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Abstract—A number of recent research projects in human-
vehicle interaction field are addressing the problem of human
trust in autonomous vehicles. Almost all of these work are
focusing on investigating the attributes and the factors that
influence the human drivers’ trust of these vehicles. However,
a little research has been done on the bystander humans’
trust of autonomous vehicles. Bystander humans in the context
of autonomous vehicles, are humans that does not explicitly
interact with the automated vehicle but still affect how the
vehicle accomplishes its task by observing or interfering with
the actions of the vehicle. Vulnerable road users (VRU) are
considered one example of the bystander humans interfering
with the autonomous vehicle. According to a recent research
study, intent understanding between vulnerable road users and
autonomous vehicles was one of the most critical signs that
accounted for a trusted interaction between the two entities.
In this paper we are proposing a computation framework for
modeling trust between vulnerable road users and autonomous
vehicles based on a shared intent understanding between the two
of them.

Index Terms—Human-on-the-loop, trust modeling, vulnerable
road users, autonomous vehicles and intent understanding.

I. INTRODUCTION

Autonomous Vehicles (AVs) development have got some
momentum over the recent years. The first appearance of AVs
was in early 2000, during the grand challenges organized
by the US DARPA (Defense Advanced Research Projects
Agency) [1]–[3]. In 2009, specifically after the success that
have been witnessed during the DARPA urban challenge in
2007, Google initiated its self-driving car project by testing
it on the freeways in California. Following Google, other car
manufacturers started to catch-up such as Toyota, Mercedes
Benz, GM, Ford, Audi, and more. Ultimately, AVs have
a strong potential in reducing traffic accidents, increasing
road capacity and providing critical mobility to the elderly
and handicapped [4], [5]. However, one of the most critical
barriers against the wide spread of AVs in the coming few
years is, the human trust of their capabilities.

According to a recent survey done by the American
Automobile Association (AAA), only one-in-five Americans
say they would trust an autonomous vehicle to drive itself
[6]. Human trust in automation in general, and in autonomous
vehicles specifically, is rather complex and multidimensional
construct, due to the large number of factors and attributes
influence it. Therefore, the issue of human trust in automation

has got an increased interest over the past 20 years from
a number of research communities such as human factors
[7]–[9], cognitive sciences [10]–[12] and human robot
interactions (HRI) communities [13], [14].

Since there is a little research done on the human
trust of AVs, there is not a unified definition of human
trust in the context of AVs so far. Though, most of the
technologies involved in developing AVs are actually based
on research work done in the robotics field, we found that
the trust definition used in Human-Robot interactions (HRI)
frameworks in [14] and [15] would be more suitable for
our proposed framework. In fact, the human-robot trust
definition used in the aforementioned HRI frameworks is not
entirely different from the human-automation trust definition
introduced by Lee and See [16]. Lee and See defined
human-automation trust as “the attitude that an agent will
help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability.

According to the previous definition when it is applied
in HRI frameworks specially the mobile robots, the human
involved in the interaction loop with the mobile robot is the
individual, and the agent is the mobile robot that is trying to
accomplish a certain task determined by goals set by another
human. Since these goals are highly dependent on the role of
the human involved in the HRI loop, Schlotz [17] defined the
five different roles that the humans can assume in any HRI
framework, as the following:

• Human can become a supervisor who monitors the mobile
robot and can intervene once it is a necessity;

• Human can act as an operator who is closely in a direct
interaction with the mobile robot manipulating the robot’s
actions;

• Human can be a programmer or a mechanic who have an
access to modify the software or the hardware capabilities
of the mobile robot;

• Human can be a team-mate or a peer to the mobile robot
working together to achieve a mutual goal; and

• Human can be a bystander who is not directly part
of the HRI loop but can affect how a mobile robot is
accomplishing a certain task.



Similarly, the previous formulation of human-robot trust can
be extended to the special case of human-AVs trust, however
instead of the agent being the mobile robot, in this case it
will be the AV and instead of the five roles that human can
assume in HRI frameworks, it will be only restricted to three
roles in human-AVs trust frameworks. Whereas, the human
can assume one of the following three roles:
• Driver/Passenger of the host AV (depending on the level

of autonomy of the AV);
• Vulnerable road user (VRU) sharing the road with the AV

such as pedestrians and cyclists; or
• Driver of other vehicles sharing the same road with the

AV.
Recently, a number of research projects started to consider

the issue of human trust in AVs. However, they were focusing
mainly on the driver/passenger of the host AV [18]–[20]. There
is a little research done so far on the issue of trust between
the AV and the VRU or the drivers sharing the road with the
AV. Since VRU are considered the weakest road users due to
their vulnerability to traffic accidents, we believe they deserve
a special interest over the other drivers sharing the road with
the AVs.

