, the method

proposed by Hansbo and Hansbo [37–39] works exclusively

with deformation degrees of freedom, see also [40–43]. In

this manuscript we focus on the latter approach which basi-

cally belongs to the category of discontinuous Galerkin meth-

ods. However, to round off the approaches valid for the first

building block we should mention meshless methods which

have also been successfully applied to model arbitrary crack

propagation, see, e.g., [44,45].

It should be noted that all these mentioned approaches are

discrete in nature: The dissipative softening behavior caused

by the fracture process is characterized in terms of surface

tractions depending on displacements jumps along the dis-

continuity surface whereas the bulk material is considered to

remain purely elastic. To this end, we use cohesive traction

separation laws that constitute the second mentioned build-

ing block. The cohesive crack concept has originally been

proposed by Dugdale [46] and Barrenblatt [47]. It was fur-

ther elaborated for concrete materials by Hillerborg [48,49].

The key assumption of the cohesive crack concept is that the

introduced crack surfaces are able to transfer stresses within

the process zone of the propagating crack. Since the cohesive

concept is a very elegant tool to merge all irreversible failure

mechanisms into an arbitrary traction separation relation, it

has been adopted for the modeling of brittle failure by several

authors, see, e.g., [50–55].

Finally we point our attention to the last building block.

In a two-dimensional setting, the geometrical description

of a crack surface is a line. Tracking the crack is uniquely

defined and both the solution and its algorithmic realization

are straight forward. Once an element is identified to fail,

in the case of brittle fracture typically decided based on a

maximum principal stress criterion, the crack extends from

a neighboring crack point on the element edge in the direc-

tion normal to the principal stress. Hence, this stress based

crack propagation criterion always renders a unique and

smooth C0 continuous failure zone in two-dimensional analy-

ses. While the generalization to three dimensions seems to be

straightforward on paper, the algorithmic realization requires

a number of additional considerations and tool sets that are

not required in two-dimensional simulations. This additional

complexity has hampered the development of three-dimen-

sional crack propagation algorithms and only few attempts

are present in the current literature. In a three-dimensional

setting, the element-wise evaluation of local stress-based fail-

ure criteria typically generates non-smooth failure surfaces.

First attempts have been made to address these issues and

a variety of different approaches has been proposed, see,

e.g., [7,31–33,35,36]. In the present framework we use the

so-called global crack tracking algorithm to ensure a smooth

failure surface. This idea was recently introduced by

Oliver [56] and has been discussed intensively ever since

[57–62]. In this approach, a single level set function is used to

describe the failure surface and the scalar values of this level

set function are introduced as additional global unknowns

which have to be coupled to the fracture problem. In detail,

the gradient of the newly introduced scalar-valued field is

coupled to the principal stress directions and an additional

boundary value problem is solved on the global level. Hence,

arbitrarily shaped failure surfaces can be characterized and

tracked in a stable and robust manner. With this paper, we

would like to share our experience in modeling three-dimen-

sional crack propagation. In particular, we focus on (i) the

choice of crack onset boundary conditions for the additional

global field, (ii) the numerical integration, (iii) the model-

ing of geometrically exact crack tips for cohesive fracture,

and (iv) the post-processing procedure for the discontinuity

visualization. These critical aspects of three-dimensional dis-

crete fracture simulation have been neglected in the literature

thus far.
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The structure of the paper is as follows: Sect. 1 briefly

summarizes the governing equations of the elastic bulk prob-

lem, the cohesive interface problem and crack tracking prob-

lem including the staggered coupling of these governing

equations. In the sequel, Sect. 2 introduces the finite element

formulation of the governing equations within a complete

nonlinear finite element setting. Additionally some important

recommendations and comments about the implementation

details are made including the definition and description of

different kinds of boundary conditions for the crack tracking

problem. In Sect. 3 we present three numerical examples dis-

playing the results which can be obtained with the proposed

theoretical and numerical framework. Finally, we conclude

the manuscript with a discussion and a brief outlook.

2 Governing equations

The mechanical problem we will describe in this section is

essentially governed by three sets of equations: (i) the elastic

bulk problem, (ii) the cohesive interface problem, and (iii)

the crack tracking problem. The elastic bulk problem and

the crack tracking problem are valid in the entire domain B

whereas the cohesive interface problem is valid only on the

discontinuity Ŵ. For the sake of transparency, we restrict the

description to one single discontinuity while the extension

to multiple discontinuities is straightforward. In this section,

we will briefly summarize the corresponding continuous field

equations for each of the three building blocks.

2.1 The elastic bulk problem

Let us first characterize the elastic bulk behavior in the bodyB

which we assume to be crossed by a discontinuity Ŵ. On each

side of this discontinuity, i.e. on B+ and B−, we introduce an

independent set of deformation maps ϕ which maps particles

from their original position X in the reference configuration

B to their current position x in the deformed configuration S

as illustrated in Fig. 1.

ϕ(X) :=

{

ϕ+(X)

ϕ−(X)
F :=

{

F+ = ∇x ϕ+ ∀X ∈ B+

F− = ∇x ϕ− ∀X ∈ B− (1)

Accordingly, we can introduce independent deformation

gradients F+ and F− and their corresponding Jacobians

J+ = det F+ and J− = det F− on either side of the discon-

tinuity. In the absence of body forces and inertia terms, the

equilibrium equation reduces to the vanishing divergence of

the Piola stress P which can be stated independently in both

subdomains B+ and B−.

