
 Open access  Proceedings Article  DOI:10.1145/3417990.3420206

Towards transparent combination of model management execution strategies for
low-code development platforms — Source link 

Jolan Philippe, Hélène Coullon, Massimo Tisi, Gerson Sunyé

Institutions: University of Nantes

Published on: 16 Oct 2020 - Model Driven Engineering Languages and Systems

Topics: DevOps, Scalability and Model-driven architecture

Related papers:

 Mega-modeling of complex, distributed, heterogeneous CPS systems

 Towards a model-based multi-objective optimization approach for safety-critical real-time systems

 A Framework for Adaptive Monitoring and Performance Management of Component-Based Enterprise Applications

 Genetic programming for low-resource systems

 Domain Metric Driven Decomposition of Data-Intensive Applications

Share this paper:    

View more about this paper here: https://typeset.io/papers/towards-transparent-combination-of-model-management-
1fbz9pzw7y

https://typeset.io/
https://www.doi.org/10.1145/3417990.3420206
https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y
https://typeset.io/authors/jolan-philippe-4uqame0b9q
https://typeset.io/authors/helene-coullon-2g9gwdixna
https://typeset.io/authors/massimo-tisi-42utspeiqd
https://typeset.io/authors/gerson-sunye-2vcpmqbu9d
https://typeset.io/institutions/university-of-nantes-1ykeh23a
https://typeset.io/conferences/model-driven-engineering-languages-and-systems-j57frwb9
https://typeset.io/topics/devops-25anv66i
https://typeset.io/topics/scalability-239v0xhx
https://typeset.io/topics/model-driven-architecture-1bxx1ars
https://typeset.io/papers/mega-modeling-of-complex-distributed-heterogeneous-cps-3e16dykj8p
https://typeset.io/papers/towards-a-model-based-multi-objective-optimization-approach-2gn5tietmx
https://typeset.io/papers/a-framework-for-adaptive-monitoring-and-performance-1rnpxkdf3r
https://typeset.io/papers/genetic-programming-for-low-resource-systems-59rdqn36a3
https://typeset.io/papers/domain-metric-driven-decomposition-of-data-intensive-4rtfci7hui
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y
https://twitter.com/intent/tweet?text=Towards%20transparent%20combination%20of%20model%20management%20execution%20strategies%20for%20low-code%20development%20platforms&url=https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y
https://typeset.io/papers/towards-transparent-combination-of-model-management-1fbz9pzw7y


HAL Id: hal-02952952
https://hal.archives-ouvertes.fr/hal-02952952

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Transparent Combination of Model
Management Execution Strategies for Low-Code

Development Platforms
Jolan Philippe, Hélène Coullon, Massimo Tisi, Gerson Sunyé

To cite this version:
Jolan Philippe, Hélène Coullon, Massimo Tisi, Gerson Sunyé. Towards Transparent Combination of
Model Management Execution Strategies for Low-Code Development Platforms. 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion Proceed-
ings, Oct 2020, Montreal (Virtually), Canada. 10.1145/3417990.3420206. hal-02952952

https://hal.archives-ouvertes.fr/hal-02952952
https://hal.archives-ouvertes.fr


Towards Transparent Combination of Model Management
Execution Strategies for Low-Code Development Platforms

Jolan Philippe
jolan.philippe@imt-atlantique.fr

IMT Atlantique, LS2N
Nantes, France

Héléne Coullon
helene.coullon@imt-atlantique.fr

IMT Atlantique, Inria, LS2N
Nantes, France

Massimo Tisi
massimo.tisi@imt-atlantique.fr

IMT Atlantique, LS2N
Nantes, France

Gerson Sunyé
gerson.sunye@ls2n.fr

Université de Nantes, LS2N
Nantes, France

ABSTRACT

Low-code development platforms are taking an important place in

the model-driven engineering ecosystem, raising new challenges,

among which transparent efficiency or scalability. Indeed, the

increasing size of models leads to difficulties in interacting with

them efficiently. To tackle this scalability issue, some tools are

built upon specific computational strategies exploiting reactivity,

or parallelism. However, their performances may vary depending

on the specific nature of their usage. Choosing the most suitable

computational strategy for a given usage is a difficult task which

should be automated. Besides, the most efficient solutions may

be obtained by the use of several strategies at the same time. �is

paper motivates the need for a transparent multi-strategy execution

mode for model-management operations. We present an overview

of the different computational strategies used in the model-driven

engineering ecosystem, and use a running example to introduce the

benefits of mixing strategies for performing a single computation.

�is example helps us present our design ideas for a multi-strategy

model-management system. �e code-related and DevOps chal-

lenges that emerged from this analysis are also presented.

CCS CONCEPTS

•So�ware and its engineering→So�ware creation and man-

agement; •Computing methodologies→Parallel algorithms;

KEYWORDS

Multi-strategy, Low-code development, Model-Driven Engineering,

OCL, Spark

ACM Reference format:

Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé. 2020.

Towards Transparent Combination of Model Management Execution Strate-

gies for Low-Code Development Platforms. In Proceedings of ACM/IEEE 23rd

International Conference on Model Driven Engineering Languages and Sys-

tems, Virtual Event, Canada, October 18–23, 2020 (MODELS ’20 Companion),

10 pages.

DOI: 10.1145/3417990.3420206

MODELS ’20 Companion, Virtual Event, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
�is is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. �e definitive Version of Record was published in Proceedings of
ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and
Systems, October 18–23, 2020, h�p://dx.doi.org/10.1145/3417990.3420206.

1 INTRODUCTION

Research in so�ware engineering has produced several high-level

abstractions to facilitate application development. Following this

line, recent low-code development platforms (LCDPs) [39] propose

visual interfaces for so�ware development, distributed as platforms-

as-a-service (PaaS), which minimize the need for users to write code.

Most LCDPs are based on the description of application behavior

with models, as promoted by model-driven engineering (MDE). In

the MDE approach, models are the central and unifying point of

the conception: they can represent knowledge, architectures, data,

and so on. To be useful, models must be manageable by adding,

removing, updating or querying information. �e performance of

these operations represent a field of study in the MDE community.

More specifically, model-management in LCDPs has a signif-

icant need for automatic and transparent efficient and scalable

operations, for manipulating, querying and analyzing models. We

identify three main reasons for this need. First of all, LCDPs need

to provide complex visual development environments with low

response time. For LCDPs that use models in the development

phase, most of the model-management operations are executed at

design time, e. g., for editing, validating, transforming the model.

�e required time for responding to a graphical command is a

quality factor of the LCDP tool and has an influence on the devel-

oper’s comfort [33], and on her efficiency. Cloud-based LCDPs have

specific needs. For instance, they can integrate recommendation

systems that may need to perform queries over the whole LCDP

repository, to propose useful pa�erns to the user. Optimizing such

design-time operations is important and challenging, especially

when they require processing large-scale design models (or unions

of models).

A second scalability issue arises when LCDPs need to manipulate

large instance models of data, e. g., as it happens today in several

(automotive, aeronautics, civil) engineering domains. In this paper

wewill consider a running casewhere a (fictional) company in social

networking provides a LCDP to its users. �rough the LCDP, users

will be able to write their own apps over a huge social graph [15],

represented as a model. Because of the sheer size of the model,

providing an efficient solution is necessary.

�e third reason for the need of efficient model-management

in LCDPs is the number of concurrent operations on the platform.

Due to the potential massive use of LCDPs, there is a need to run a

big number of operations in parallel for many users. In the context

http://dx.doi.org/10.1145/3417990.3420206


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé

of a PaaS, numerous customers may query models, thus servers or

shared databases. Hence, efficient concurrent execution of model-

management operations is necessary.

To improve efficiency and scalability, recent research on model-

management studied parallel and concurrent programming as well

as specific execution models for model-management languages.

