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Abstract: With the advent of fluorescence superresolution microscopy, nano-sized structures can
be imaged with a previously unprecedented accuracy. Therefore, it is rapidly gaining importance
as an analytical tool in the life sciences and beyond. However, the images obtained so far lack
an absolute scale in terms of fluorophore numbers. Here, we use, for the first time, a detailed
statistical model of the temporal imaging process which relies on a hidden Markov model operating
on two timescales. This allows us to extract this information from the raw data without additional
calibration measurements. We show this on the basis of added data from experiments on single Alexa
647 molecules as well as GSDIM/dSTORM measurements on DNA origami structures with a known
number of labeling positions.

Keywords: nanoscale characterization; fluorescence microscopy; super-resolution imaging; STORM;
GSDIM; quantitative imaging

1. Introduction

Microscopy is an indispensable tool in modern biophysical, biochemical and biomedi-
cal research. The utilization of fluorescent probes [1] in particular has contributed to its
development from a mainly qualitative device to an ever improving quantitative instru-
ment. For example, fluorescence correlation spectroscopy (FCS) [2] and single-particle
tracking [3] can be used to investigate the diffusion and trafficking of molecules [1]. Förster
resonance energy transfer (FRET) [4], fluorescence lifetime imaging (FLIM) [5], and fluores-
cence recovery after photobleaching (FRAP) [6] allow the investigation of conformational
changes, molecular interactions and dynamic transport phenomena [7].

Within this context, more and more researchers are interested in counting dye molecules
in cells or nanostructures. In case the efficiency and stoichiometry of the labelling is known,
such fluorophore numbers can be used, for example, to determine the stoichiometry of
functional protein and protein-nucleic acid complexes or to improve structural models. This
helps to understand functionality on the molecular scale [8–13]. Widely used methods for
counting fluorescent probes are, inter alia, stepwise photobleaching and ratio comparison
to fluorescent standards. Although both methods can utilize standard imaging equipment
and do not require specialized analysis software, they are either limited to low molecule
numbers or rely on trustworthy intensity standards [14]. In addition, these methods are
limited by diffraction, which means that individual structures closer than 200–250 nm
cannot be distinguished within the image.

With the advent of ’superresolution’ fluorescence microscopy (nanoscopy), the diffrac-
tion limit has been overcome by switching the signal from individual objects within a
diffraction-limited region consecutively on and off [15]. Since then, these so-called optical
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nanoscopes enable the investigation of structures at the nanometer scale [16]. To extract
quantitative information from super-resolved images it is crucial to analyze the distribution
of the observed photons in time and space, which in turn depends on the photophysi-
cal properties and consequently on the underlying quantum physical mechanisms of the
fluorophores used [17].

For mapping fluorophore numbers, it is important to differentiate whether switching
of fluorescent signals is accomplished in a spatially controlled or in a spatially stochastic
manner. If, as in STED microscopy [18], the first strategy is applied, there are usually
several fluorophores within the focal spot. In this case, the frequency of simultaneous
photon arrivals can be used to determine fluorophore numbers [19]. So far, however, only a
very small number of fluorophores within the focal spot can be counted reliably.

Spatially stochastic switching is applied in single marker switching (SMS) nanoscopy,
which subsumes many state-of-the-art techniques known as photoactivated localization
microscopy (PALM) [20], stochastic optical reconstruction microscopy (STORM) [21], fluo-
rescence photoactivation localization microscopy (FPALM) [22], PALM with independently
running acquisition (PALMIRA) [23], ground state depletion microscopy followed by in-
dividual molecule return (GSDIM) [24], direct STORM (dSTORM) [25], PAINT [26] or
DNA-PAINT [27]. Here, imaging is performed by assuring that with high probability
only a few (random) fluorescent probes are in their on state at any time. Under excitation,
these probes emit many photons, of which a fraction is detected on an array detector,
e.g., an EMCCD-camera. After 1–100 ms, a fluorescent probe switches back to the off
state or bleaches, so that an adjacent molecule that switches on can be read out using the
same scheme. The final image is then assembled by localizing a representative number of
molecules and registering them in a position histogram with an average precision which is
typically in the range of several 10 nm.