Div P = 0 ∀X ∈ B
+

∪ B
− (2)

On the external boundary ∂B which can be subdivided into

disjoint parts ∂B = ∂Bu ∪ ∂Bt with ∂B = ∂Bu ∩ ∂Bt = ∅

either Dirichlet boundary conditions ϕ = ϕ p or Neumann

boundary conditions P · N = T p can be prescribed in terms

of given deformations ϕ p or given surface tractions T p. We

assume, without loss of generality, a compressible elastic

constitutive behavior of Neo-Hookean type inside the bulk.

Thus, the Cauchy stress σ can be expressed in terms of the

Lamé parameters λ and µ. The Cauchy stress σ can be related

to the Piola stress P through Nanson’s formula. In general,

these stresses can take different values on both sides of the

discontinuity B+ and B−.

P = Jσ · F
−t

(3)

σ =
1

J

[

λ ln(J ) I − µI + µF · F
t
]

∀X ∈ B
+

∪ B
−

What remains for the elastic bulk problem is the initiation of

failure. Following the classical principal stress based Ran-

kine criterion, we solve the eigenvalue problem of the Cau-

chy stress tensor σ =
∑3

i=1 λσ
i nσ

i ⊗ nσ
i and allow for crack

propagation if the largest eigenvalue λσmax exceeds the rup-

ture stress, i.e. λσmax > σ cri t . Furthermore the eigenvector

n
σmax

i , related to the maximal eigenvalue, defines the normal

to the crack propagation direction n = n
σmax

i in the spa-

tial configuration. The two remaining eigenvectors t2 = n
σ2

i

and t3 = n
σ3

i related to the second and the third eigenvec-

tor λσmax > λσ2 > λσ3 span the crack plane in the spa-

tial configuration. Their corresponding material unit vectors

T 2 =
F−1·t2

∣

∣F−1·t2

∣

∣

and T 3 =
F−1·t3

∣

∣F−1·t3

∣

∣

will prove essential for the

kinematical characterization of the discontinuity surface.

2.2 The cohesive interface problem

In order to generalize our approach we consider all kinds

of fracture accompanying microscopic failure mechanism in

a phenomenological sense. Hence, we assume that mate-

rial failure is exclusively attributed to the cohesive inter-

face which is characterized through its own independent set

of equations. The introduction of two different deformation

fields for both sides of the discontinuity subdomains B+ and

B− inherently introduces possible jumps in the deformation

map [[ϕ]] = ϕ+ − ϕ−∀X ∈ Ŵ on the discontinuity.

As illustrated in Fig. 2, all particles initially located on

the unique discontinuity surface Ŵ are mapped onto two sur-

faces γ + and γ − in the deformed configuration. To uniquely

characterize discontinuous failure at finite deformations, we

apply the concept of a fictitious discontinuity ϕ which is

assumed to be located between the two discontinuity sur-

faces γ + and γ − in the deformed configuration, see, e.g.,

[4,41–43,51].

ϕ =
1

2
[ϕ+

+ ϕ−
] F =

1

2
[F

+
+ F

−
] ∀X ∈ Ŵ (4)
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Fig. 1 Elastic bulk problem:

independent mappings ϕ+ and

ϕ− on both sides B
+ and B

− of

the discontinuity Ŵ inherently

introduce a jump [[ϕ]] in the

deformation field

Fig. 2 Cohesive interface

problem: concept of fictitious

discontinuity surface located

between the two discontinuity

surfaces γ + and γ −

Again, the corresponding deformation gradient F and its

Jacobian J = det F follow straightforwardly. The normal n

to the fictitious discontinuity which will essentially be needed

to determine normal and shear resultants on the discontinu-

ity γ can then be expressed through the classical Nanson

formula as n = J F−t · N . On the internal boundary Ŵ, i.e.

along the fictitious discontinuity, the equilibrium condition

P
+

· N = P
−

· N = T ∀X ∈ Ŵ (5)

states that the cohesive Piola tractions T acting on the discon-

tinuity have to be equal in direction and magnitude, however,

taking the opposite sign, compare Fig. 2. On the fictitious

discontinuity, we apply the cohesive interface concept, for

which all inelastic deformation around the crack tip is col-

lectively represented through the cohesive Cauchy tractions

t . Similar to the Cauchy stresses σ in the bulk, the cohe-

sive Cauchy tractions t on the fictitious discontinuity can

be related to the cohesive Piola tractions T on the reference

domain through Nanson’s formula in terms of the area ele-

ments da and dA. We conveniently assume a decoupling of

the normal and tangential constitutive behavior and introduce

the cohesive Cauchy tractions t in the following form, see,

e.g., [41–43].

T =
da

dA
t

t = fn exp

(

fn

Gn

[[ϕ]]·n

)

n + Et [I −n⊗n]·[[ϕ]] ∀X ∈ Ŵ

(6)

In the normal direction, fn and Gn denote the tensile strength

and the fracture energy, respectively. In the tangential direc-

tion, Et denotes the shear stiffness.

2.3 The crack tracking problem

The characterization of smooth three dimensional failure

surfaces is handled through a global crack tracking algorithm

which introduces an additional set of partial differential equa-

tions. The general idea to represent the crack in the form of

iso-surfaces φ = const of an additionally introduced field

φ(X) is relatively novel, [56–62] yet conceptually simple:

a particular iso-surface of constant value, e.g., the surface

of level zero φ = 0, is chosen to be the kinematical repre-

sentation of the discrete three-dimensional failure surface.

Conceptually speaking, the goal of the crack tracking prob-

lem is to find the scalar field φ(X) which is the solution to

the following field equation

Div J = 0 ∀X ∈ B (7)

where the flux vector J is a linear function of the gradient

of φ.