�ese techniques range from implementing specific execution algo-

rithms (e. g., RETE) to compiling toward distributed programming

models (e. g., MapReduce). In this paper we use the term execu-

tion strategies and (or just strategy) as a general way to denote

these techniques. �ese techniques are sometimes qualified as par-

adigms in the literature, but this term may lead to confusion with

programming paradigms (functional, logic, etc.).

�e diversity of strategies that have been employed poses several

scientific challenges. Most model-management languages imple-

ment a single execution strategy with specific strengths and weak-

nesses depending on the use case. Some existing solutions in MDE

offer more than a single execution strategy but the choice is le� to

the user which requires expertise on parallelism or distribution [26].

Moreover, it appears that performance for some use cases could

be improved by the combination of different strategies. To abide

by low-code philosophy, the configuration of these development

platforms should be as transparency as possible, even automatic.

In this paper we illustrate the variability of existing strategies,

and emphasize the need for a multi-strategy vision for model-

management where strategies can be automatically switched and

combined to efficiently address the given model-management sce-

nario. Furthermore, we stress the need for automatic choice and

configuration of strategies to enhance performance of LCDPs. We

outline code-related and DevOps challenges of a such approach

and provide hints for technical solutions to these problems.

�e rest of the paper is organized as follows. We motivate our

work with an example in Section 2. Section 3 presents the necessary

background and analyzes the existing computational strategies in

model management. We introduce the multi-strategy approach

in Section 4, and exemplify the variability of parallel execution

strategies for the use case. In Section 5 we describe the main chal-

lenges for achieving a multi-strategy model-management engine.

We finally conclude in Section 6.

2 MOTIVATING EXAMPLE

Social network vendors o�en provide specific development plat-

forms, used by developers to build apps that extend the functionality

of the social network. Some networks are associated with market-

places where developers can publish such apps, and end-users can

buy them. Development platforms typically include APIs that allow

analyzing and updating the social network graph.

As a running example for this paper, we consider a scenario

where a vendor adds a LCDP to allow end-users (also called citizen

developers in the LCDP jargon) to implement their own apps. Such

LCDP could include a WYSIWG editor for the app user-interface,

and a visual workflow for the behavioral part. In particular, the

LCDPs would need to provide mechanisms, at the highest possible

level of abstraction, to express queries and updates on the social

graph.

Figure 1: �e metamodel of a social network (TTC 2018)

In Fig. 1 we show the simple metamodel for the social graph that

we will use in the paper. �e metamodel has been originally pro-

posed at the Transformation Tool Contest (TTC) 2018 [21], and used

to express benchmarks for model query and transformation tools.

In this metamodel, two main entities belong to a SocialNetwork.

First, the Posts and the Comments that represent the Submissions,

and second, the Users. Each Comment is wri�en by a User, and is nec-

essarily a�ached to a Submission (either a Post or another Comment).

Besides commenting, the Users can also like Submissions.

As an example, in this paper we focus on one particular query,

also defined in TTC2018: the extraction of the three most debated

posts in the social network. To measure how debated is the post, we

associate it with a numeric score. �e LCDP will have to provide

simple and efficient means to define and compute this score.

We suppose the vendor to include a declarative query language

for expressing such computation on the social graph, and storing

scores as a derived properties of the graph (i.e. new properties of the

social graph that are computed on demand from other information

in the graph).

In Listing 1 we implement the query to get the top-three debated

posts in a model conforming to the presented metamodel, using

the formula defined in TTC2018. �e query is wri�en in OCL, the

most used declarative query language in MDE. In particular we use

the ATL flavor of OCL.

In this code, a score of 10 is assigned to the post for each comment

that belongs to it. Comments belong to a post in a recursive manner:

a comment belongs to a post if it is a�ached either to the post itself,

or to a comment that already belongs to the post. �en, a score of

1 is also added every time a belonging comment is liked.

�e query is defined using three (a�ribute) helpers, that can

be seen as derived properties. �e first helper, allComments (line 7

to 11), collects recursively all the comments of a Submission. �e

second helper, countLikes counts how many times a comment that

belongs to the given post has been liked. �en, the score of a Post is

calculated by summing the result of countLike and the number of its

belonging comments multiplied by ten. Finally the top three posts

are obtained by the query topPosts sorting the posts by decreasing

score, and selecting the first three.

�e simple declarative query in listing has not been defined

with efficiency concerns in mind. Indeed, since we cannot make

assumptions on the background of citizen developers, our LCDP

cannot presume that they will structure the query for satisfying any



Towards Multi-Strategy Model Management for LCDPs MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Listing 1: An OCL query for the first task of the TTC 2018.

1 query topPosts =

2 SN!Post.allInstances()

3 →sortedBy(e | -e.score)

4 →subSequence(1, 3);

5

6 helper context SN!Submission def : allComments =

7 self.comments

8 →union(

9 self.comments

10 →collect(e | e.allComments)

11 →flatten());

12

13 helper context SN!Post def : countLikes =

14 self.allComments

15 →collect(e| e.likedBy.size())

16 →sum();

17

18 helper context SN!Post def : score =

19 10*self.allComments→size() +

20 self.countLikes;

performance requirement. As a result, when the number of users

increases, soon the size of the social graph makes the computation

of this query challenging. First of all, the list Post.allInstances()

(line 2) becomes too large to manipulate. Especially the full sorting

of posts (line 3) seems prohibitive. Without an efficient mechanism,

the naive recomputation of allComments each time it is called, is a

further performance waste. If we consider the typical frequency

of updates for social network graphs, keeping the list of top posts

up-to-date by fully recomputing this query at each update could

consume a significant amount of infrastructure resources.

Moreover, the most efficient way to execute the query does not

depend only on the given query definition and metamodel structure,

but on several characteristics of the usage scenario. A technique to

optimize a particular use case typically has significant overhead in

other use cases. Factors that can influence this choice in our exam-

ple can be related to the model size (e.g. order of magnitude for the

number of Users), frequency of updates (e.g. of new Submissions),

average model metrics (e.g. average number of Comments per Post),

acceptable response time for the final query (topPosts), infrastruc-

ture constraints and resources (e.g. available memory, CPUs) and

so on. In some cases techniques can be combined, further complex-

ifying the search for the optimal solution.

Finally, while in this paper we will focus exclusively on this

example, it is not difficult to identify similar issues for update

operations (e.g. removal of all information for an unsubscribing

user) or transformation (e.g. for storing the graph in a particular

persistence format).

3 EXECUTION STRATEGIES IN MODEL
MANAGEMENT

In this section we outline the execution strategies that are com-

monly used to enhance the efficiency of model-management. �e

below presented strategies have been identified with their use in

MDE. In this Section, we only focus on the strategies, regardless

of the chosen language for their implementations. We also give an

overview of the existing applications of these strategies in model-

management tools.

�e twomain categories ofmodel-management tools we consider

are model transformation (MT) and query (MQ). On the one hand,

model transformation is the conversion process of one or more

input models to output models (model-to-model) or text (model-to-

text). A model transformation that produces a model as output can

be either an in-place (i.e., direct modification of the input model) or

an out-place transformation (i.e. production of a new model from

the input one). On the other hand, a model query analyzes source

models to compute the desired data value. Finally, some general

key concepts (e.g., matching), that can be used both in MT and MQ

are using strategies to improve the performances of engines. �ese

concepts are also discussed in the current Section.

3.1 Avoiding computations

Incrementality and laziness are the main strategies used in MDE for

minimizing the sequence of basic operations needed to perform a

query or transformation. �ey have been classified as strategies

for reactive execution in [33], since they foster a model of compu-

tation where the model-management system reacts to update and

request events, (note that the term is only inspired by the reactive

programming paradigm in the sense of [23], that we wont discuss

here).

We classify existing applications of these strategies to model-

management tools in the columns of Table 1, depending on their

scope:

• MQ or MT if the strategy is applied to the whole model

query or transformation;

• Matching if the strategy is only applied to the match-

ing phase (the subgraph isomorphism of the pa�ern to

query/transform, over the full model) of the model query/-

transformation;

• Collections if the strategy is only applied to the compu-

tation of collections during the query/transformation.