Although individual fluorescent probes are localized within the SMS imaging scheme,
counting fluorophores is not as straightforward as it seems to be. Fluorophores that
have never been switched on during image acquisition will not be registered and there-
fore lead to undercounting. The simultaneous on-switching of multiple probes within a
diffraction-limited region is another source of underestimation [28]. On the other hand,
the photophysical properties of fluorophores can cause molecules to light up several times
during image acquisition. This so-called blinking leads to multiple localizations of the same
molecule, thereby counting that fluorophore several times.

A lot of effort has been put especially into resolving the overcounting problem, for
example by determining the time interval τcrit between successive blinking events [28,29].
All localizations separated by times shorter than τcrit are assigned to one fluorophore. A
considerable limitation of this method is the need of a priori knowledge of kinetic rates,
which must be determined separately. In addition, these rates are not easily transferable
from one sample to another, since the photophysical properties of the dyes used in SMS
nanoscopy are usually highly dependent on the environment.

An approach to overcome this limitation deals with the stochastic nature of photophys-
ical effects by means of a continuous time aggregated Markov model [30]. This method is
not only able to determine the number of fluorophores but also the corresponding kinetic
constants. The same holds true for other Markov-based approaches [31,32]. All of these
approaches to counting fluorophores are based on the analysis of blinking events. Therefore,
they are prone to errors if individual events are not recognized. This is particularly relevant
when many fluorophores are present within a diffraction-limited region or when switching
takes place on timescales that are faster or in the range of the frame acquisition rate.

Here, we develop, for the first time, a fully data-driven approach to counting fluo-
rophores based on the analysis of time traces of fluorescence intensity. The central part
of our analysis is a hidden two-timescale Markov model (HTMM) [33], which describes
fluorophore switching on different timescales. It models fluorophore dynamics in fast
(within one frame) and slow (between different frames) regimes, and takes into account
the passage of photons through the microscope, their detection and the photo-electron
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amplification in the camera. This allows for the estimation of the fluorophore number
based on the camera data with little need for preprocessing. In particular, the HTMM does
not require a priori knowledge of the photokinetic rates, nor is it necessary to resolve or
recognize individual blinking events. It is not even necessary to analyze complete time
traces. Although we demonstrate its usability for the widely used Alexa Fluor 647 in a
slightly modified GSDIM/dSTORM application, it is conceptually not bound to a specific
dye or a group of dyes. Still, further computational challenges may have to be addressed
for other fluorophore choices.

2. Materials and Methods
2.1. Fluorescence Microscope

For imaging we used a modified inverted Leica DM IRE2 microscope equipped with
an oil immersion lens of a numerical aperture of 1.4 (UPLSAPO 100xO, Olympus). Two
continuous wave lasers provided the excitation (LightCube Revolution, 770, R 639 nm,
1.5 W, HB-Laser) and activation (OBIS 405 LX, Coherent) light of 639 nm and 405 nm wave-
length, respectively. Both laser beams were combined by a dichroic mirror (zt 442 RDC,
AHF analysentechnik). A safeguard slit confined the excitation and activation light within
the field of view of 33 µm × 33 µm. The intensities in the focal plane were 0.6 kW/cm2 for
excitation and 0.07 kW/cm2 for activation. For detection, the fluorescence was separated
from the excitation and activation light by a dichroic mirror (zt 642 rdc, AHF analysen-
technik). A band pass filter (705/100 ET, AHF analysentechnik) in front of the recording
EMCCD-camera (iXon 897, Andor) defined our detection bandwidth and a notch filter
(zet635NF, AHF analysentechnik) blocked residual excitation light. With an electronically
tunable bandpass filter (AOTFncC-VIS-TN, AA Optoelectronics) we reliably turned on the
excitation laser within a time window of ~10 µs which was important for our measurement
protocol. Images were acquired with the software Imspector (Max Planck Institute for
Biophysical Chemistry, Göttingen, Germany).