J = [T 2 ⊗ T 2 + T 3 ⊗ T 3] · ∇Xφ ∀X ∈ B (8)

By construction, the particular format for the anisotropic con-

stitutive tensor D = T 2 ⊗ T 2 + T 3 ⊗ T 3 ensures that the

flux J is always a weighted linear combination of the tangent

vectors T 2 and T 3 which as mentioned before are the remain-

ing two eigenvectors of the Rankine criterion in the reference

configuration. Since the anisotropy tensor D is rank deficient,

we apply slight perturbations ε as D = T 2 ⊗ T 2 + T 3 ⊗

T 3 + ε I to ensure that the overall system is solvable. The

problem of finding φ = const. is obviously a classical bound-

ary value problem in terms of the field φ(X) characterized

through an anisotropic Laplace equation. On the boundary

∂B which can be subdivided into disjoint parts ∂B = ∂Bφ ∪

∂BJ with ∂B = ∂Bφ ∩ ∂BJ = ∅, either Dirichlet boundary

conditions φ = φ p or Neumann boundary conditions J ·

N = Jp can be prescribed. Typically, we assume a flux-free

boundary and apply homogeneous Neumann boundary con-

ditions J · N = Jp = 0.
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3 Finite element formulation

In this section, we illustrate how we discretize and solve

the governing equations (2), (5) and (7) within a nonlinear

finite element setting. In addition, we provide some impor-

tant recommendations and comments about the implementa-

tion details. As a basis for the finite element formulation, we

reconsider the elastic bulk problem and the cohesive inter-

face problem, which are inherently strongly coupled, com-

pare Fig. 3. Both, however, are only weakly coupled to the

crack tracking problem. By this means, we first solve the bulk

and interface equilibrium simultaneously and then solve the

crack kinematics in a post-processing step.

3.1 Weak form

After multiplication with the corresponding test functions

δϕ, [[δϕ]] and δφ, integration over the domain of interest and

consideration of the Neumann boundary conditions P · N =

T p and J · N = Jp, the governing equations render the

weak form

∫

B+∪B−

δF : P dV +

∫

Ŵ

[[δϕ]] · T dA =

∫

∂Bt

δϕ · T
pdA

∫

B

∇Xδφ · J dV =

∫

∂BJ

δφ J
p dA (9)

in the reference configuration which essentially represent the

basis for the discretization to be discussed in the sequel.

3.2 Discretization

For the finite element formulation it proves convenient to

distinguish between standard continuous elements and dis-

continuous elements which are crossed by the discontinu-

ity surface. For the continuous elements we use a standard

Bubnov-Galerkin scheme and furthermore we apply a stan-

dard isoparametric interpolation of the test functions δϕ, the

deformation ϕ, and their gradients δF and F. For the dis-

continuous elements, we apply an independent interpolation

of the deformation field ϕ+ and ϕ− and its gradient F+ and

F− on the individual sides of the discontinuity B+ and B−.

Strictly speaking, both deformation fields ϕ+ and ϕ− are

interpolated independently over the element. In detail, we

essentially double the degrees of freedom of the entire ele-

ment. The interpolated fields are then set to zero on one side

of the discontinuity, while they take their usual values on the

other side.

For the crack tracking problem, we again apply a stan-

dard linear interpolation of the test and trial functions δφ and

φ and their gradients ∇X δφ and ∇X φ which leads to the

following set of approximations.

δϕ =
∑

i δϕi N i δF =
∑

i δϕi ⊗ ∇X N i

ϕ =
∑

j ϕ j N j F =
∑

j ϕ j ⊗ ∇X N j

[[δϕ]] =
∑

i δϕi N i δF =
∑

i δϕ ī ⊗ ∇X N i

[[ϕ]] =
∑

j ϕ j N j F =
∑

j̄ ϕ j ⊗ ∇X N j̄

δφ =
∑

i δφi N i ∇Xδφ =
∑

i δφi∇X N i

φ =
∑

j φ j N j ∇Xφ =
∑

j φ j∇X N j

(10)

Here N i and N j are the standard shape functions for con-

stant strain tetrahedral elements and i, j = 1 . . . nen are the

four tetrahedral nodes. To unify the notation, we have intro-

duced the sets N i and N j which consist of the element shape

functions N evaluated on Ŵ multiplied by the corresponding

algebraic sign. The overbars indicate the discontinuous ele-

ments, for which we have doubled the degrees of freedom

such that i, j = 1 . . . n+
en + n−

en are the doubled four, i.e.

eight, tetrahedral nodes. Accordingly ∇X N denotes the gra-

dient of the shape functions N evaluated on the discontinuity

Ŵ, weighted by the factor 1
2

. With the help of the above men-

tioned discretizations, the weak forms can be cast into the

following discrete residual statements.

R
ϕ
I =

nel

A
e=1

∫

Be∪B
+,−
d

∇X N i
· P dV

+

∫

Ŵ

N i
T ([[δϕ]])dA −

∫

∂Bte

N i
T

pdA = 0

R
φ
I =

nel

A
e=1

∫

Be

∇X N i
· J dV −

∫

∂BJe

N i
J

pdA = 0

(11)

Thereby, the operator A
nel

e=1 denotes the assembly of all ele-

ment contributions including the continuous ones e and the

discontinuous ones d+,−, respectively. Obviously, the first

residual R
ϕ
I is nonlinear in the unknown deformation field

ϕ(X) whereas the latter residual R
φ
I φ(X) is linear in the

unknown field φ(X). Hence, the nonlinear set of Eqs. (11)1

is solved numerically based on an incremental iterative New-

ton-Raphson scheme with the incremental stiffness matrix

K
ϕ
IJ = ∂R

ϕ
I /∂ϕ J . The system matrix of the linear set of

Eqs. (11)2 follows accordingly as K
φ
IJ = ∂R

φ
I /∂φJ .