Table 1: Reactive strategies for model-management in liter-

ature.

MQ MT Matching Collection

Incrementality [12] [29] [6, 45]

Laziness [38] [41] [7, 46]

3.1.1 Incrementality. Incrementality is an event-based pa�ern,

whose goal is to reduce the number of needed operations when a

change happens within the input model. Instead of applying from

scratch the whole set of operations on the new input model, incre-

mentality allows the system to apply only the operations impacted

by updates. Since the system needs to apply a subset of operations,

a trace to relate the output pieces to input elements is necessary.

�e approach leads then to an additional memory cost, with a good

trade-off only if changes occur o�en enough.



MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé

To achieve incremental execution of transformation rules, Calvar

et al. designed a compiler to transform a code wri�en with ATL [29],

a QVT-like (�ery View Transformation) language to Java code.

�e output program takes advantage of active operations of the

language. �e active mechanism works as an observer pa�ern:

the values are defined as mutable, and changes are notified to

an external observer. From there, it is easy to isolate what part

of the model has been changed, and then to deduce what rules

must be operated again. To illustrate their proposal, they applied

their evaluation to two cases including on social media models to

illustrate the efficiency of the strategy for queryingmodels that have

strong user activity. �is is not the single a�empt of integrating

incremental aspects in ATL.

In [12], Cabot et al. present an incremental evaluation of OCL

expressions that are used to specify elements of a model in ATL.

�ey used a such approach to state integrity preservation of models

at runtime. Instead of testing the whole integrity of a model every

time it is changed, the proposed system is able to determine when,

and how, each constraint must be verified.

For example, the RETE algorithm for pa�ernmatching, presented

in [45], constructs a network to specify pa�erns and, at runtime,

tracks matched pa�erns. Instead of matching a whole pa�ern, the

RETE algorithm will match the subparts of the pa�ern until ge�ing

a full match. Incrementality is here used to update the incomplete

pa�erns, without fully recalculating the matching for all the present

candidates. In MDE, the Eclipse VIATRA framework has an imple-

mentation of the RETE algorithm to achieve an incremental pa�ern

matching [6]. �e choice of using an incremental algorithm is due

to the focus of the tool. Indeed, the VIATRA platform focuses on

event-driven and reactive transformations thus an efficient solution,

for handling multiple changes, has been chosen.

3.1.2 Laziness. Laziness is also commonly used by model man-

agement tools. In general, laziness reduces computations by remov-

ing the ones that are not needed to answer to the user requests.

Indeed, by using laziness, pieces of output are calculated only when

they are needed by the user. �is “call-by-need” approach is mainly

used on big models, known as Very Large Models (VLMs). Since

users may want to get only a part of the output, computing the

whole query/transformation is unnecessary.

In [41], Tisi et al. extended the model transformation mecha-

nism of ATL with laziness. Elements of the target model are firstly

initialized, but their content is generated only when a user tries to

access it. To do so, the model navigation mechanism has a tracking

system, which provides, for a target element, the rules that must

be executed. In addition, the tracking system keeps information

about already executed rules to avoid recomputation. Other en-

gines, such as ETL (Epsilon Transformation Language), from the

Epsilon framework, implements a similar approach.

Besides model transformation, laziness is also used in model

querying. In [38], Tisi et al. redefine OCL features with laziness

aspects. For instance, operations of the language are redefined to

be evaluated with a lazy strategy. Also, the work proposes lazy

collections that respect the OCL specification. �e la�er is similar

to the collections proposed by Willink in [46]. �e OCL collec-

tions are implemented as generic Java classes, with lazy operators.

�ese approaches aim at tackling OCL related efficiency issues. For

example, because of the OCL collections are immutable, the suc-

cessive add of elements in a collection would create intermediate

data structures. More generally, the composition of operation calls

would cause an evaluation of a cascade of operations. �e proposed

implementation of a lazy evaluation optimizes such common cases.

3.2 Parallelizing computations

Parallelism designates the use of several processing units in order

to achieve a global operation. �ere exist many kinds of parallel

architectures, from multi-cores to clusters of GPUs. In this paper,

we only focus on the parallelism strategies that may be used to take

advantage of parallel architectures.

In Table 2, we classify how parallelism has been applied to model

management in literature, by the following columns:

• MQ or MT if the whole model query or transformation is

parallelized;

• Matching if the work only parallelizes the matching phase

of the model query/transformation;

• Performance whether the work pays particular a�ention

to the impact of data distribution or task distribution on

performance.

We classify the strategies into three categories: data-parallelism

(Section 3.2.1); task-parallelism (Section 3.2.2), both of them being

synchronous strategies; and one example of asynchronous strategy

(Section 3.2.3).

Table 2: Parallelism for model-management in literature.

MQ MT Matching Perf.

Task-parallelism [30, 43] [24, 40] [34]

Data-parallelism [4, 26, 42] [26] [5]

Asynchronism [8–10] [9]

3.2.1 Data-Parallelism. In a data-parallel approach, data is split

and distributed across several computation units. �en, the same

piece of program (from a single basic operation, to a complex func-

tion) is applied simultaneously on each part of data by each process-

ing unit without synchronization. Furthermore, additional synchro-

nizations and communications may be needed between processing

units to correctly compute the overall result. For instance, data may

need to be merged into a single result. �is computation strategy is

the one followed by the parallel algorithmic skeletons [16] on data

structures [19, 35].

MapReduce [20] is a an example of programmingmodel, designed

for parallelism, that takes advantage of this strategy. However,

MapReduce is mainly adapted and implemented for distributed

arrays or lists, and the approach is not directly suitable for all types

of data structures. For instance, Pregel [31] is a strategy that aims

at easing parallel computations on graphs by using a vertex-centric

approach. In Pregel, graphs are specified by their vertices, each

of them embedding information on their incoming and outgoing

edges. A Pregel program is iterative, and is decomposed in three

main phases: a computation on top of a vertex value, a generation

of messages, and the send of messages through the edges of the

vertex. �is process is simultaneously applied to each vertex of a

graph (such as a map in MapReduce).



Towards Multi-Strategy Model Management for LCDPs MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Data-parallelism is adapted and adopted in case of large datasets.

Indeed, to make profitable the parallel execution of a single compu-

tation on data, the data chunks must be large enough, otherwise

an overhead has to be paid without much benefits from the paral-

lelization effort [2, 17].

Benelallam et al. [4] use data-parallelism for distributing models

among computational cores to reduce computation time in the

ATL model transformation engine. �e MapReduce version of ATL

makes independent transformations of sub-parts of the model by

using a local “match-apply” function. �en, the reduction aims

at resolving dependencies between map outputs. �e proposed

approach guarantees be�er performance on basic cases such as the

transformation of a class diagram to a relational schema. In a more

recent work [5], the same authors highlight the good impact of their

strategy for data partitioning. Instead of randomly distributing the

same number of elements among the processors, they use a strategy

based on the connectivity of models.

[25] illustrates how a model can be considered as a typed graph

with inheritance and containment. Considering a model as a graph

data-structure, the graph technologies can directly be applied to

models. For instance, Imre et al. efficiently use a parallel graph

transformation algorithm on real-world industrial-sized models for

model transformation [24]. In [34], Mezei et al. use graph rewriting

operations based on task-parallelism to distribute matching opera-

tions in large models in their transformation tool Visual Modeling

and Model Transformation (VMTS). �e Henshin framework [26]

proposes to extract the matching part of its transformation rules

into vertex-centric code (i.e., Pregel). Another possibility to use

Pregel in model transformation is by using a DSL, such as [42] for

graph transformation. �e proposed compiler transform the code

wri�en with the DSL into an executable Pregel code.

3.2.2 Task-Parallelism. A task-parallel program focuses on the

distribution of tasks instead of data. According to [36], “a task is

a basic unit of programming that an operating system controls”

within a job. �is concept is o�en associated to multi-threading.

