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ABSTRACT Although the attention-based speech recognition has achieved promising performances,

the specific explanation of the intermediate representations remains a black box theory. In this paper, we use

the method to visually show and explain continuous encoder outputs. We propose a human-intervened force

alignment method to obtain labels for t-distributed stochastic neighbor embedding (t-SNE), and use them

to better understand the attention mechanism and the recurrent representations. In addition, we combine

t-SNE and canonical correlation analysis (CCA) to analyze the training dynamics of phones in the attention-

based model. Experiments are carried on TIMIT and WSJ respectively. The aligned embeddings of the

encoder outputs could form sequence manifolds of the ground truth labels. Figures of t-SNE embeddings

visually show what representations the encoder shaped into and how the attention mechanism works for

the speech recognition. The comparisons between different models, different layers, and different lengths

of the utterance show that manifolds are clearer in the shape when outputs are from the deeper layer of the

encoder, the shorter utterance, and models with better performances. We also observe that the same symbols

from different utterances tend to gather at similar positions, which proves the consistency of our method.

Further comparisons are taken between different epochs of the model using t-SNE and CCA. The results

show that both the plosive and the nasal/flap phones converge quickly, while the long vowel phone converge

slowly.

INDEX TERMS Attention-based model, t-distributed stochastic neighbor embedding, canonical correlation

analysis.

I. INTRODUCTION

The traditional techniques separate a speech recognition sys-

tem into a variety of modules. The system which is designed

by these techniques is grounded with many assumptions, and

some of the modules require expert knowledge. For example,

the acoustic model is trained in a frame-wise manner which is

based on the Markov assumption [1], and the decoding stage

needs a man-made dictionary to obtain hypothesizes [2].

To eliminate all potential unreasonable artificial designs

in the system, there raised a variety of methods that model

speech signals in an end-to-end way. The main task of

an end-to-end model is to create mappings between two

different sequences (input features and sequences of sym-

bols) with different lengths. The connectionist temporal

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Ntalampiras .

classification (CTC) model [3], [4] and the attention-based

model [5]–[7] are two typical successful explorations.

The CTC model inserts extra blank symbols to make the

length of the outputs consistent with the input sequences.

Although it is optimized at a sequence-level, it is still a variant

of the Markov model which is based on an independent

assumption [8].

The attention-based model is another important extension

of the end-to-end approach. It is always composed of an

encoder, an attention layer, and a decoder. The attention

mechanism is considered as mappings from the outputs of

the encoder to the inputs of the decoder states [9]–[11].

Since the number of input acoustic features is much larger

than the number of symbols in the label sequence, the atten-

tion weights are reflected as many-to-one connections in the

speech recognition.

Although there are other variants of end-to-end

models such as the transformer [12] and the neural
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transducer [13], [14], the attention layer is a basic struc-

ture for many end-to-end research. It is more interpretable

than other methods, and it achieves rather promising

results [5], [15], [16].

Nevertheless, the attention-basedmodel and its variants are

based on the deep learning theory, which is still a black box

in many applications. In image processing, people have suc-

cessfully uncovered a lot of interpretations on convolutional

neural network (CNN) [17]–[19]. However, understanding

intermediate outputs in speech recognition is challenging.

Speech signals only have short-term stability and are always

framed before modeling. Besides, there are too many vari-

ables embedded in speech signals, making it almost impos-

sible to recover the original speech signals from transformed

representations. As for the attention-based model, we would

like to explore the outputs from intermediate layers of recur-

rent neural network (RNN) and why attention mechanism

works for speech recognition.

II. RELATED WORKS

There have been many explorations toward interpreting

neural network outputs in the speech processing area.