In this paper we will be focusing on VRUs’ trust of AVs.
The rest of this paper is organized as follows, a review of the
existing quantitative models developed for human-AVs trust
in general will be first discussed, then we will draw from
these models the specific factors that are applicable for the
VRUs-AVs trust case. Finally, we will present our proposed
computation framework for modeling the trust between VRUs
and AVs based on these factors.

II. HUMAN-AVS INTERACTION LOOP

One of the key elements in establishing a trusted interaction
loop between humans and automated systems, begin with the
humans’ assessment of the trustworthiness of these automated
systems [16]. The research in [21], [22], outlined that the
characteristics of an automated system are among the major
factors that impact the trustworthiness of any automated
systems. Furthermore, they indicated that characteristics of
an automated system can be described in terms of the level
of autonomy of this system and how well its function is
perceived by humans. Since the definition of automated
systems tend to vary across different sectors and industries.
Parasurman et al. [23] came up with a taxonomy for the
definition of automated systems based on a ten levels of
decision making and/or control done by the human or the
machine in these systems.

Similarly, in the arena of AVs, and in a reaction to the up-
rise of the self-driving cars development, another taxonomies
of autonomy were proposed for AVs. One of the taxonomies
was proposed in early 2013 by the USA’s National Highway
Transportation Safety Administration (NHTSA). NHTSA pro-
vided a preliminary policy statement in order to regulate the

development and testing of AVs across the US, which had a
taxonomy of the five levels of autonomy of vehicles as the
following:

• Level 0: No automation
• Level 1: Function-specific automation
• Level 2: Combined function automation
• Level 3: Limited self-driving automation
• Level 4: Full self-driving automation

Table I, presents a comparison between NHTSA’s taxonomy
of levels of autonomy with respect to the human-vehicle
decision-making and the human-vehicle interaction loop.
Human-vehicle decision-making loop is concerned with the
actual responsibilities that the human driver can perform in
each level of the autonomy.

On the other hand, Human-vehicle interaction loop is more
of a higher abstraction level of the degree of the involvement
that the human driver can take within the vehicle. Whereas,
the human driver can be totally engaged and in control of
the vehicle most of the time (levels 0 and 1), and we refer
to the driver here as “Human-in-the-loop” as it is specified
in human-machine collaboration research community [24].
Alternatively, the human driver can have an intermittent
control of the vehicle and the automated system of the vehicle
is responsible for the decision-making most of the time (levels
2 and 3), and we refer to here as “Human-on-the-loop” or
“Human supervisory control” as they call it in process control
research community [25]. Lastly, the human driver can be
just a passenger in the vehicle and has no control of the
actual driving task of the vehicle (level 4) and it is commonly
referred to the driver here as “Human-out-of-the-loop” [26].

From this taxonomy we can draw out that it is completely
cantered around the human driver, and does not take into
account any other human road users who are sharing the
road with the vehicle. Specifically, when it comes to VRUs,
they did not have so much attention in human-AV interaction
frameworks in contrast to the bystanders in HRI frameworks.
Given that, most of the interactions between VRUs and
vehicles right now are based on an implicit social rules with
the human driver inside the vehicle. Thus, we are arguing
that VRUs will be considered as the new Human-on-the-loop
when vehicles are operating in the upper level of autonomy
(level 4) of NHTSA’s taxonomy.

The motive for our believe that VRUs will be acting as
Human-on-the-loop when human drivers will be out of the
loop (level 4), is that the degree of influence VRUs will
impose on the decision making loop of AVs will be much
higher than the one of the human passenger inside the AV.
For instance, when AV encounter a pedestrian trying to cross
the road from a non-crosswalk stop, the AV will change its
motion planning to avoid collision with the pedestrian which
in returns impact the decision-making loop of the AV.



TABLE I. NHTSA Level of Autonomy Taxonomy.