�e grain size of tasks depends on the context of the execution. At

the operating system level, tasks may be entire programs while

at the program level, they may be a single request, or a single

operation. Because of concurrency, and the limited number of

processing units, tasks executions must be ordered by considering

both priorities, and dependencies across tasks. Ordering tasks in

parallel are similar to the workflow concept. Task-parallelism will

be preferred to data-parallelism when tasks are complex enough,

or when the number of tasks is large enough to exploit parallelism

capacities of the underlying parallel architecture (i.e., hardware).

[43] proposes a formal description of parallelism opportunities

in OCL. Two main kinds of operation are targeted: the binary oper-

ations that can have their operands evaluated simultaneously, and

the iterative processes of independent treatments. In [30], Madani

et al. use multi-threading for “select-based” operations in EOL, the

OCL-like language of the Epsilon framework, for querying models.

�e extension of the language with parallel features for selective

operations have shown a non-negligible speed-up (up to 6x with

16 cores) in their evaluations on a model conform to the Internet

Movie Database (IMDb) metamodel1. Next to query evaluation,

1h�p://www.imdb.com/interfaces

multi-threading is also used for model transformation. In [40], Tisi

et al. present a prototype of an automatic parallelization for the ATL

transformation engine, based on task-parallelism. To do so, they

just use a different thread for each transformation rule application,

and each match, without taking into account concurrency concerns

(e.g., race conditions).

3.2.3 Asynchronism. Both data-parallelism and task-parallelism

can be defined as synchronous strategies where synchronizations

are explicitly performed through communication pa�erns, or tasks

dependencies. Asynchronism is another way of programming par-

allelism where synchronism is not explicitly coded but implicitly

handled by an additional mechanism between processing units. For

example, the Linda approach [13], is based on the treatment of

asynchronous tasks or data, shared in a common knowledge base,

the “blackboard” [11]. More specifically, in Linda several processes

access a shared tuple space representing the shared knowledge of

a system. �e processing units interact with the shared space by

reading, and/or removing tuples.

LinTra is a Linda-based platform for model management and

has several types of implementation. First, on a shared-memory

architecture (i.e., a same shared memory between processors, typi-

cally multi-threading solutions), LinTra proposes parallel in-place

transformations [10] and parallel out-place transformations [8].

Both strategies have significant gains in performance, compared

to sequential solutions. Nonetheless, shared-memory architecture

are fine for not too big models. Indeed, since the memory is not

distributed, a too big model could lead to a out-of-memory errors.

�is phenomenon happens more concretely in an out-place trans-

formation since two models are involved during the operation. �e

first prototype of distributed out-place transformations in LinTra,

is presented in [8], and works with sockets for communicating the

machines. �is first proposal remains naive. �at is why, Burgueno

et al. proposes a more realistic prototype for transformations on

distributed architecture [9]. But the use of a distributed architecture

raises new questions: how to distribute data and, how to distribute

tasks? �ey applied different strategies mixing both the evalua-

tion of tasks on a single or on multiple machines, and storing the

source and target models on the same, or on different machines.

�e study was conducted for the specific IMDb test case only, and

then does not provide a general conclusion about the benefits of a

such solution.

One can note from Table 2 that only two papers of the related

work on parallelism in MDE offer a detailed performance analysis

according to the data or tasks distribution. However, both these

papers clearly show that many factors can influence performance

such as the size of models, their reading/writing modes (e.g., in-

place), the distribution of the models and the distribution of the

operations to perform on them and so on.

4 MULTI-STRATEGY MODEL MANAGEMENT

Each of the research efforts presented in Tables 1 and 2 exploit

a single strategy for optimizing model-management operations.

Typically, the strategy is applied in an additional implementation

layer for the model-management language, e.g. an interpreter or

compiler.

http://www.imdb.com/interfaces


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé

We say that a query or transformation engine performsmulti-

strategy model management if it automatically considers differ-

ent strategies, instead of a single one, in order to manipulate models

in an efficient way. According to Section 3 and to the best of our

knowledge, such approach does not exist in the literature.

In this section, we exemplify the multi-strategy approach by

implementing the OCL query of Listing 1 in different ways, using

different strategies of parallelism. �e goal of this Section is not to

provide the most efficient solutions for solving the given problem.

Instead, it aims at illustrating the diversity of solutions, that each

have its own advantages depending on the use cases. To do so, we

implemented several solutions using different parallel strategies and

compared them. Also, this section only illustrates the variability of

single solution, and not their possible combination.

Our prototype is built on top of Spark2, an engine designed for

big data processing. In addition to parallel features of Spark on

data structures, called Resilient Distributed Datasets (RDDs), the

Scala implementation of Spark proposes several APIs including a

MapReduce-style one, an API for manipulating graphs (GraphX

[22] that embeds the possibility to define Pregel programs), and

a SQL interface to query data-structures. Because the framework

proposes different parallel execution strategies, we only focused

on parallel approaches to illustrate the need of a multi-strategy

approach. Comparing solutions that include laziness and incremen-

tality aspects is a part of our future works. In our implementation

example, we use GraphX, in addition to its provided Pregel function,

and MapReduce features. We represent instances of SocialNetwork

as a GraphX graph where each vertex is a couple of a unique iden-

tifier and an instance of either a User or a Submission (Comment or

Post). Edges represent the links of elements of a model conforming

the meta-model presented in Figure 1, labeled by a String name.

We keep exactly the same labels from the meta-model for [0..1] or

[1..1] relations but we use singular names for [0..∗] relations (e. g.,

one edge “like” for each element of the “likes” relationship). For

the rest of this section, we consider sn a GraphX representation of

a SocialNetwork.

Considering that there exists an implementation for the function

score, that will be detailed later in this section, the OCL query

topPosts of Listing 1 can be rewri�en using Spark, as presented in

Listing 2.

Listing 2: Spark implementation of a query from TTC 2018.

1 sn.vertices.filter(v => v.isInstanceOf[Post])

2 .sortBy(score(_._2), ascending=false)

3 .collect.take(3)

First, the SN!Post.allInstances() statement of the OCL specifi-

cation is translated into the application of a filtering function on the

vertices of the graph sn (line 1). A sorting with a decreasing order

is then applied to the score values (computed by the score function)

of each vertex. �e projection _._2 returns the second element of

the vertex values, that is an instance of Post, while _._1would have

returned its identifier within the graph. At the end of line 2, the

current structure is still a RDD. Because of the small number of
2h�ps://spark.apache.org/

values we aim at finally obtaining, the structure is converted into a

sequential array of values (function collect), from which we get

the first three values. We can notice the similar structure between

the Spark and OCL queries. Hence, the global query can almost

be directly translated from one language to the other. However,

the scoring function can be implemented in many different ways

with many different strategies. We illustrate this through three

implementations in the rest of this section: direct-naive, pregel, and

highly-parallel. �en we discuss these three implementations and

open to the multi-strategy approach.

4.1 Direct naive implementation

�e first implementation, namely direct-naive, shown in Listing 3,

directly follows the OCL helpers from Listing 1. �e first auxiliary

function countLikes, corresponding to the homonym helper, sums

the number of "like" relations for each comment of a given post

(lines 17 to 21). �e second auxiliary function score (lines 23 and

24) is also a direct Spark translation from the OCL query. It uses

parallelism, coupled with the lazy evaluation provided by Spark.

Indeed, the execution of operations on RDDs is not started until an

action is triggered. In our example, collect and count are these ac-

tions. Finally, the allComments function is defined recursively using

GraphX features. �e direct-naive implementation of score uses

three functions that are inspired by functional languages: filter

which removes all the elements of a list that do not respect a given

predicate; map that applies a function to every element; and flatMap

which is a composition of map and flatten. �e la�er is equiva-

lent to flatten from Listing 1. �e implementation first gets the

direct comments of a post (lines 10 and 11), and, using an auxiliary

function getComments, recursively gets all the belonging comments

(lines 13 and 14). �e method flatMap of lines 8 and 13 transforms

the list of lists, into a list of comments.