2.2. Sample Preparation

DNA origami: The microscope slides (VWR) and the cover slips (VWR) were wiped
with acetone (Morphisto, Offenbach am Main, Germany) and then cleaned by a plasma
cleaner (femto, diener electronic) in an oxygen environment for 30 min. To immobilize the
DNA origami structures (Gattaquant, Gräfelfing, Germany) we followed ’Immobilization
in a flow chamber’ [34].

Cell samples: Human dermal fibroblasts were seeded on cover slips and were incu-
bated at 37 °C and 5% carbon dioxide in cell culture medium. The cells were fixed with
ice-cold methanol for 5 min and were then fluorescently labelled using standard immuno-
labeling protocols. For this, a primary antibody against α-tubulin (T6074, Sigma-Aldrich
Chemie, Taufkirchen, Germany) and an appropriate secondary antibody conjugated to
Alexa 647 (Invitrogen A21236, Thermo Fisher Scientific, Dreieich, Germany) were used. For
imaging, the sample was mounted in imaging buffer on a cavity slide and sealed with a
two-component silicon glue (Twinsil, Picodent, Wipperfürth, Germany).

2.3. Imaging Buffer

For best performance of Alexa 647 we used a similar imaging buffer as reported in [35].
It consisted of 1M Tris-HCl ph 8.0 (Life Technologies, Darmstadt, Germany), glucose
oxidase 0.5 mg ml−1 (Sigma-Aldrich Chemie), catalase 40 µg ml−1 (Sigma-Aldrich Chemie),
glucose 10 (w/v)% (Sigma-Aldrich Chemie), βME 143 mM (Sigma-Aldrich Chemie) and
MgCl2 12.5 mM (magnesium chloride hexahydrate, Sigma-Aldrich Chemie). The buffer
was prepared just before measuring with Tris-HCL and catalase stored at 8 °C, glucose
oxidase stored at −20 °C and the βME stored at 20 °C.
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2.4. Measurement Protocol for Fluorophore Counting

We took care to protect the fluorophores on the DNA origami structures outside of
our field of view (FOV) from bleaching by a safeguard slit confining the excitation and
activation light within the field of view of 33 µm × 33 µm inside the observation plane.
After imaging the actual FOV, we turned off all lasers and moved the specimen ~120 µm
to a new FOV. Then we started a new measurement with the exposure time set to 15 ms
and a dead time of 500 µs between two frames. Within the first ~25 s the camera adjusted
to its background level while excitation and activation lasers were turned off. Then we
started the UV laser for ~5 s to activate all fluorophores before we turned on the excitation
laser. The excitation laser was timed to start ~50 µs after the EMCCD-camera began to
record a new frame. The measurement was terminated after a minimum of N = 14,060
excitation-illuminated frames were recorded.

2.5. Data Correction and Analysis

We corrected all our data for time and spatially dependent background as follows:
The first frame in which the specimen was illuminated by excitation light was used to
identify all pixels which detect higher signals due to origami structures, free fluorophores
or other sources. In a first step, these pixels were discarded for background determination
(Figure S1). A two dimensional polynomial of third degree

Pt(x, y) = a1x2 + a2y2 + a3xy + a4x + a5y + a6 + a7x3 + a8y3 + a9x2y + a10y2x (1)

was fitted to not discarded pixels for every frame t. Hence, Pt(x, y) is a time-dependent
but spatially averaged approximation for all locations (x, y) in the FOV (Figure S1). As
the counting analysis was performed locally on a 7 × 7 pixel sized evaluation region
and the exact regions were discarded for determination of Pt(x, y), we approximated the
background for each evaluation region by