K
ϕ
I J =

nel

A
e=1

∫

Be∪B
+,−
d

∇X N i
· [∂F P] · ∇X N j dV

+

∫

Ŵ̄

N i
[∂F T ] · ∇X N̄ j

+ N i
[∂[[δϕ]]T ]N j dA (12)

K
φ
I J =

nel

A
e=1

∫

Be

∇X N i
· [∂∇φ J] ∇X N j dV

The solution renders the incremental update of the defor-

mation field dϕJ =
∑nnp

I=1 K
ϕ−1
IJ R

ϕ
I and the crack tracking
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Fig. 3 Left elastic bulk and

cohesive interface problem.

Right crack tracking problem

field dφJ =
∑nnp

I=1 K
φ−1
IJ R

φ
I for all nnp nodes. Note that due

to the chosen discretization scheme, the number of global

node points nnp which consists of the standard nodes and

the duplicated node points for the discontinuous elements

increases progressively during ongoing crack propagation.

The terms in brackets, i.e. the fourth, third and second order

tensors [∂F P], [∂
F

T ], [∂[[δϕ]]T ] and [∂∇φ J] depend on the

choice of the constitutive equations for the stresses P in the

continuous body (3), for the tractions T on the discontinu-

ity surface (6) and for the flux J in the domain (8). For the

particular choices used in (3) and (6) these linearizations are

given, e.g., by Jäger et al. [61]. Since the flux is constant in

Eq. (8) with [∂∇φ J] = D, the crack tracking problem is lin-

ear in φ(X) and can thus be solved without further iteration

once the nonlinear deformation problem is solved. For the

sake of clarity the complete flowchart of the computational

algorithm is summarized in Fig. 4.

3.3 Crack extension and crack tip construction

In the presented algorithm the resulting crack tracking field is

represented through a level-set function for the description of

the crack surface. Without using a detailed mesh independent

description of the crack front and by using a linear interpo-

lation of the crack tracking field, the extension of the crack

is a planar segment through the entire considered element. It

should be noted that this kind of crack surface description can

facilitate an inaccurate kinematical description of the emerg-

ing failure surface for large elements. However, this kind

of discretization error becomes negligible with mesh-refine-

ment. To avoid a crack extension search over the entire set of

elements, potentially new crack elements are stored in a list

of active crack tip elements. This set of crack tip elements

is updated continuously by checking the direct neighbors of

the active crack tip elements. Additionally, in order to ensure

that the properties of a crack tip are given, not all nodes of the

considered element are doubled. Instead, we store the nodes

which are part of the free crack tip faces, i.e., the faces with-

out a cracked neighboring element, are used as crack tip front

nodes. Additionally, we double only the nodes of the consid-

ered element which are not part of this crack tip front nodes.

Clearly, this set of crack tip front nodes is also updated con-

tinuously during ongoing crack propagation. The resulting

displacement field ensures the properties of crack tip which

are illustrated in Fig. 5.

Besides, the kinematical description of the crack sur-

face in terms of a scalar valued tracking field might seem

cumbersome at first, yet it has some advantages over tradi-

tional approaches. It inherently avoids an ill-posedness of the

stiffness matrix which is common to traditional approaches if

the crack surface strikes the vicinity of a node and the result-

ing crack surface becomes very small. In the present approach

based on a C0 continuous, scalar valued crack tracking func-

tion, however, we control the minimum edge-length of the

support of a node, i.e., all element edges connected to the

considered node and modify the φ value of the considered

node. In detail, the nodal value is modified, if the minimal

edge length is less than 0.5%, which has turned out to yield

reasonable results.

3.4 Splitting of elements and numerical integration

The next important ingredient of the present algorithm

concerns the splitting of elements and the numerical inte-

gration during the computation of the incremental stiffness

matrix K
ϕ
IJ e and the element residuals R

ϕ
I e for the discontin-

uous elements. For these computations it proves convenient

to distinguish between the volumetric parts dV and the crack

surface parts dA of the incremental stiffness matrix and the

element residuals, compare Eq. (11) and (12) respectively.

Furthermore, the geometry of the discontinuous elements can

simply be represented by the intersection points in the refer-

ence configuration. Hence, the intersection points as well as

the crack surface and the volume of the considered elements

in the reference configuration do not change during ongoing

crack propagation.

In general, two different functions have to be evaluated

on both sides of the discontinuous elements for the numeri-

cal integration of the volume integrals. The underlying split

of a tetrahedral element can produce two different combina-

tions of sub-elements depending on whether the crack sur-

face forms a triangle or a quadrilateral, see in detail, e.g.,

[4,35,42,43,60]. In the former case, we obtain a four-node

tetrahedron and a six-node wedge element, whereas in the

latter case we obtain two six-node wedge elements. In con-

trast to the literature [35,42,43], where the wedge element is
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Fig. 4 Algorithmic flowchart

of finite element based failure

algorithm

further subdivided into tetrahedral elements, we only deter-

mine the volume of each tetrahedron or wedge element in

a local element coordinate system and weight the stiffness

matrix with the corresponding volume. For the sake of clar-

ity we express this integration for a general function f (X)

which can be understood as a place holder for the volume

parts of K
ϕ
I J e and R

ϕ
I e. Thereby ξ denote the local element

coordinates.