4.2 Pregel implementation

�e second solution, namely pregel, proposed in Listing 4, is a Pregel-

based implementation. �e main idea of this solution is, starting

from a Post, counting the number of comments and the number of

likes for these comments by propagating messages through edges

of the graph by using Pregel. To do so, we declare two variables,

nbComments, and nbLikes, that can be seen as aggregators, i.e., global

accumulator of values. �e propagation is processed using the

Pregel support of GraphX that works as follows. At each iteration,

the functionmerдeMsд accumulates into a single value the incom-

ing messages (line 20), that are stored in a iterable structure, from

the previous iteration (with an initial message defined for the first

iteration). �is value is used by vproд with the previous vertex vn
to generate the new vertex data vn+1. With this value, messages

are generated with sendMsд and sent to vertices through edges for

the next iteration. Because the stucture which stores the message

must be iterable, all the messages must be of type Iterator. An

empty message is then produced by Iterator.empty. �e program

stops when no message is produced for the next iteration. In our

implementation, messages are tuples of two values. �e first one

is an integer value for specifying which vertices should compute

and send messages. Besides, if the integer is negative, then all the

vertices should compute. �e second one aims at precising what

https://spark.apache.org/


Towards Multi-Strategy Model Management for LCDPs MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Listing 3: Direct implementation of score.

1

2 def allComments (p : Post) = {

3 // recursive function

4 def getComments (co : Comment) : List[Comment] =

5 List(co).union(sn.triplets

6 .filter(t => t.srcAttr == co

7 & t.attr == "comment")

8 .flatMap(_.dstAttr compose getComments).collect)

9

10 sn.triplets

11 .filter(t => t.srcAttr == p & t.attr == "comment")

12 .flatMap(_.dstAttr compose getComments).collect

13 }

14

15 def countLikes (p: Post) =

16 allComments(p)

17 .map(c => sn.triplets.filter

18 (t => t.attr == "like" & t.dstAttr == c)

19 .count).sum

20

21 def score (p : Post) =

22 10 * allComments(p).size + countLikes(p)

value must be incremented (either the number of comments (false),

or likes (true)). �e initial step of the execution questions the model

to get the id of the vertex containing the Postwe want to score (line

3 and 4). �is identifier is added to every vertex to provide them a

global view on the computation status (line 6). �en, messages are

propagated through the edges to belonging comments of computed

vertices, or to the users who likes the scoped comment (line 13 to

19). At the message reception, the computation will increment the

aggregator according to the second value of the message (line 9

to 11). A�er the execution of the pregel function, a score value is

calculated using nbComments and nbLikes.

4.3 MapReduce implementation

Listing 5 illustrates a solution with a higher level of parallelism,

namely highly-parallel, that uses a MapReduce approach. �e pur-

pose of this third solution is to process as much as possible opera-

tions in parallel in a first time, and then go through the graph to

reduce these values. �e first step counts the number of direct sub-

comments, and the number of likes, for each element of the model,

using a map and reduce-by-key composition (line 3 to 7). Because

the number of likes has not the same importance than the number of

belonging comments in the score calculation, two keys are created

for a single element: one for counting each property (i.e., number of

comments and number of likes). �en a graph-traversal operation

calculates the total number of belonging comments and likes for a

given post. However, the keys are only created if a comment, or a

like, exists. �en, to initialize values, we use a composition of find

that returns an option, and getOrElse in the case of the absence of

the key. �e la�er returns the value of the option if it exists, and

a default value otherwise We do not expect to gain performances

with this approach because the operations are not costly enough.

Listing 4: Pregel implementation of score.

1 def score(p: Post) = {

2 var nbComment, nbLike = 0L // Aggregators

3 val fstId = sn.vertices

4 .filter(v => v._2 == p).first._1

5

6 sn.mapVertices((_, v) => (fstId, v)).pregel

7 (initialMsg = (fstId, false))

8 (vprog = (id, value, merged) =>

9 if (merged_msg._1 == id || merged_msg._1 < 0)

10 if (merged_msg._2) nbLike += 1L

11 else nbComment += 1L

12 (merged_msg._1, value._2),

13 sendMsg = t =>

14 if (t.srcId == fstId | t.srcAttr._1 == -1L)

15 if (t.attr == "comment")

16 Iterator((triplet.dstId, (-1L, false)))

17 if (t.attr == "likedBy")

18 Iterator((t.dstId, (-1L, true)))

19 Iterator.empty,

20 mergeMsg = (m, _) => m)

21

22 10 * nbComment + nbLike

23 }

However, having a highly parallel approach largely increase the

scalability of the program.

4.4 Discussion on multi-strategy

First, the complexity of the solutions direct-naive and pregel can

be compared. On the one hand, the complexity on time of the di-

rect implementation of the OCL query, can be given as the sum of

the complexity of allComments and countLikes. Considering n the

number of nodes, these two complexities are defined as follows.

First, allComments is a depth-first search of complexity O (n +m)

withm the number of comment edges (i.e., the depth of belonging

comments). Second, countLikes is composed by a depth-first search,

and the map of a function whose complexity isO (n). �en, the com-

plexity of the mapping part is given byO (n2). Since the complexity

of the sum operation is negligible, we do not consider it in the cal-

culation of the global complexity. By summing these values, we

obtain a complexity of O (n2 +m) for the direct implementation of

the scoring function. On the other hand, the Pregel implementation

complexity is bounded by O (n2), in the case of all comments are

all belonging to the same post. Naturally, the second solution will

be preferred since its complexity is lower. However, if the model

has a small depth of belonging comments (i.e., a small value form),

the two solutions are not significantly different.



MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé

Listing 5: Highly parallel implementation of score.

1 def score(p: Post) = {

2 // number of likes and comments per element

3 val scores = sn.triplets

4 .filter(t => t.attr == "likedBy"

5 | t.attr == "comment")

6 .map(t => ((t.attr, t.srcAttr), 1L))

7 .reduceByKey((a,b) => a + b).collect

8

9 def getScore(s: Submission) = {

10 val default = ((_,_), 0L)

11 var nbLike = // 0 if s is not liked

12 scores.find(e => e._1._2 == s

13 & e._1._1 == "likedBy")

14 .getOrElse(default)._2

15 var nbComment = // 0 if s is not commented

16 scores.find(e => e._1._2 == s

17 & e._1._1 == "comment")

18 .getOrElse(default)._2

19 // recursive call

20 val subScores = sn.triplets

21 .filter(t => t.srcAttr == s

22 & (t.attr == "likedBy"

23 |t.attr == "comment"))

24 .map(_.dstAttr compose getScore).collect

25 // sum of all score from belonging comments

26 for (score <- subScores) {

27 nbLike += score._1

28 nbComment += score._2

29 }

30 (nbLike, nbComment)

31 }

32 val score_p = getScore(p)

33 10L * score._1 + score._2

34 }

�e Pregel solution has nonetheless an important weakness. In-

deed, for optimization reasons,vproд is only applied to vertices that

have received messages from the previous step. �en, considering

the case where the comments are all commented once, the vproд

function will be applied to only one vertex. Hence, the parallelism

level strongly depends on the number of siblings of each comment.

With Pregel, only active vertices, i.e., vertices which received a

message from the previous iteration, compute the vprog function.

�us, the number of operations concurrently executed in Pregel

varies from the less to the most commented and liked element.

On the contrary, the highly parallel implementation executes the

processing operations on every elements of the model. In the lat-

ter, the parallelism level of graph-traversal has the same limitation

than the Pregel implementation, but always process a less complex

operation (i.e., a reduction as a sum of integer values).

�e three above parallel approaches can solve the same problem,

but their efficiency depends on external parameters. For executing

the topPosts query, a multi-strategy engine would compile it to:

• the direct-naive implementation if the depth of belonging

comments is small;

• the pregel solution if the environnement has few resources

for parallelism;

• the highly-parallel solution if the score computation needs

big calculation on the vertices themselves.