Bt = Σ49
i=1Pt(xi, yi) + µ (2)

where µ is an additional correction factor specific to each evaluation region. It was de-
termined by plotting the Pt(x, y)-corrected fluorescence for each evaluation region in a
histogram and fitting a Gaussian with expectation value µ and standard deviation s to these
distributions (Figure S2). For the added traces (Figure 1E–H), a second µ was determined
on the accumulated data. Finally, the corrected fluorescence for each evaluation region was
calculated by

Yt = Yt,measured − Bt (3)

The corrected values Yt were then evaluated using the HTMM. Note that not every
frame t = 1, . . . , 14,060 was used for evaluation, but only a subset tj with j = 1, . . . , n of
frames according to

tj =

{
j for 1 ≤ j ≤ 20⌈
19 + (j− 19)β

⌉
for 20 < j ≤ n

(4)

where β =
log(N−19)
log(n−19) , N = 14,060 and n = 4000. This was done for computational

reasons: the runtime of the estimation procedure depends quadratically on the number n
of included frames.
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Figure 1. Single-molecule experiments. (a) First frame (t = 1) of a recording of DNA origami struc-
tures exhibiting one labeling position. (b) Background-corrected time traces of the three 7 × 7 pixel
sized evaluation regions indicated in A (white boxes). (c) Averaged trace and (d) corresponding
variance from 255 origami structures (blue). The red lines in (c,d) show the fit of the HTMM and the
theoretical variance, respectively. (e) Six traces (such as shown in b) were added at a time to generate
traces of known fluorophore number m. (f) Histogram of the estimated number of dye molecules
from 45 added traces modeling m = 6. (g) Same as (e) for m = 50. (h) Histogram of the estimated
number of dye molecules from 100 added traces modeling m = 50.

2.6. Number of Dark States Verification

We verified the number of dark states in the long-timescale model in analogy to
Lee [28]: Between two blinking events, the dye is in one of its dark states. Therefore, we
plotted the distribution of times between two events for 457 fluorescent traces of origami
structures internally labeled with a single Alexa 647 molecule in a histogram and checked
for the smallest number of exponential decays that adequately describes the histogram
(Figure S3).

2.7. Excess Relative Variance

In order to determine the excess relative variance σ2
e for Alexa 647 molecules in the

applied imaging buffer, we analyzed 266 background-corrected fluorescence traces of
single Alexa 647 molecules which were attached to DNA origamis structures by internal
labeling. For each trace, we first identified frames tblink, which belong to blinking events, by
thresholding such that Ytblink > µ + 3s, where {µ, s} were determined during background
correction. By then rejecting the first frame of each individual blinking event, we ensured
that the fluorophore was in its bright state at the beginning of all frames tblink. We calculated
the excess relative variance for each trace according to σ2

e = Var(Yt)
E(Yt)2 − 1

E(Yt)
, in which we

approximated E(Y) and Var(Y) by the mean and the variance of Ytblink , respectively. The
results were plotted in a histogram (Figure S4) and the central position of a Gaussian
fit to this histogram was then used as σ2

e in the calculation of the theoretical variance in
Figures 1d and S5.

2.8. Fitting Averaged Fluorescence Traces

We fitted a multi-exponential decay, Equation (8), to the average fluorescence measured
over several traces for Figure 1c. The coefficients αk and eigenvalues λk for k = 0, 1, 2 were
obtained by a least squares fit, weighted with the inverse standard deviations of the data
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set. The Levenberg-Marquardt algorithm was used for minimization and the initial values
were set to α = (20,000, 100, 10) and λ = (0.9, 0.999, 0.99999).