Bai et al. [20] proposed to use linear discriminant analy-

sis (LDA) and t-distributed stochastic neighbor embedding

(t-SNE) to analyze 9-dimensional bottleneck features

(BNFs). Karita et al. [21] use t-SNE to visually show how fea-

tures are mixed or split with inter-domain loss. Kim et al. [22]

use t-SNE on high-level features to show the distribution of

emotional categories. Tang et al. [23] show temporal traces

of recurrent units with t-SNE at different layers. Google

Brain uses singular vector canonical correlation analysis

(SVCCA) [24] and projection weighted CCA [25] to compare

representational similarity between two different CNNs or

deep neural networks (DNNs), for better understanding of

the deep learning dynamics. Zhou et al. [26] proposes to

use finite state automaton (FSA) to learn intermediate output

structures of RNN.

Most of the previous research interpret on neural networks

within traditional techniques, with only a few researches

aiming for the end-to-end structure.

To better understand the intermediate representations and

the training dynamics of the attention-based model. First,

we apply t-SNE to the encoder outputs. Then, in order to

visualize those embeddings, we propose a human-intervened

force alignment method to obtain labels in the frame-level.

Finally, we try to understand the training dynamics using

CCA upon t-SNE embeddings. The analyze is done in a

phone-level.

We experiment on TIMIT andWSJ. The drawings of t-SNE

embeddings all show that the encoder of the attention-based

model clusters similar data points by the class of symbols

and form a manifold graph of sequential symbols. We further

experiment on comparing training dynamics using a com-

bined method of t-SNE and CCA. It shows that phones with

long tones are learned quickly while phones with short tones

converge slowly.

FIGURE 1. The structure of the joint CTC-attention model.

The structure is organized as follows: Section III intro-

duces our end-to-end models. Section IV describes the

algorithms of t-SNE and our force alignment method for

the attention-based model. Section V introduces how we

use CCA to analyze the training dynamics of the phones.

Section VI presents our experiments and analyzes the exper-

imental results. Finally, Section VII concludes the paper and

points out the potential future work.

III. MODEL DESCRIPTIONS

The target model we analyze in this paper is a joint CTC-

attention model. We study this hybrid model instead of a

pure attention-based model because it achieves better results

and shows great potential in the end-to-end speech recogni-

tion [27]–[29]. In this section, we describe the model briefly.

The joint model combines the CTC and the attention-based

model. It is composed of a shared encoder and a joint decoder,

and the structure is shown in Fig. 1.

The input features are normally acoustic features such as

MFCCs and filter banks. In our previous research, we demon-

strate that the performance gets better using high-level

features [29], [30].

In this paper, the components of the encoder are made of

bi-directional long short-term memory (BLSTM) layers and

convolutional layers. This follows configurations in typical

researches like [31], [32], so that our research could be rep-

resentative. The encoder transforms the input matrix X into

representations H by:

H = Encoder (X) (1)

For the joint CTC-attention model, the loss function L is a

linear combination of two parts:

L = λ1LCTC + (1 − λ1)Latermon, λ ∈ [0, 1] (2)

where λ1 is the linear weight of CTC loss.LCTC andLattention
are the losses for the CTC and the attention-based model

respectively.

Finally, the joint decoding also uses CTC to help provide

the most probable phone sequence S:

S = argmax {λ2αCTC + (1 − λ2) αatt } (3)

where λ2 is the linear weight of CTC. αCTC and αatt are

the hypothesis output from the CTC and the attention-based

model.
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IV. VISUALIZING ENCODER OUTPUTS USING T-SNE AND

FORCE ALIGNMENT

In an attention-based model, the attention layer is the most

interpretable part, as it tries to align between different rep-

resentations in sequential order. The decoder part is usually

a shallow network composed of few LSTM layers, and it

predicts phone/character sequences. For the encoder, it maps

the input features X into hidden representations H , which

we still have no clear analysis of what they really represent.

In this chapter, our proposed method uses t-SNE and force

alignment to help understand the encoder of the attention-

based model.

The encoder is usually composed of a few stacked BLSTM

layers. On some occasions, there are some convolutional

layers at the bottom of the network, but high layers are always

BLSTM. Even if the network is appliedwith resolution reduc-

tion, it still outputs high-dimensional vectors. In order to

visualize those representations, we use t-SNE to narrow the

output layer to 2 nodes to have a direct view of an encoder

space.