As mentioned at the beginning of the Section, our proposed

solutions do not claim to be the most efficient ones. �ey are based

on three parallelism strategies to illustrate the variability of pos-

sible solutions for a given problem. Considering the all presented

strategies of Section 3, a more robust solution could include reactive

aspects. For this particular example, mixing incrementality and

parallelism would avoid useless calculations when the score of a

single post has changed. For instance, the independent scores could

be calculated once using parallelism, and, when a change occur, use

incrementality to avoid the recomputation of unchanged elements.

Considering a possible deletion of a part of the model (e.g., deletion

of a user, and then of all his posts, and comments), laziness could

be incorporated to the solution, to only recompute potential new

most-debated posts.

5 CHALLENGES IN MULTI-STRATEGY
MODEL-MANAGEMENT

In the perspective of low-code platforms, a multi-strategy engine

should be fully automated, from the automatic strategy selection

to the automatic configuration and deployment on distributed in-

frastructures. Our approach is different from the multi-strategy

approach proposed in [3] which is focused on languages and their

salient features. �e conception of a multi-strategy engine leads to

many scientific challenges that we divide in two parts in the rest of

this section: the challenges related to the code and the challenges

related to DevOps.

5.1 Code-related challenges

A first scientific challenge that arises from the multi-strategy ap-

proach is the automatic and transparent selection of the most

adapted strategy for a given model-management operation. �e

motivating example of Section 2 shows the large variability to take

into account to make the right choice. We divide this variability in

different properties that should be considered:

• properties on the input model: size, meta-model, topology,

etc.;

• properties on the operation to perform: update, launch,

request, read or write, the frequency of the operation, etc.;

• properties on the available infrastructures: type of frame-

works compatible or already deployed on the infrastruc-

ture;

�is variability results in a combinatorial choice that could be

solved by using constraint programming, or by leveraging machine

learning techniques to automatically learn how to associate these

properties together.

�e second challenge related to the code aspect is that an ini-

tial code wri�en with a MDE solution may need to be rewri�en

to follow the chosen execution strategy, while guaranteeing the

same expected output. In other words, a code rewriting or code

generation challenge is raised by the multi-strategy approach. In

particular, formal semantics for the model-management engine

may be of high importance to guarantee a correct output code [37].



Towards Multi-Strategy Model Management for LCDPs MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

As example, Listings 3, 4, and 5 described in Section 4 all present

a different way of writing a code from the initial OCL solution

shown in Listing 1. �e complexity and the level of parallelism of

the solutions have been discussed in Section 4.

5.2 DevOps-related challenges

In the context of low-code platforms, automatically handling the

strategy selection and the code generation is not the only concern.

Once generated, the code must be deployed and run on complex

distributed infrastructures. �ese tasks should be as transparent

as the previous code-related challenges. Hence, a first challenge

is automatically handling the deployment of a set of model opera-

tions that potentially use different strategies, onto the associated

infrastructures that could themselves be very heterogeneous (e. g.

different public Cloud solutions such as AWS, or private Clouds, hy-

brid Clouds, etc.). �is complexity should be handled at the LCDP

level, which requires safe and efficient deployments [14, 18].

Furthermore, choosing a given strategy, o�en involves deploy-

ing code on existing frameworks or platforms that implement that

strategy. For instance, when choosing the MapReduce (respectively

Pregel) strategy, Hadoop3 (resp. Giraph4 or Spark5) should be used

to benefit from efficient implementation. All these frameworks are

highly configurable, e. g., MapReduce has more than one hundred

parameters [28]). Because of their large number of parameters,

finding their optimal configuration is a difficult problem. �is addi-

tional layer of configuration represents an additional combinatorial

challenge. Several solutions could provide a good trade-off. For

instance, instead of providing a full configuration for the tools,

which is very costly, a performance prediction built from configu-

ration samples could be used. �is solution has been adopted by

Pereira et al. [1]. Another approach would be to make a full cost

estimation but only considering critical parameters. For example,

give the right level of parallelism by providing an approximation

of the optimal number of mapper and reducer in a MapReduce job6.

More formal approaches can also be used to estimate the cost of

parallel programs (e.g., cost model for GraphX [27]), and compare

the different solution using additional parameters such as hardware

configuration (e.g., the bridging Bulk Synchronous Parallel cost

model [44]).

Using formal approaches to estimate the cost of a parallel pro-

gram such as BSP cost model [44] or Pregel cost estimation [27].

Finally, as for the combinatorial problem of choosing the right

strategy, machine learning techniques could be adopted [32].

6 CONCLUSION

In this paper, we made an overview of what, and how, execution

strategies can be used for model driven engineering. In the con-

text of developing low-code platforms for managing models, these

strategies might be used for optimizing performances. However,

a wrong use of a computational model can have a bad impact on

calculation efficiency. �e motivating example presented in Sec-

tion 2 and the implementations of Section 4 illustrate that by using

different strategies and different combinations of paradigms for a

3h�p://hadoop.apache.org/
4h�ps://giraph.apache.org/
5h�p://spark.apache.org/
6h�p://wiki.apache.org/hadoop/HowManyMapsAndReduces

given input model, different advantages could be observed, such

as complexity, and parallelism level. Different paradigms may be

chosen, according to different properties: the type of input model,

its size, its topology, the type of computation to perform, and the

available infrastructure. �e future goal of a such prototype is

to drive a complete study of how the paradigms can be used and

combined, and to classify them depending on use cases.

ACKNOWLEDGMENTS

�is paper disseminates results from the Lowcomote project, that

received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Skffodowska-Curie

grant agreement No 813884.

REFERENCES
[1] Juliana Alves Pereira, Mathieu Acher, HugoMartin, and Jean-Marc Jézéquel. 2020.

Sampling Effect on Performance Prediction of Configurable Systems: A Case
Study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (Edmonton AB, Canada) (ICPE fi20). Association for Computing
Machinery, New York, NY, USA, 277–288. h�ps://doi.org/10.1145/3358960.
3379137

[2] G. M. Amdahl. 2007. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. IEEE Solid-State Circuits Society Newsle�er
12, 3 (Summer 2007), 19–20. h�ps://doi.org/10.1109/N-SSC.2007.4785615

[3] Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink, Hans
Vangheluwe, and Andreas Wortmann. 2019. Towards a Formal Specification of
Multi-paradigm Modelling. In 22nd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS Companion 2019,
Munich, Germany, September 15-20, 2019, Loli Burgueño, Alexander Pretschner,
Sebastian Voss, Michel Chaudron, Jörg Kienzle, Markus Völter, Sébastien Gérard,
Mansooreh Zahedi, Erwan Bousse, Arend Rensink, Fiona Polack, Gregor Engels,
and Gerti Kappel (Eds.). IEEE, 419–424. h�ps://doi.org/10.1109/MODELS-C.2019.
00067

[4] Amine Benelallam, Abel Gómez, and Massimo Massimo Tisi. 2015. ATL-
MR: model transformation on MapReduce. In Proceedings of the 2nd Interna-
tional Workshop on So�ware Engineering for Parallel Systems, SEPS SPLASH
2015, Pi�sburgh, PA, USA, October 27, 2015, Ali Jannesari, Skiegfried Benkner,
Xinghui Zhao, Ehsan Atoofian, and Yukionri Sato (Eds.). ACM, 45–49. h�ps:
//doi.org/10.1145/2837476.2837482

[5] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. 2018. Distribut-
ing relational model transformation on MapReduce. Journal of Systems and
So�ware 142 (2018), 1–20. h�ps://doi.org/10.1016/j.jss.2018.04.014

[6] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.
2008. Incremental Pa�ern Matching in the Viatra Model Transformation Sys-
tem. In Proceedings of the �ird International Workshop on Graph and Model
Transformations (Leipzig, Germany) (GRaMoT fi08). Association for Computing
Machinery, New York, NY, USA, 25–32. h�ps://doi.org/10.1145/1402947.1402953