2.9. Pseudo Log-Likelihood Estimator

Our HTMM provides a stochastic process Yt that models the corrected time traces, de-
pending on a set γ = (m,E(Y), σe, α0,k, λk, . . .) of parameters that, besides the fluorophore
number m, describe the photophysical properties of the fluorescent probe. For an observed
time trace y = (yt)n

t=1, however, it is impossible to calculate the full log-likelihood ly(γ)
of a parameter choice γ directly, since the number of terms involved is too large. We
therefore simplify ly(γ) by using a pseudo log-likelihood, which arises from a second-order
approximation of Yt through a Gaussian process with the same expectation µt = E(Yt) and
temporal covariance Σtt′ = E[(Yt − µt)(Yt′ − µt′)]. The pseudo log-likelihood is given by

l̃y(γ) = −
1
2
[
(y− µ)Σ−1(y− µ) + log det Σ

]
(5)

and the free parameters in γ are jointly estimated by maximizing l̃y(γ) numerically for
given traces y. Note that not all parameters that are needed to formulate the full HTMM
are mentioned in this article, and that we employ a slightly different notation than in [33]
for the parameterization. Most prominently, E(Y) is called θ1 and the excess variance σ2

e is
denoted as θ3.

2.10. Simplified Estimator

In order to simplify the counting process, the pseudo log-likelihood estimator can
be approximated according to Equation (10). This requires determining Y1, the value of
the time trace for t = 1, and Ȳblink, the average brightness of a fluorophore per frame,
given it started the frame in its bright state. We determined Y1 from background-corrected
fluorescence traces, as depicted by the green star in Figure S6. Within the same traces, we
also identified suitable blinking events, e.g., black crosses in Figure S6. For this, frames tblink
were chosen for which Ytblink > µ + 3s, where {µ, s} were determined during background
correction. To ensure that only frames were used, in which the fluorophore started in the
bright state, the first frame of each blinking event was neglected (red dots in Figure S6).
In addition, we only considered frames tblink > 2000 to ensure that the blinking events
originate from a single fluorophore. Ȳblink was then calculated as the mean of Ytblink .

3. Results
3.1. Hidden Two-Timescales Markov Model

In SMS nanoscopy, a sample marked with a suitable dye is continuously illuminated
and the emitted fluorescence is imaged on an array detector. The detector records many
frames in a row at a constant exposure time texp. Within any selected region, the detected
fluorescence fluctuates over time as the dye molecules switch between several states during
image acquisition (Figure 2a,b).

Each fluorophore can be described by a diagram of states as depicted in Figure 2c.
Fluorescence is only emitted in the transitions from S1 to S0. All other states are “dark
states” and a fluorophore which enters the bleached state will never leave it. It is important
to note that the transition rates of the fluorophore span vastly different timescales, which
range from ∼1012 s−1 to min−1 or less. The exposure time of the detector, which typically
lies in the range of a few 10 ms, sets a natural time grid to the experiment. Changes which
occur on shorter timescales cannot be directly observed, while changes on longer timescales
can. Therefore, we describe the dynamics of such a fluorophore as a time-discretized
two-timescale Markov model. A short-timescale model treats fast dynamics on timescales
< texp and subsumes all involved states S1, S0 and DS (Figure 2c). A long-timescale model
treats slow dynamics on timescales ≥ texp. It consists of r + 1 states: the bright state which
reflects the net effect of running the short-timescale model for a time texp, and r “dark
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states”, namely the bleached state BL and r − 1 states DL. Note that states with similar
lifetimes can be combined into a single state (see Remark 1 in [33]).
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Figure 2. Fluorophore switching and diagram of states. (a) SMS (left) and widefield image (right)
of Alexa 647-labeled microtubulular network. The insets show the respective images of the marked
region (white box). The inset scale bar marks 500 nm. (b) During SMS imaging the fluorescence
signal, e.g., within the white dashed box in the inset of A, fluctuates. This is due to switching
of the fluorophore(s) between bright an dark states. (c) The general HTMM is separated into a
long-timescale and a short-timescale model. Dynamics on timescales < texp are subsumed in the
short-timescale model which is treated in the long-timescale model as a single bright state (orange).
Excited fluorophores emit either a fluorescence photon by a transition from S1 to S0 or enter the
short-lived dark state DS. The long-timescale model treats dynamics on timescales≥ texp and exhibits
the bright, one bleached (BL) and r− 1 dark states DL. Note that the bleached state can never be left
and that transitions between the dark states DL are not limited to the ones depicted by the dotted
arrows, but can occur between all states DL.