Upon SNE, t-SNE could alleviate both the crowd-

ing problem and the optimization problems. Denote by

H = {h1,h2 . . . ,hT } where T is the number of data points.

Each of the vectors isK -dimensional output from the encoder.

Denote Y =
{

y1, y2 . . . , yT
}

as the set of low-dimensional

t-SNE embeddings (with a size of T × 2), it is obtained by:

Y = TSNE (H) (4)

Here TSNE (·) represents for the t-SNE transformation

operation. The details of the t-SNE algorithm could be found

in [33], and we do not describe it here.

To clear visualize all the t-SNE embeddings and find pat-

terns for them, the labels of all data points are required.

However, there is no explicit alignment for each frame in

the attention-based model since the loss is optimized in an

utterance-level.

In this section, we propose a modified force alignment

method for the attention-based model. The alignments come

from the attention weights. Given an attention weights matrix

W which is organized by T rows and N columns in an

attention-based model, T and N respectively represent for

the number of input features (data points) and the number

of symbols in one utterance. First, we apply a greedy search

to the weights matrix to obtain raw alignments. Denote by

L = (L1,L2 . . . LN ) where L is the raw alignments and Li is

the ith symbol in L. Then Li is calculated as:

Li = argmax
j

(W (i, j)) (5)

where W (i, j) is the element in the ith row and the jth column

ofW .

However, there are mistakes that are mainly located at the

beginning and the ending of a label sequence due to padding.

We take an example from TIMIT, where the labels for each

utterance are started and ended with ‘‘sil’’. The ground truth

label of ‘‘sil eh nw ah dx ay z dh eyw er sil’’ will become ‘‘sos

sil eh n w ah dx ay z dh ey w er sil’’ after adding a symbol of

‘‘sos’’ at the beginning when it is predicted from an attention-

based model. The beginning of the raw alignments looks like

‘‘sos sos sos sos sil sil sos sos sil sil eh eh . . . ’’. It is obvious

that ‘‘sos’’ and ‘‘sil’’ should not appear in an alternate order.

Therefore, we implement the following rules to correct the

raw alignments for TIMIT:
a. Alignments should be started with a few ‘‘sos’’, and

followed with a few ‘‘sil’’;

b. Alignments should be ended with a few ‘‘sil’’;
We make a few modifications upon alignment method

according to each rule: 1) all symbols that present before the

first ‘‘sos’’ should be changed into ‘‘sos’’; 2) all symbols that

present after the first ‘‘sil’’ and at the same time present before

the first non-‘‘sil’’ symbol in the corresponding ground truth

labels should be changed into that non-‘‘sil’’ symbol;

For WSJ, the ground truth label for each utterance does

not start and end with ‘‘sil’’. Their models are supervised by

characters. The problem of raw alignments in WSJ mainly

lies in both ends. We only need to make sure the alignments

for each utterance are started with a few ‘‘sos’’, and the ‘‘sos’’

at the end due to padding should be changed into.

Note that human interventions only correct naïve mistakes

for raw alignments. It may not be accurate, but it would be

better for visualizing andwould not be worse than the original

raw alignments. After these post-processing, the alignments

of each frame in the attention-based model are obtained,

which will be quite helpful in visualizing t-SNE embed-

dings. After the t-SNE transformation and force alignment,

the embeddings of the encoder outputs could be drawn, with

the first and the second t-SNE components correspond to the

horizontal and vertical axis.

V. ANALYZING PHONE DYNAMICS USING CCA

The SVCCA method is a powerful tool to compare two

different sets of representations output from two different net-

works. However, in the attention-based model, we are more

interested in analyzing the dynamics of localities instead of

the representation of the whole utterance. It will not be easy to

conclude over so many characters (including many irregular

characters) without proper categorizations, therefore, we only

aim for models that are supervised by phones which can be

categorized by phonetics.