∫

B
+,−
d

f (X) dV =

∫

B
+
d

f (X)+ dV +

∫

B
−
d

f (X)− dV

=

n+
gp

∑

i=1

f (ξi)
+det J(ξi)

+αi +

n−
gp

∑

j=1

f (ξ j )
−det J(ξ j )

−αj

(13)
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Fig. 5 Local element crack tip

with free crack tip face, front

nodes and doubled node. Left

reference configuration. Right

deformed configuration

Fig. 6 Numbering convention

of local element points and edge

vectors. Left four-node

tetrahedral-element. Right

six-node wedge-element

Due to the linear approximations of the displacement field

we obtain piecewise constant strains and by using one-point

gauss integration to determine the particular Jacobians, we

obtain the following result.

∫

B
+,−
d

f (X) dV = f +det J(ξ)+α + f −det J(ξ)− α

= f + V +
+ f − V − (14)

Thereby V + and V − denote the volume of the tetrahedral or

wedge part on each side of the discontinuity surface, compare

Fig. 6. These volumes can be computed straightforwardly in

terms of the intersection points with the help of the following

equations.

Vtet =
1

6
[X12 × X13] · X14

Vwedge =
1

6
[X13 × X15 + X14 × X13

+ X12 × X14] · X16

(15)

Concluding this implementation aspect, we describe the

numerical integration over the crack surface parts dA. As

mentioned above, the crack surface forms either a triangle

or a quadrilateral defined by the intersection points. This

facilitates the numerical integration over the crack surface.

We perform a standard two dimensional Gauss integration

scheme with at least three integration points for triangular

and four integration points for quadrilateral crack surfaces.

3.5 Load and boundary conditions

A crucial issue that has been neglected in the literature is

the physical interpretation, the understanding, and the appro-

priate definition of load and boundary conditions for the

onset of cracking. Therefore, we give an overview of pos-

sible boundary conditions and we recapitulate these defini-

tions with regard to the numerical examples. It is important

to keep in mind that the set of boundary nodes ∂Bφ for the

linear crack tracking problem increases during ongoing crack

propagation to ensure the kinematical continuity of the crack

tracking problem. This implies that we have to update the

set of boundary conditions continuously during runtime as

mentioned in Fig. 4. To this end, we add the actual φ val-

ues of the considered cracked elements at loading step n to

the set of fixed boundary conditions ∂Bφ at loading step n+1

and solve the linear system of equations for the free φ values,

symbolized in the following static condensation scheme with

index f.
[

Kn+1
φφ K n+1

φf

Kn+1
fφ K n+1

ff

]

[

φn
φ

φn+1
f

]

=

[

Rn+1
φ

Rn+1
f

]

(16)

With this procedure, we ensure that the crack transfer

between the discrete finite element remains continuous. This

implies that the actual crack surface is frozen during ongo-

ing crack propagation. Next, we have to define either the

initial boundary conditions or the so-called root elements to

determine the set of onset conditions during a running crack

simulation. In the present formulation we only use a set of

initial boundary conditions since we validated our algorithm
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Fig. 7 Illustration of different crack onset boundary conditions for the global crack tracking problem

in terms of experiments and benchmarks from the literature

and we therefore wanted to restrict the possible number of

cracks. However, the incorporation of root elements which

allow for an arbitrary number of cracks is straightforward,

see, e.g., [3,5,63]. In the sequel we categorize the choice

of boundary conditions first addressing the initial boundary

conditions and focusing on the onset boundary conditions or

so-called root elements.

Mesh-dependent initial boundary conditions

The simplest way to define initial boundary conditions is to

fix the φ values for a crack tip or the notch as illustrated

in Fig. 7. In the case of tetrahedral elements, we thus have

fixed at least three element nodes, which are in fact enough

to ensure that the linear equation system for the global track-

ing field is solvable. Note that only the slope of the chosen

start values is important. If, e.g., the crack should start in the

middle of the element, the chosen start values will be set to

φinitial
φ = ±α where α can be chosen arbitrarily. Theoreti-

cally, the crack surface value φ = const. that characterizes

the crack surface can also be chosen arbitrarily, although we

typically suggest φ = const. = 0. Mesh dependent bound-

ary conditions are extremely useful in case of a single crack

and with relatively simple meshes as we will illustrate in the

numerical example of the L-shaped panel. The fundamen-

tal drawback of mesh dependent boundary conditions is that

they have to be adapted for each discretization to ensure that

crack onsets are equal for all computations.

Geometry-based initial boundary conditions

To avoid the modifications of the boundary conditions for

each mesh, we recommend to define the boundary condi-

tions based on the geometry, see again Fig. 7. This allows

us to pre-determine and fix the initial values for the entire

geometry. Moreover, this procedure ensures that both the

onset of crack and the boundary conditions are equal for

all different meshes. The first situation is extremely helpful

for more demanding geometries, which will be illustrated by

the numerical simulation of a pull-out test. The latter issue

is crucial to ensure symmetric initial boundary conditions in

the case of more than one crack, which we will document by

the numerical example of the Nooru-Mohamed test. Similar

to the previous category, we can choose the crack surface

describing φ = const. value arbitrarily.

Root-element onset boundary conditions

Finally, a promising technique is the determination of crack

onsets during crack propagation, see, e.g., [3,5]. This strat-

egy allows us to describe multiple crack propagation with-

out having to pre-define boundary conditions, compare again

Fig. 7. At detection of failure, we first check the minimal and

maximal computed values of the crack tracking φ field for

the considered element. Next, we check if a root element

exists within this range. If so, we take the stored φ = const.

value for this root element. Otherwise we introduce a new

root element and assign the φ = const. value to the element

center point. This procedure uniquely ensures C0 continuity,

for all possible crack surfaces and is more general than the

one reported by [63], where root elements are predefined.