On the basis of this model, the background-corrected expectation value E(Yt) and vari-
ance Var(Yt) of the observable fluorescence Yt from m mutually independent fluorophores
within a selected region in the frames can be calculated (Theorem 4 in [33]):

E(Yt) = mE(Y)
r−1

∑
k=0

(να0,k + (1− ν)α1,k)λ
t−1
k (6)

Var(Yt) =
(
(σ2

e + 1)E(Y) + f 2 − 1
m
E(Yt)

)
E(Yt), (7)

where t is the index of the corresponding frame, E(Y) is the expectation value of detected
photons Y during one frame from a single fluorophore, given it started the frame in its
bright state, ν is the initial fraction of dye molecules occupying the bright state at the
beginning of the experiment, α0,k and α1,k are coefficients depending on the initial state
occupation and λk are the eigenvalues of the model’s transition matrix. Furthermore,
σ2

e = Var(Y)
E(Y)2 − 1

E(Y) is the excess relative variance of Y, which stems from the dark state in

the short-timescale model (i.e., σ2
e = 0 for no dark state DS) and f 2 is the excess noise factor

of the area detector (e.g., f 2 = 2 for an EMCCD camera [36]).

3.2. Model for Alexa 647 and Single-Molecule Experiments

To verify the capability of our approach experimentally, the HTMM has to be adapted
to the dye used. We decided on Alexa 647 because it is one of the most common dyes for
GSDIM or dSTORM imaging. As our imaging buffer contains β-mercaptoethanol (βME,
Materials and Methods), the long-timescale model for Alexa 647 exhibits two dark states
(Figure 3a): the triplet state (DL1) and an additional dark state (DL2) which is presumably
formed by thiol addition to the fluorophore [37]. The validity of this assumption was also
verified by examining whether the distribution of residence times in one of the dark states
can be described by a double exponential decay for single Alexa 647 molecules (Figure S3,
Materials and Methods). The existence of the dark state (DS) in the short-timescale model
is justified by an observed excess relative variance σ2

e > 0 in single-molecule time traces
(Figure S4, Materials and Methods).
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Figure 3. Photophysical model for Alexa 647 and imaging protocol. (a) The photophysical model for
Alexa 647 exhibits three dark states. DS accounts for the excess variance observed in single molecule
traces. DL1 and DL2 account for the triplet and an even longer living dark state respectively. (b) At
the beginning of the measurement all fluorophores are activated by UV-illumination. Recording
starts when the excitation laser is switched on. The first frames are used for counting only. Once the
blinking has become sufficiently sparse, the data is also used for sub-diffraction imaging.

Alexa 647 can be switched off and on by red and UV light respectively, and is most
likely in its bright state without illumination. Since it is beneficial for our analysis to know
the initial state occupation ν, we first applied 405 nm on-switching light (Figure 3b). Thus,
it can be safely assumed that all Alexa 647 molecules are in the bright state at the beginning
of the measurement (ν = 1 in Equation (6)), which is marked by the activation of the red
excitation laser and the simultaneous start of the data recording. As time progresses, Alexa
647 molecules may occupy any of the indicated states and accumulate in the long-living
dark and the bleached state. When enough fluorophores have entered these states such
that the molecules that are in their bright state are on average much more distant from
each other than the diffraction limit, their images can be discerned and thus localized. In
this case, the recorded data can not only be used for counting but also for sub-diffraction
imaging.