NHTSA Levels of Autonomy Human-Vehicle Decision-making Loop Human-Vehicle Interaction Loop

Level 0 Driver is in full charge of the vehicle. Includes warning-only systems
(like Forward Collision Warning, Lane Departure Warning) Human-in-the-loop

Level 1 Driver is also in full control. Only minor control functions automated
(Adaptive Cruise Control, Electronic Stability Control) Human-in-the-loop

Level 2
At least two primary control functions are automated, driver responsi-
ble for monitoring safe operation and is available for control on short
notice

Human-on-the-loop

Level 3
Driver cedes full control to automation under certain conditions, driver
is available for occasional control, but does not have to constantly
monitor safe operation

Human-on-the-loop

Level 4 Driver provides destination or navigation support, but is not expected
to be available for control at any time during the trip Human-out-of-the-loop

Additionally, since AVs will be prioritizing the safety of
its passengers over VRUs [27], so it will need to model the
human factors and social behaviors of VRUs in order not
to risk that objective. Which in fact is similar to the case
of level 3, where the vehicle will have to model the human
factors and behaviors of its human driver in order to cede
control to him in a safer manner [28], [29].

Unlike human drivers, VRUs are not governed or con-
strained by the existing regulations of traffic, which that makes
their behaviors unpredictable most of the time [30]. Thus,
AVs need to have a deeper understanding of VRUs’ behaviors
and motives in order to increase their trust of AVs. Because
by doing so, it will help in achieving a safer cooperative
interaction between the two of them [31].

III. OBJECTIVE MEASURES FOR BYSTANDERS AND
VRUS’ TRUST

A number of the factors that affect the bystanders’ trust
in autonomous systems have been studied extensively in the
HRI field over the past 10 years. However, just a few have
addressed this issue in the context of AVs “i.e, VRUs”. One
of the most commonly adopted methods in assessing human
trust in HRI frameworks, is the objective measures [32].
Objective measures can be viewed as a quantitative metric
of a behavioral data produced unconsciously by humans. In
the following, we will review a number of the work that
have been done on the objective measures of trust for the
bystanders in HRI field in general and in its specific case of
human-AV interaction.

In HRI, Tsui et al. [33], investigated the level of trust the
bystanders have of a mobile robot in a specific scenario of
a corridor passing based on social behavior cues. In their
experiments, they found out that the bystanders tend to
have a higher levels of trust in the mobile robot when it
accommodates some degree of adhering to social protocols.
Social protocols can be such as complex as behaviors they
would expect from other humans like yielding for them when
in cases the corridor can only fit for one entity to pass “i.e,

either human or robot”. Another work by DeSteno et al. [34]
investigated a number of behavioral cues that accounted for a
trusted interaction between human and a tele-operated robot.
They relied on facial verbal cues done by a bystander human
to identify a set of non-verbal cues, that when performed in
a specific sequence, they can be used as an indicator of a
trustworthy or untrustworthy behavior perception of the robot.

In [35], Boerkoel et al. utilized a number of social cues
between bystanders and a mobile robot deployed in an
industrial manufacturing environment for a trustworthy
interaction between the two of them. Whereas, the mobile
robot used to infer the intentions of the bystander human
(such as another human coworker in a factory) by recognizing
the coworker’s activities as well as feed-back him with its
intended route that it will take next while it is navigating.

In the context of AVs, Florentine et al. [36] proposed a
method to increase the VRUs’ trust in autonomous golf-
cart by incorporating a human-like social behaviors. They
substituted the human eye contact that happens between
human-driven vehicles and pedestrians by a Light-Emitting
Diode (LED) strips as shown in Fig. 1. The LED strips were
used to convey a perception information to nearby pedestrians
passing by the autonomous golf-cart. They placed a number
of the LED strips around the golf-cart’s front side to notify
pedestrians that the golf-cart can see them. Whenever a
pedestrian is in a close proximity to the golf-cart, the LED
strips will change its colors, and as the pedestrian walks
around it, the LED lights will start following him.

In [37], Matthews et al. connected the intent understanding
as an indicator for a trusted interaction between the AVs and
VRUs. Similar to [36], they also used an autonomous golf-cart
provided with LED strips as well as LED word display for
communicating its intent for the pedestrians. They used the
LED word display for explicitly communicating the intent
of the golf-cart using pictures, words, or a combination of
the two. For identifying the pedestrians’ intent they surveyed
a number of people about the most probable actions they



Fig. 1. The autonomous golf cart equipped with LED strip [36]. The blue
color indicates no obstacle within close range, whereas red shows presence
of a nearby obstacle.

would take when encountered with an AV. Then, based on
the results of their survey they used a Belief-State Markov
Decision Process to recognize a five pedestrians’ actions such
as pedestrians moving out of the golf-cart’s way.