[7] Gerth Stølting Brodal and Rolf Fagerberg. 2002. Cache Oblivious Distribu-
tion Sweeping. In Automata, Languages and Programming, 29th International
Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings (Lecture
Notes in Computer Science, Vol. 2380), Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Ma�hew Hennessy, Stephan J. Eidenbenz, and Ricardo
Conejo (Eds.). Springer, 426–438. h�ps://doi.org/10.1007/3-540-45465-9 37

[8] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. 2016. A Linda-based
platform for the parallel execution of out-place model transformations. Informa-
tion & So�ware Technology 79, C (Nov 2016), 17–35. h�ps://doi.org/10.1016/j.
infsof.2016.06.001

[9] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. 2016. Towards Dis-
tributed Model Transformations with LinTra. Jornadas de Ingeniera del So�ware
y Bases de Datos (2016), 1–6. h�p://hdl.handle.net/10630/12091

[10] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. 2015.
Parallel In-place Model Transformations with LinTra. In Proceedings of the 3rd
Workshop on Scalable Model Driven Engineering part of the So�ware Technologies:
Applications and Foundations (STAF 2015) federation of conferences, L’Aquila, Italy,
July 23, 2015. (CEURWorkshop Proceedings, Vol. 1406), Dimitris S. Kolovos, Davide
Di Ruscio, Nicholas Drivalos Matragkas, Juan de Lara, István Ráth, and Massimo
Tisi (Eds.). CEUR-WS.org, 52–62. h�p://ceur-ws.org/Vol-1406/paper6.pdf

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. 1996. Pa�ern-Oriented So�ware Architecture - Vol-
ume 1: A System of Pa�erns. Wiley Publishing. 71–95 pages. h�ps:
//ff.tu-sofia.bg/∼bogi/knigi/SE/Wiley%20-%20Pa�ern-Oriented%20So�ware%
20Architecture%20-%20Volume%201,%20A%20System%20of%20Pa�erns.pdf

http://hadoop.apache.org/
https://giraph.apache.org/
http://spark.apache.org/
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1109/N-SSC.2007.4785615
https://doi.org/10.1109/MODELS-C.2019.00067
https://doi.org/10.1109/MODELS-C.2019.00067
https://doi.org/10.1145/2837476.2837482
https://doi.org/10.1145/2837476.2837482
https://doi.org/10.1016/j.jss.2018.04.014
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1007/3-540-45465-9_37
https://doi.org/10.1016/j.infsof.2016.06.001
https://doi.org/10.1016/j.infsof.2016.06.001
http://hdl.handle.net/10630/12091
http://ceur-ws.org/Vol-1406/paper6.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé

[12] Jordi Cabot and Ernest Teniente. 2009. Incremental integrity checking of UM-
L/OCL conceptual schemas. Journal of Systems and So�ware 82, 9 (2009), 1459–
1478. h�ps://doi.org/10.1016/j.jss.2009.03.009

[13] Nicholas Carriero and David Gelernter. 1989. Linda in Context. Commun. ACM
32, 4 (1989), 444–458. h�ps://doi.org/10.1145/63334.63337

[14] Maverick Chardet, Hélène Coullon, Dimitri Pertin, and Christian Pérez. 2018.
Madeus: A formal deployment model. In 4PAD 2018 - 5th International Symposium
on Formal Approaches to Parallel and Distributed Systems (hosted at HPCS 2018).
Orléans, France, 1–8. h�ps://hal.inria.fr/hal-01858150

[15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-scale.
Proc. VLDB Endow. 8, 12 (Aug 2015), 1804–1815. h�ps://doi.org/10.14778/2824032.
2824077

[16] Murray Cole. 1988. Algorithmic skeletons : a structured approach to the manage-
ment of parallel computation. Ph.D. Dissertation. University of Edinburgh, UK.
h�p://hdl.handle.net/1842/11997

[17] Hélène Coullon, Julien Bigot, and Christian Pérez. 2017. Extensibility and Com-
posability of a Multi-Stencil Domain Specific Framework. International Journal
of Parallel Programming (Nov. 2017). h�ps://doi.org/10.1007/s10766-017-0539-5

[18] Hélène Coullon, Claude Jard, and Didier Lime. 2019. Integrated Model-checking
for the Design of Safe and Efficient Distributed So�ware Commissioning. In IFM
2019 - 15th International Conference on integrated Formal Methods (Integrated
Formal Methods). Bergen, Norway, 120–137. h�ps://hal.archives-ouvertes.fr/
hal-02323641

[19] Hlne Coullon and Sbastien Limet. 2016. �e SIPSim implicit parallelism model
and the SkelGIS library. Concurrency and Computation: Practice and Experience
28, 7 (2016), 2120–2144. h�ps://doi.org/10.1002/cpe.3494

[20] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the 6th Conference on Sympo-
sium on Operating Systems Design & Implementation - Volume 6 (San Fran-
cisco, CA) (OSDI’04). USENIX Association, Berkeley, CA, USA, 137–149. h�p:
//dl.acm.org/citation.cfm?id=1251254.1251264

[21] Antonio Garcı́a-Domı́nguez, Georg Hinkel, and Filip Krikava (Eds.). 2019. Pro-
ceedings of the 11th Transformation Tool Contest, co-located with the 2018 So�-
ware Technologies: Applications and Foundations, TTC@STAF 2018, Toulouse,
France, June 29, 2018. CEUR Workshop Proceedings, Vol. 2310. CEUR-WS.org.
h�p://ceur-ws.org/Vol-2310

[22] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn
and Hank Levy (Eds.). USENIX Association, 599–613. h�ps://www.usenix.org/
conference/osdi14/technical-sessions/presentation/gonzalez

[23] D. Harel and A. Pnueli. 1989. On the Development of Reactive Systems. Springer-
Verlag, Berlin, Heidelberg, 477–498.

[24] Gábor Imre and Gergely Mezei. 2012. Parallel Graph Transformations on Multi-
core Systems. In Multicore So�ware Engineering, Performance, and Tools, Victor
Pankratius and Michael Philippsen (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 86–89.

[25] Stefan Jurack and Gabriele Taentzer. 2010. A Component Concept for Typed
Graphs with Inheritance and Containment Structures. In Graph Transformations
- 5th International Conference, ICGT 2010, Enschede, �e Netherlands, September
27 - - October 2, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6372),
Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy Schürr (Eds.).
Springer, 187–202. h�ps://doi.org/10.1007/978-3-642-15928-2 13

[26] Christian Krause, Ma�hias Tichy, and Holger Giese. 2014. Implementing Graph
Transformations in the BulkSynchronousParallel Model. In Fundamental Ap-
proaches to So�ware Engineering, Stefania Gnesi and Arend Rensink (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 325–339. h�ps://doi.org/10.
1007/978-3-642-54804-8 23

[27] Rohit Kumar, Alberto Abelló, and Toon Calders. 2017. Cost Model for Pregel
on GraphX. In Advances in Databases and Information Systems - 21st European
Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings
(Lecture Notes in Computer Science, Vol. 10509), Marite Kirikova and George A.
Norvaag, Kjetiland Papadopoulos (Eds.). Springer, 153–166. h�ps://doi.org/10.
1007/978-3-319-66917-5 11

[28] Palden Lama and Xiaobo Zhou. 2012. AROMA: automated resource allocation
and configuration of MapReduce environment in the cloud. In 9th International
Conference on Autonomic Computing, ICAC’12, San Jose, CA, USA, September 16 -
20, 2012, Dejan S. Milojicic, Dongyan Xu, and Vanish Talwar (Eds.). ACM, 63–72.
h�ps://doi.org/10.1145/2371536.2371547

[29] �éo Le Calvar, Frédéric Jouault, Fabien Chhel, and Mickael Calreul. 2019. Effi-
cient ATL Incremental Transformations. Journal of Object Technology 18, 3 (Jul
2019), 2:1–17. h�ps://doi.org/10.5381/jot.2019.18.3.a2 �e 12th International
Conference on Model Transformations.