As ν = 1 and r + 1 = 4 in this Alexa 647 model, Equation (6) becomes

E(Yt) = mE(Y)
2

∑
k=0

α0,kλt−1
k =

2

∑
k=0

αkλt−1
k (8)

with αk := mE(Y)α0,k. This is a superposition of three exponential functions and has
in total eight parameters. Using the constraint ∑2

k=0 α0,k = 1 and applying the pseudo
log-likelihood approach from [33] to numerically determine E(Y), αk and λk (see Materials
and Methods), we can derive the number of fluorophores from Equation (8) for t = 1 (first
frame):

m =
∑2

k=0 αk

E(Y) . (9)

For the single-molecule experiments, we utilized 12-helix bundle DNA origami struc-
tures [34] which were internally labeled with a maximum of one Alexa 647-conjugated
staple strand. The origami structures were immobilized on a BSA-biotin-neutravidin coated
cover glass (Materials and Methods) and were spatially separated enough to be imaged
individually. For imaging we started the camera ∼30 s prior to the actual data acquisition
to allow its background level to stabilize. Additionally, we switched on the UV laser five
seconds before the excitation laser in order to activate all fluorophores. The on-switching
of the excitation was precisely synchronized to the image acquisition.

The first frame (t = 1) out of such a recording is shown in Figure 1a. Background-
corrected time traces were evaluated over 7 × 7 pixel sized regions centered on identified
origami structures (Figure 1a,b). The temporal evolution of the fluorescence intensity is
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excellently described by the HTMM, as can be seen from the averaged trace of 255 molecules
and the respective fit of Equation (8) for m = 1 (Figures 1c and S5). The theoretical variance,
which is calculated from the fit result using Equation (7) and σ2

e = 0.097 (Figure S4), agrees
very well with the actual variance of the traces (Figures 1d and S5). As the fluorophore is
certainly in the bright state at the beginning, the variance initially grows and then falls off
due to the increasing probability that the dye molecule is in a dark state or bleached.

Next, we verified that a known number of dye molecules is counted correctly using
the HTMM. Note that σ2

e was not kept fixed in this case, but was treated as a free parameter
during the estimation. First, we repeatedly added m = 6 traces which were randomly
selected from the 255 recorded traces (Figure 1e) and evaluated them by means of the
HTMM (Figure 1f). We repeated the verification also for m = 50 (Figure 1g,h). The counting
results show that m can be determined precisely, as the on average determined fluorophore
numbers of E(M̂6) = 7 resp. E(M̂50) = 52 are in good agreement with the number of
added traces.

3.3. Counting under Real Conditions

To validate the applicability of the HTMM also under real conditions, we increased
the number of dye-conjugated staple strands per DNA origami structure. As depicted in
Figure 4a,b, these origami structures have two marked areas which are 120 nm apart and
which each features a known number of labeling positions. We name these origami designs
n1/n2-d, where the first two numbers indicate the number of labeling positions per marked
area and the last number indicates the nearest neighbor distance between labeling positions.
The first design (2/2-28) exhibits therefore four labeling positions and within each area the
two labeling positions exhibit a mutual distance of 28 nm (Figure 4a). The second design
(3/3-14) has an additional labeling position in the center of each area which changed the
minimum mutual distance of labeling positions to 14 nm and the overall number of labeling
positions to six (Figure 4b). Since the traces are recorded directly and disturbing influences
such as background signal or detector noise do not cumulate, we expect the counting
to work even better than with the added single molecule traces. As the labeling yield p
is not 100%, the number of fluorophores per origami structure (k) should be binomially
distributed according to B(k|p, n = n1 + n2). Because unlabeled origami structures cannot
be detected and were therefore not analyzed, the counted number of molecules then
follows K ∼ B(·|p, n) conditioned on {K > 0}. As shown in Figure 4c,d, the determined
number of fluorophores of 380 (2/2-28) resp. 297 (3/3-14) analyzed origami structures
corresponds very well to a conditional binomial distribution with n = 4, p = 0.52 resp.
n = 6, p = 0.49. In addition, the counted number of dye molecules can easily be mapped to
the super-resolved image. It should be noted that the number of localizations per individual
fluorophore can vary greatly due to the statistic nature of the blinking events (Figure 4e,f).