Although this approach seems to be the most general one,

an essential drawback remains: By using finite elements as

the root of crack propagation, it is obviously that the number

of cracks will inherently depend on the number of elements.

This disadvantage, however, can only be avoided by describ-

ing the complete crack surface independent of the finite

element mesh.

3.6 Visualization of discontinuous failure

To complete the description of the finite element simula-

tion tool, we discuss the visualization of three-dimensional

discontinuity surfaces. Although a bit cumbersome, this visu-

alization is straightforward. However, it is an absolutely inte-

gral part of the simulation tool that allows us to evaluate the

features of the crack path tracking algorithm. For the sake of

clarity, we restrict ourselves to the visualization of discon-

tinuous linear tetrahedral elements. Recall that within the

presented approach, a discontinuous element is realized by
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Fig. 8 Additional nodes and

modified displacement

interpolation for discontinuity

visualization procedure

Fig. 9 Left geometrical

dimensions ( mm) and loading,

Right load displacement

relationship F(kN) versus u

(mm)

doubling all degrees of freedom, i.e., we double the entire

continuous element, compare Fig. 8. Next, two deformation

maps are approximated independently with the now avail-

able eight element nodes. To post process the discontinuity,

six or eight additional nodes have to be introduced. The num-

ber of nodes depends on the particular crack surface shape,

i.e., three pairs of nodes are required for a triangular crack

surface whereas four pairs of nodes are required for a quad-

rilateral crack surface. A pair of nodes has to be introduced

for each edge cut by the discontinuity. Obviously, this pair

of nodes has the same referential positions. However, since

we allow for finite deformations, these nodes are mapped to

different positions in the current configuration, compare also

Fig. 8.

Finally, we give a comment on the stress visualization.

It is obvious that due to the applied numerical integration,

the stresses are only available at the corresponding integra-

tion points. Accordingly, we apply a standard projection of

the integration point values onto the nodes by virtue of the

element shape-functions. In doing so, we obtain the stresses

for the eight nodal values of the discontinuous elements. The

individual stress contributions at the node are processed sim-

ilarly to the displacements to obtain the stress values for the

additional nodes required for the visualization.

4 Numerical examples

We present three numerical examples illustrating the poten-

tial of the proposed algorithmic tool set. These examples have

been tailored to address the following aims: (i) to validate

the proposed algorithm in terms of well-documented experi-

mental benchmark problems, (ii) to compare the algorithmic

performance in relation to existing algorithms in the litera-

ture, and (iii) to illustrate the choice of boundary conditions

for the additional field of the global tracking problem.

4.1 L-shaped panel

The first example is a concrete L-shaped panel. The geom-

etry and the loading conditions can be found in Fig. 9 left.

This geometry was elaborated experimentally by Winkler

et al. [64,65]. Comparative discrete failure simulations of

this benchmark problem can be found, e.g., in [59]. How-

ever, their analysis is restricted to a two-dimensional setting.

The domain has been discretized with three different meshes.

One structured mesh with 12969 (8658 ndof) tetrahedral ele-

ments and two unstructured meshes with 25600 (18711 ndof)

and 32261 (19416 ndof) tetrahedral elements respectively.

The chosen material parameters are E = 25, 850N/mm2,
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Fig. 10 Left potential crack

surface, Right iso-surfaces for

an imposed displacement of

u = 0.8 mm

Fig. 11 Cauchy stress

(N/ mm2) in loading direction

for imposed displacements of

u = 0.2 mm and u = 0.4 mm

scaled with factor 20

ν = 0.18, ft = 2.7N/mm2, and Gf = 0.065N/mm. The load

is applied incrementally through displacement control, i.e.,

the upper left row of nodes is displaced by u = 0.02 mm

in 40 load steps each. The corresponding load displacement

curves and the reference solution of the experimental inves-

tigation are displayed in Fig. 9 right. For the boundary con-

ditions of the global tracking problem we have chosen the

mesh dependent case. This implies that we define the onset

of crack propagation in the top element of the bottom margin

for the discretization with 32261 elements. We have chosen

the boundary conditions to ±100, compare Fig. 10 on the

right hand side. Clearly we have to modify the boundary con-

ditions for the other two meshes, to ensure equal initial crack

onset conditions for each of the three cases. In detail we fix the

value of 100 on the upper side of the element and compute the

lower value with regard to the known crack starting position.

The solution is truly mesh independent and in remark-

ably good agreement with the experimental reference curve,

compare Fig. 9. Figure 11 shows the stress distribution plot-

ted on the deformed configuration. The displayed analysis

is based on the discretization with 32261 linear tetrahedral

elements and shows the results of load steps 10 and 20, i.e.,

at an applied deformation of u = 0.2 mm and u = 0.4 mm,

respectively.

By means of the iso-lines on the outer boundary of the

L-shaped panel, Fig. 10 shows how the crack propagates

smoothly to the right edge of the specimen as the load is

increased. Additionally, Fig. 10 displays the crack surface or

rather the zero iso-surface for an imposed displacement of

u = 0.8 mm.