Similarly, in [38], Pennycooke et al. outfitted a prototype
vehicle with a number of sensors to resemble an actual AV,
to convey a trusted interaction based on intent understanding
between the prototype AV and pedestrians in a simulated
indoor environment. When the mounted Xbox Kinect on the
prototype AV, sense the presence of a nearby pedestrian, an
eye-shaped blue LED mounted on the prototype AV flashes
to notify the pedestrian that it is ok to cross.

IV. MODELING THE TRUST OF VRUS

From the previous review, the intent understanding between
the AV and the VRUs has been proven to be a really strong
objective measure of a trusted interaction between the two
entities. Generally speaking, the intent understanding cycle
between AVs and VRUs can be viewed as a combination
of two steps: 1) recognizing and predicting the intent
of the VRU 2) conveying the AVs’ acknowledgment of
this intent to the VRU through an intent communication
interface. Most of the work that has been done so far on the
intent understanding between VRUs and AVs, tend to focus
mainly on the second part, the intent communication interface.

The methods of recognizing and predicting the VRUs’
intent seems to be rather underestimated. Despite the fact
of the importance of the work on the intent communication
interface for AVs to convey their intent to the VRUs. However
it diminishes the task of predicting the intent of VRUs to
a simple actions recognition in a contained environment
ignoring the uncertainty existed in the human actions. In
order for AVs to convey a reliable intent that can be trusted by
the VRUs, it needs to have a shared deep intent understanding

Fig. 2. Concept autonomous vehicle from Mercedes-Benz [31] projecting
laser beams on the road as a virtual crosswalk for pedestrians to walk.

between it and the VRUs. Whereas, the AV could be able to
predict and communicate the intent back and forth between
it and the VRU.

A. Intent Understanding Framework

The first and the most critical step for a shared intent
understanding between AVs and VRUs for a trusted interaction
between them, is the intent capturing of VRUs by the AV [39].
However, VRUs’ intent is not such an observable quantity that
can be sensed or captured directly by AVs. Historically, the
intent is commonly inferred using other observable cues and
behaviors done by the VRUs such as gestures (i.e, nodding or
waving) [40], body/head pose combined with motion patterns
[41], [42].

Since, the behaviors of VRUs are unpredictable and has
some degree of uncertainty that can change over small periods
of time, the process of capturing their intent are done on a two
steps; one for a short-term prediction (less than 1 second), and
the other step rely on the first one to predict the intent over
a long-term period (up to 10 seconds ahead). Once the intent
prediction cycle done, it can be safely communicated to the
VRU.

In Fig. 3, we are presenting our proposed framework for
intent understanding, whereas we are breaking down the
problem into three main modules:
• Short-term Intent Prediction;
• Long-term Intent Prediction; and
• Intent Communication Interface.

The short-term intent prediction component will be concerned
with a momentary prediction of VRUs based on a number of
behavioral and social cues. The behavior cues could be such as
the activity recognition of the VRU. For example, a pedestrian
might be walking on the curbside and stop to cross the road,
or a cyclist is signaling to take a left-turn. The social cues
could be such as the social interactions between VRUs and



Fig. 3. Intent understanding framework for modeling the trust of VRUs.

each other’s. For instance, a pedestrian with his family could
be trying to cross the road, the AV needs to have knowledge
about that kind of social interactions and provide the proper
communication accordingly in order to gain the trust of VRUs.

Conversely, long-term intent prediction will be concerned
with prediction of the intent of VRUs over a longer period.
The prediction will be based on the prediction output of the
short-term module as well as other variables such as the
forecasting of his/her trajectory a number of seconds ahead in
the future as well as the inference of his/her destination/goal.
In scenarios such as the AV has sensed a pedestrian from a
distance trying to take on a cross-walk in urban environment
where is no traffic lights, and slowed down in order to make
him pass the cross-walk on his ease, that would be similar
to the action of “after you” done by the human driver in the
same situation.