Interestingly, using our recording protocol, the number of dye molecules can be
estimated relatively easily. For this, we substitute the summation over the coefficients αk
in Equation (9) by the value of the time trace for t = 1 and E(Y) by the average intensity
Ȳblink within the single molecule blinks:

m ≈ Y1

Ȳblink
(10)

According to the definition of E(Y) the fluorophore must be in its bright state at the
beginning of the frame which is generally not the case for the first frame of a blinking event.
We therefore neglected the first frame of such an event when determining Ȳblink (Materials
and Methods). The number of dye molecules according to this simplified estimator is also
shown in Figure 4.
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Figure 4. Design (a,b), dye molecule numbers (c,d) and superresolution imaging (e,f) for origami
structures exhibiting 4 (a,c,e) and 6 (b,d,f) labeling positions. (a,b) The origami structures feature two
marked areas (red), in which there are n1 and n2 labeling positions, respectively, at a nearest neighbor
distance d. (c,d) The blue and the red histograms show the results of the pseudo log-likelihood
and the simplified estimator respectively. The black circles correspond to the conditional binomial
distribution with (p = 0.52, n = 4) and (p = 0.49, n = 6). The parameter p was in both cases estimated
by fitting a binomial model to the histogram of the pseudo log-likelihood estimates. (e,f) For both
origami designs, two super-resolved images of representative origami structures as well as the
determined number of dye molecules of the pseudo log-likelihood estimator are shown. Scale bars
100 nm.

4. Discussion

In this study, we followed an entirely new approach to determine fluorophore numbers
in PALM/ STORM microscopy. In contrast to previous studies which evaluate blinking
events, we used a complete statistical model of the imaging process. Our model describes
the recorded time traces directly, which makes our approach insensitive to a number of
errors, such as the non-recognition or incorrect allocation of blinking events.

The principle idea behind the HTMM is to divide the state diagram of the fluorophore
in two parts: a long-time model captures the changes of long-living fluorophore states from
frame to frame, while a short-time model, which incorporates states with quick transitions,
determines the photon statistics for one frame. For estimation of the fluorophore number
and other model parameters, we use a pseudo-likelihood based approach, where the
HTMM is approximated by a Gaussian stochastic process [33].

The HTMM is extremely general and can easily be adapted to other dyes. Although the
diagram of states used is photophysically motivated, it does not have to strictly represent
the precise photophysics of the fluorophore. Rather, it represents a class of molecules, since,
for example, states with similar lifetimes can be combined into a single one. In addition,
dye molecules with the same number of states but with different transition rates can be
described by the same model, since all necessary parameters are solely estimated from the
experimental data.

Bringing the fluorophores into a well-defined initial state by means of an optimized
recording protocol can significantly simplify data evaluation, as fewer parameters have
to be determined. In addition, data analysis can be further simplified by only analyzing a
representative selection of time points. Here, for example, we only used 4000 out of the
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14,060 recorded frames for analysis, which reduced the required processing time accordingly.
Furthermore, the fluorophore number can also be assessed by using a simplified estimator,
which only requires knowledge of the intensity at the beginning of the experiment as well
as the average brightness of a blinking event.

Finally, we would like to note that the HTMM can also be easily applied to other forms
of fluorescence microscopy, such as widefield or confocal microscopy, as it does not depend
on the analysis of single fluorophore blinks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13030459/s1, Figure S1: First step of background correction;
Figure S2: Second step of background correction; Figure S3: Histogram of the time spent in one of
the dark states for single Alexa Fluor 647 molecules attached to DNA origami structures; Figure S4:
Histogram of excess relative variances calculated from background-corrected fluorescence traces of
single Alexa 647 molecules attached to a DNA origami structure; Figure S5: Average and variance
of 255 background-corrected time traces of single Alexa 647 molecules attached to a DNA origami
structure; Figure S6: Determination of Y1 and Ȳblink for the simplified estimator from a fluorescence
trace Yt.
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