In summary, this example of the cracked L-shaped panel

shows that the numerical method is able to capture brit-

tle fracture in a realistic way. The computational simu-

lation matches the experimental findings. The results are

truly mesh-independent. For examples with simple geom-

etries such as the L-shaped panel, the first type of boundary

conditions for the additional field prove to be straightforward

and extremely useful.
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Fig. 12 Left geometrical dimensions ( mm) and loading, Right load displacement relationship F (kN) versus u (mm)

Fig. 13 Left potential crack

surface, right iso-surfaces for an

imposed displacement

u=0.6 mm

4.2 Pull-out test

The second example treats the pull-out of a steel anchor

embedded in a cylindrical concrete block. The geometrical

dimensions of the problem with its loading and boundary

conditions are displayed in Fig. 12 for one quarter of the

block. The geometry as well as the following material param-

eters E = 30, 000 N/mm2, ν = 0.2, ft = 3 N/mm2,

Gf = 0.106 N/mm are chosen similar to those in [4,35,60].

Here, the steel anchor is not explicitly modeled. Instead

an incremental vertical displacement of u = 0.01 mm

is imposed in 60 load-steps, until the final displacement

of u = 0.4 mm is reached. Note that for a regular mesh, the

considered problem is axis-symmetric and can as well-

treated with a computation especially for axis-symmetric

conditions, compare, e.g., [66,67]. Since the focus of this

work is the investigation of our three-dimensional algo-

rithm, we explore the pull out test in a fully three dimen-

sional setting. Because of the rather complicated geometry,

we apply the second category of defined boundary condi-

tions. Accordingly, we predefine the initial boundary condi-

tions for the entire area which is in contact with the surface

of the steel disc. In detail we set the nodal values of the

upper edge of this part to 20 whereas the bottom nodal val-

ues of the bottom are set to −30. Additionally we compute all

nodal values of the intermediate nodes keeping in mind the

favored crack onset. Hence, we can ensure that the crack onset

and the boundary conditions, are equal for various different

meshes.

To explore mesh-independency of our algorithm, we use

two unstructured meshes containing of 14281 (9525 ndof)

and 44976 (28458 ndof) elements, respectively.

The corresponding load displacement curves are shown in

Fig. 12, where the two computations are compared with the

results from the literature, see, e.g., [4]. The reaction force

is linear until the maxim load is reached. Afterwards, we

observe a short decrease of the load for both meshes until

a re-increase can be noticed for the finer mesh. This is due

to the fact, that the crack starts from the onset at the steel

disc and propagates further to the inside edge of the counter-

pressure ring, compare Fig. 13, where the iso-lines and the

detailed zero iso-surface are depicted. Because of the tensile

failure criterion, the maximal reaction force prior the crack

runs below the counterpressure ring.
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Fig. 14 Cauchy stress

(N/ mm2) in loading direction

for imposed displacements

u = 0.25 mm and u = 0.6 mm

scaled with factor 100

The mentioned re-increase occurs due to the fact that

the failure behavior switches from tensile/shear to com-

pression/shear behavior which cannot yet be captured with

the presented numerical framework. It is obvious that the

first mesh is too coarse to capture the failure behavior pre-

cisely: The peak load is over-estimated and accordingly, the

re-increasing of the load occurs later. The reaction force of

the finer mesh, however, shows the same linear slope as in

the comparison literature and the load exhibits the charac-

teristic re-increase reported in [4]. Finally, Fig. 14 shows the

stress distribution plotted on the deformed configuration. The

displayed analysis is based on the discretization with 44976

linear tetrahedral elements and shows the results of load steps

25 and 60, i.e., at an applied deformation of u = 0.25 mm

and u = 0.6 mm, respectively.

In summary this example of the pull-out-test documents

that the proposed algorithmic tool set is able to capture brit-

tle failure in more complex geometries. The results of the

simulation agree nicely with the results documented in the

literature. For complex geometries such as the pull-out-test,

however, the second type of boundary conditions seems to

be the appropriate choice to capture the documented failure

behavior appropriately.

4.3 Nooru-Mohamed test

The third example is a tension-shear test which has been

experimentally performed by Nooru-Mohamed [68]. From

the documented experiments we choose the specimen with

size 200 × 200 × 50 mm and loading protocol 4b as illus-

trated in Fig. 15. In this test, a double notched specimen is

first loaded by a shear force Fs = 10 kN on the upper left

frame b, whereas frame a is fixed in loading direction. The

applied shear force leads to a relative shear displacement δs.

Afterwards, the specimen is loaded by an imposed tensile

displacement ut on the upper left frame while keeping the

shear force constant at Fs = 10 kN. The imposed tensile dis-

placement induces a tensile load Ft whereas, for the results,

this tensile load is plotted versus the depicted relative dis-

placement δt, see Fig. 15. It is obvious, that keeping the shear

load Fs constant leads to a further increase in shear displace-

ment during tensile loading. Due to this loading protocol,

the principal stresses rotate during loading and result in two

curvilinear cracks starting from the opposite notches. This

example is thus an excellent test platform for our algorithm

to simulate more than one crack.

For the presented simulations we use two unstruc-

tured meshes consisting of 14681 (9303 ndof) and 35176

(21021 ndof) elements, respectively. The material param-

eters are chosen as follows E = 30,000 N/mm2, ν = 0.2,

ft = 3 N/mm2 and Gf = 0.11N/m, similar to those in the lit-

erature [30,68]. Comparative discrete failure simulations of

this benchmark problem can be found, e.g., in [3,30,69].

To ensure the mentioned loading protocol, we couple the

degrees of freedom in the shear direction to apply the

shear force. Then, we use 320 displacement controlled load-

steps of ut = 0.001 mm. This example is well suited to

demonstrate the importance of boundary conditions for the

crack tracking problem in the context of defining symmetric

initial conditions. That means, if we want to achieve a sym-

metric solution for the crack tracking problem and accord-

ingly for the mechanical problem, we have to begin with a

symmetric setup. Accordingly, the mesh-dependent bound-

ary conditions previously used in the literature are not useful.