Finally, the intent communication interface, and it will be
responsible for giving the implicit communication between
VRUs and the AV based on the information that flows to
it from the short-term and/or the long-term intent prediction
modules. A two common types of implicit communications
can be broadcasted from the intent communication interface
to the VRU either through the motion of the AV itself
or through light-based displays such as LED and LASER
projectors. Implicit communication through motion can be
such as when the AV try to communicate a hesitation like the
human drivers to alert a pedestrian by oscillating its motion
between accelerating and breaking. On the other hand, implicit
communication through displays can be either using LED
strips [36], [37] or laser projectors [31] as shown in Figures 1
and 2, respectively.

B. Integrated Trust Modeling Framework

In our proposed framework for intent understanding
outlined in Fig. 3, the details of the inputs or the outputs
that our proposed framework assume and generate were
abstracted. However, in order to explicitly indicate them,
we need to integrate our framework with one of the system
architectures for AVs. Whereas, that will clearly demonstrate

how things fit together within these architectures and to make
sure that our proposed framework can easily interfaces with
them. Thus, we chose the system architecture of the AV, Boss
that achieved the first place in the DARPA urban challenge
in 2007 to demonstrate that [3]. The system architecture
used in Boss is considered one of the standard system
architectures used in AVs and almost the other architectures
like the ones in [43], [44] are considered just a derivatives of it.

The main software components of Boss’s architecture are
organized as the following:
• Perception: where in this component, all the sensor data

coming from the sensors mounted on the vehicle are
fused together to form a world model that can provide
the vehicle with information such as: the pose of the
vehicle, map of the static obstacles around it, map of
the road itself, locations of dynamic obstacles such as
other vehicles, pedestrians and cyclists with respect to
the vehicle.

• Mission planning: this component responsible for com-
puting the possible routes that the vehicle can take given
the information it takes from the perception component,
and prioritize the optimal paths based on the safest
shortest time.

• Behavioral executive: it executes the plan determined by
the mission planner, it can be considered as a finite state
machine that converts the mission plan into a temporal-
sequence of motion planning goals that are taking the
current condition of the road and the driving context into
account.

• Motion planning: it converts the motion goal generated
by the behavioral executive to an actual trajectory that
can take the vehicle safely to its goal and sends this
trajectory through a steering and acceleration/braking
commands to the control system of the vehicle.

In Fig. 4, the integrated framework for trust modeling of
VRUs is proposed with emphasis on the input and output
signals of the intent understanding framework.

The input signals of the intent understanding sub-framework
are: dynamic obstacles, the road map, the static obstacle
map, and vehicle intent. Dynamic obstacles signal from the
perception component contains the locations of the moving
objects around the vehicle in general, whereas inside the
short-term intent prediction module it is processed to get
the poses, activities and the social interactions of VRUs
specifically which are then passed to the long-term intent
prediction module as it was discussed previously. The road
map and the static obstacle map signals respectively are
passed to the long-term intent prediction module, where they
are essential for the inference of the destination and the
trajectory forecasting of VRUs as discussed in [45].

Internally, the intent communication interface takes the out-
put of the short-term and long-term intent prediction modules
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Fig. 4. Integrated framework for modeling trust of VRUs based on the system architecture of Boss [3]. Arrows represents the flow of information between
the different components of the framework.

and send them to the behavioral executive component through
the VRU intent signal, which in returns reasons about the
given situation from the intent understanding. Then, based on
that the behavioral executive component convey its situation
awareness back to the intent interface and/or update its motion
goal through the vehicle intent signal. Based on the vehicle
intent signal, the intent communication interface of the intent
understanding component decides on which suitable interface
such as LED strips and LASER projection would be suitable
for conveying the vehicle intent. Afterwards, it sends this
specific intent to its corresponding hardware interface attached
in the vehicle through the intent communication messages
signal. Finally, the previous described cycle is repeated as
soon as new observations are available from the perception
component regarding VRUs.

V. CONCLUSION

In this paper we proposed a framework for AVs to model a
shared trusted interaction between them and VRUs based on
a strong social cues such as the intent understanding. We also
presented a review of the research gaps exits in the area of trust
modeling for VRUs in the context of AVs. We also discussed
a number of the objective measures used for modeling the
VRUs’ trust from the literature. Additionally, we presented
and discussed an integrated framework of our proposed intent
understanding model with one of the most successful system
architectures used for AVs development. Whereas we showed
how scalable our proposed framework is and how it can easily
fit within any type of system architectures for AVs.
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