[30] Sina Madani, Dimitris S. Kolovos, and Richard F. Paige. 2019. Towards Opti-
misation of Model �eries: A Parallel Execution Approach. Journal of Object
Technology 18, 2 (July 2019), 3:1–21. h�ps://doi.org/10.5381/jot.2019.18.2.a3 �e

15th European Conference on Modelling Foundations and Applications.
[31] Grzegorz Malewicz, Ma�hew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
ACM, New York, NY, USA, 135–146. h�ps://doi.org/10.1145/1807167.1807184

[32] Hugo Martin, Juliana Alves Pereira, Mathieu Acher, and Paul Temple. 2019. Ma-
chine Learning and Configurable Systems: A Gentle Introduction. In Proceedings
of the 23rd International Systems and So�ware Product Line Conference - Volume
A (Paris, France) (SPLC fi19). Association for Computing Machinery, New York,
NY, USA, 325–326. h�ps://doi.org/10.1145/3336294.3342383

[33] Salvador Martı́nez Perez, Massimo Tisi, and Rémi Douence. 2017. Reactive
model transformation with ATL. Sci. Comput. Program. 136 (2017), 1–16. h�ps:
//doi.org/10.1016/j.scico.2016.08.006

[34] Gergely Mezei, Tihamer Levendovszky, Tams Mszros, and Istvn Madari. 2009.
Towards truly parallel model transformations : A distributed pa�ern matching
approach. IEEE EUROCON 2009, EUROCON 2009, 403–410. h�ps://doi.org/10.
1109/EURCON.2009.5167663

[35] Jolan Philippe and Frédéric Loulergue. 2019. PySke: Algorithmic Skeletons
for Python. In �e 2019 International Conference on High Performance Com-
puting & Simulation (HPCS). Dublin, Ireland. h�ps://hal.archives-ouvertes.fr/
hal-02317127

[36] Margaret Rouse. [n.d.]. Task, Definition. h�ps://whatis.techtarget.com/
definition/task. Accessed: 2020-07-14.

[37] Massimo Tisi and Zheng Cheng. 2018. CoqTL: an Internal DSL for Model
Transformation in Coq. In ICMT 2018 - 11th International Conference on �eory
and Practice of Model Transformations (LNCS, Vol. 10888). Springer, Toulouse,
France, 142–156. h�ps://doi.org/10.1007/978-3-319-93317-7 7

[38] Massimo Tisi, Rémi Douence, and Dennis Wagelaar. 2015. Lazy Evaluation
for OCL. In Proceedings of the 15th International Workshop on OCL and Tex-
tual Modeling co-located with 18th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2015), O�awa, Canada, Septem-
ber 28, 2015 (CEUR Workshop Proceedings, Vol. 1512), Achim D. Brucker, Ma-
rina Egea, Gogolla Martin, and Frédéric Tuong (Eds.). CEUR-WS.org, 46–61.
h�p://ceur-ws.org/Vol-1512/paper04.pdf

[39] Massimo Tisi, Jean-Marie Mo�u, Dimitrios S. Kolovos, Juan De Lara, Esther M
Guerra, Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. 2019.
Lowcomote: Training the Next Generation of Experts in Scalable Low-Code
Engineering Platforms. In STAF 2019 Co-Located Events Joint Proceedings: 1st
Junior Researcher Community Event, 2nd International Workshop on Model-Driven
Engineering for Design-Runtime Interaction in Complex Systems, and 1st Research
Project Showcase Workshop co-located with So�ware Technologies: Applications
and Foundations (STAF 2019) (CEUR Workshop Proceedings (CEUR-WS.org)). Eind-
hoven, Netherlands. h�ps://hal.archives-ouvertes.fr/hal-02363416

[40] Massimo Tisi, Martı́nez Salvador Perez, and Hassene Choura. 2013. Parallel
Execution of ATL Transformation Rules. In Model-Driven Engineering Languages
and Systems - 16th International Conference, MODELS 2013, Miami, FL, USA,
September 29 - October 4, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 8107), AnaMoreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo, and Peter J.
Clarke (Eds.). Springer, 656–672. h�ps://doi.org/10.1007/978-3-642-41533-3 40

[41] Massimo Tisi, Salvador Martı́nez Perez, Frédéric Jouault, and Jordi Cabot. 2011.
Lazy Execution of Model-to-Model Transformations. InModel Driven Engineering
Languages and Systems, 14th International Conference, MODELS 2011, Wellington,
New Zealand, October 16-21, 2011. Proceedings (Lecture Notes in Computer Science,
Vol. 6981), Jon Whi�le, Tony Clark, and �omas Kühne (Eds.). Springer, Berlin,
Heidelberg, 32–46. h�ps://doi.org/10.1007/978-3-642-24485-8 4

[42] Le-Duc Tung and Zhenjiang Hu. 2017. Towards Systematic Parallelization of
Graph Transformations Over Pregel. Int. J. Parallel Program. 45, 2 (April 2017),
320–339. h�ps://doi.org/10.1007/s10766-016-0418-5

[43] Tamás Vajk, Zoltán Dávid, Márk Asztalos, Gergely Mezei, and Tihamér Lev-
endovszky. 2011. Runtime Model Validation with Parallel Object Constraint
Language. In Proceedings of the 8th International Workshop on Model-Driven
Engineering, Verification and Validation (Wellington, New Zealand) (MoDeVVa).
Association for Computing Machinery, New York, NY, USA, Article 7, 8 pages.
h�ps://doi.org/10.1145/2095654.2095663

[44] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103–111. h�ps://doi.org/10.1145/79173.79181

[45] Varró, Gergely and Frederik Deckwerth. 2013. A Rete Network Construction
Algorithm for Incremental Pa�ern Matching. In �eory and Practice of Model
Transformations - 6th International Conference, ICMT 2013, Budapest, Hungary,
June 18-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7909), Keith
Duddy and Gerti Kappel (Eds.). Springer, 125–140. h�ps://doi.org/10.1007/
978-3-642-38883-5 13

[46] Edward D. Willink. 2017. Deterministic Lazy Mutable OCL Collections. In So�-
ware Technologies: Applications and Foundations - STAF 2017 CollocatedWorkshops,
Marburg, Germany, July 17-21, 2017, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 10748), Martina Seidl and Steffen Zschaler (Eds.). Springer,

340–355. h�ps://doi.org/10.1007/978-3-319-74730-9 30

https://doi.org/10.1016/j.jss.2009.03.009
https://doi.org/10.1145/63334.63337
https://hal.inria.fr/hal-01858150
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
http://hdl.handle.net/1842/11997
https://doi.org/10.1007/s10766-017-0539-5
https://hal.archives-ouvertes.fr/hal-02323641
https://hal.archives-ouvertes.fr/hal-02323641
https://doi.org/10.1002/cpe.3494
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://ceur-ws.org/Vol-2310
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://doi.org/10.1007/978-3-642-15928-2_13
https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1007/978-3-319-66917-5_11
https://doi.org/10.1007/978-3-319-66917-5_11
https://doi.org/10.1145/2371536.2371547
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.5381/jot.2019.18.2.a3
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3336294.3342383
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1109/EURCON.2009.5167663
https://doi.org/10.1109/EURCON.2009.5167663
https://hal.archives-ouvertes.fr/hal-02317127
https://hal.archives-ouvertes.fr/hal-02317127
https://whatis.techtarget.com/definition/task
https://whatis.techtarget.com/definition/task
https://doi.org/10.1007/978-3-319-93317-7_7
http://ceur-ws.org/Vol-1512/paper04.pdf
https://hal.archives-ouvertes.fr/hal-02363416
https://doi.org/10.1007/978-3-642-41533-3_40
https://doi.org/10.1007/978-3-642-24485-8_4
https://doi.org/10.1007/s10766-016-0418-5
https://doi.org/10.1145/2095654.2095663
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-319-74730-9_30