We thus choose to apply the initial boundary conditions on

the geometry. In detail, we predefine the particular areas of

the notches starting with −50 on the outside and ending with

+5 on the inner side of the particular area introducing sym-

metric initial boundary conditions as displayed in Fig. 16.

The onset of crack propagation occurs on the notches as

imposed. Thereby, the cracks will propagate under mode II

45◦ as long as the shear load is applied. Afterwards, with

increasing tensile loading, the cracks rotate as mentioned

before, compare, Fig. 16, in which both the iso-lines and the

zero-iso-surface are displayed. The crack path is in remark-

ably good qualitative agreement with the crack pattern of the

experiments, [68]. The reaction force is mesh independent

but the peak load is slightly overestimated compared to the
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Fig. 15 Left geometrical dimensions (mm) and loading. Right load displacement relationship Ft(kN) versus δt(mm)

Fig. 16 Left potential crack

surface. Right iso-surfaces for

an imposed displacement

ut = 0.28 mm (δt = 0.0922)

experiment. However, this is also the case for the comparison

with numerical analyses of Meschke and Dumstorff in two

dimensions and Gasser and Holzapfel in three dimensions

whereas the latter simulation is in closest agreement with the

experiments. The reason for the over-estimation of the peak

can be explained by the following considerations: First, the

fracture energy Gf = 0.11 N/m is not experimentally deter-

mined in the original work [68]. Its value is only estimated for

the numerical simulations in the corresponding literature. We

assume that the fracture energy could be overestimated itself.

Second, the used exponential cohesive model could have

over-estimated the peak load because only tractions normal

to the interface are considered. This is a first approach rea-

sonable for tensile-dominated failure. For the present mixed-

mode example, which is dominated by shear failure espe-

cially at the onset of cracking, we should also account for the

tangential tractions. Third, we have used relatively uniform

meshes without mesh-refinement at the notches which could

also be a factor for the overestimated peak load.

Finally, Fig. 17 shows the principal stress distribution of

the deformed configuration. The displayed analysis is based

on the discretization with 35176 elements and shows the

results of imposed displacements of ut = 0.025 mm (δt =

0.0247) and ut = 0.28 mm (δt = 0.0922) whereby the dis-

placement is scaled with factor 25.

In summary, the simulation of the Nooru-Mohamed test

has demonstrated the potential of the proposed tool set to

model multiple curved cracks. The results of the computa-

tional simulation agree qualitatively and quantitatively with

experimental findings as well as with computational results

achieved with alternative simulation tools.

5 Discussion

We have illustrated the computational design of a modular

algorithmic tool for modeling brittle fracture within the finite

element setting. The suggested approach combines different
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Fig. 17 Principal Cauchy stress

(N/ mm2) for imposed

displacements

ut = 0.025 mm (δt = 0.0247)

and ut = 0.28 mm (δt = 0.0922)

scaled with factor 25

recently proposed approaches to tackle the non-unique prob-

lem of crack propagation in three dimensions. The resulting

algorithm has been demonstrated to be able to character-

ize the formation of failure surfaces in typical engineering

applications. The computational simulations have been val-

idated by means of experiments and simulations with alter-

native algorithmic tools documented in the literature. The

proposed framework is essentially composed of three ingre-

dients: (i) the elastic bulk problem, (ii) the cohesive inter-

face problem, and (iii) the crack tracking problem. Due to

its modular nature, the proposed tool shows a great devel-

opment potential. It can be generalized to other kinds of

materials or loading scenarios by simply modifying the con-

stitutive equations for the bulk material. Ductile fracture and

time dependent problems can be treated straightforwardly

with only small algorithmic modifications. In particular, high

impact failure and explosion of concrete structures can be

simulated by adding transient terms. The prediction of safety

and reliability of concrete buildings, bridges, storage con-

tainers, and other engineering structures constitutes another

potential field of application of the proposed approach. As

failure is only represented through the interface, the sug-

gested framework relies on only very few material parameters

and the examples have demonstrated that their fit is straight-

forward. A possible generalization would be to include his-

tory variables in the cohesive law, e.g., similar to a damage

or plasticity type formulation that is able to account for load-

ing / unloading processes. Cohesive laws seem to be ideally

suited to incorporate irreversible damage processes in a phe-

nomenological sense.

In previous studies, we have extensively elaborated the

crack tracking problem that characterizes the crack kinemat-

ics. Based on systematic comparisons, we have decided to

focus on the global tracking algorithm that couples the crack

kinematics with the chosen crack propagation criterion. Since

this approach is relatively novel, it still faces a number of

technical difficulties which we have tried to address in this

manuscript. Similar to most multifield problems which are

not directly linked to first principles, it is not straightforward

to define the boundary conditions for the additional field.

We have classified the possible types of boundary conditions

for the crack tracking problem. For each category, we have

identified different scenarios for which they are particularly

useful. The proposed guidelines to choose the appropriate

boundary conditions have been verified by three numerical

examples of different complexity.

We are aware that the extension of the global tracking

algorithm to more sophisticated crack propagation laws, nec-

essary to treat more complex failure mechanisms, is not as

straightforward as the extension of the bulk and the cohesive

interface problem. Nevertheless, we believe that the coupling

of a continuous level set function with the here suggested

failure criterion similar to the global tracking scheme is also

possible for other crack propagation criteria. We are currently

exploring the potential of the proposed algorithm of gener-

alizations along these lines.
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