We divide the whole utterance into several segments. Each

segment is composed of identical phones. The CCA com-

parison is applied between two embeddings output from two

respective models. This is shown in Fig. 2. In order to avoid

meaningless computation for each phone, at least the number

of data points should be larger than the output dimensions.

Therefore, we first implement t-SNE to reduce dimensions

for object outputs. The schematic flow of this is shown

in Fig. 3.

We then calculate CCA coefficients for each phone. Denote

Y1 and Y2 as two different encoder output representations for
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FIGURE 2. Computing similarities for phones in the utterance.

FIGURE 3. Comparisons on t-SNE embeddings using CCA.

one phone. They both have the same size of Tn × 2, where

Tn denotes the length of the segment. We first compute their

covariance matrix Cov(Y1,Y2), and it is composed of four

blocks:

Cov(Y1,Y2) =

[

CY1Y1
CY1Y2

CY2Y1
CY2Y2

]

(6)

We rescale each block of the matrix to get four new matri-

ces to make CCA computation more stable:


















C1 = CY1Y1
/max

(
∣

∣CY1Y1

∣

∣

)

C2 = C3 = CY1Y2
/

√

max
(
∣

∣CY1Y1

∣

∣

)

· max
(
∣

∣CY2Y2

∣

∣

)

C4 = CY2Y2
/max

(∣

∣CY2Y2

∣

∣

)

(7)

Then, through SVD, the diagram matrix is obtained by:

U · S · V = SVD
(

C−1
1 ⊙ C2 ⊙ C−1

4

)

(8)

where · represent for the matrix multiply operation and ⊙ is

an element-wise dot operation.

Let Sn = (S1, S2) denote the CCA coefficients of the nth
segment which is composed of identical symbols. Each ele-

ment represents the CCA similarity of each t-SNE embedding

dimension. Denote the similarities of the nth segment as Cn,

it is then calculated by the mean of Sn:

Cn =
S1 + S2

2
(9)

Since we have a set of 2-dimensional vectors after t-SNE

clustering, the number of continuous identical symbols in the

alignments should be larger than 2. This is because CCA

produces meaningless representations of symbols when the

number of data points is less than the number of feature

dimensions. Therefore, we make an extra modification rule

for raw alignments besides rules a & b when doing CCA:

c. Each symbol should be present at least three times in a

row in alignments; otherwise, theywill be abandoned for

CCA comparison.

Finally, the whole procedure is concluded below:

Step 1: obtain output matrix A and B from attention-based

encoder A and B respectively.

Step 2: applying t-SNE to output matrix A and B, and get

embedding matrix A and B.

Step 3: obtain force alignments (based on rules of a, b, and

c) for both embedding matrices, and divide the whole utter-

ances into several sequences with different identical symbols.

Step 4: compute Cn between two embedding matrices for

each segment of consecutive identical symbols (as is shown

in FIGURE 2).

Step 5: statistic values for all Cn, and evenly divide them

into ten intervals (ranged from 0 to 1). Note that for the

segments which are composed of the same alignments, they

are merged for statistics. When more values are in intervals

that are close to 1, it indicates that the phone converges

quickly.

VI. EXPERIMENTS AND ANALYSIS

In this paper, we build models on TIMIT andWSJ. The setups

for two corpora follow the settings in [30]. Utterances from

the test set are selected for showing t-SNE embeddings and

CCA comparisons.

A. DESCRIPTIONS OF SPEECH RECOGNITION MODELS

We first introduce details of target models and their perfor-

mances. In order to better understanding the attention-based

models, we choose typical models to experiment on.

For TIMIT, we choose our best-performedmodel in [29] of

our previous work. The model is a joint CTC-attention model

trained on 120-dimensional high-level features (the original

40-dimensional features with delta and delta-delta compo-

nents concatenated). The high-level features are extracted

through multi-lingual training and transfer learning, with

dimension-reduction using convex nonnegativematrix factor-

ization (CNMF) [34]. The multi-lingual resource we use is

from Voxforge Italian, German, French, and Spanish. For the

structure, the encoder has 3 BLSTM layers in the CTC part

and 2 BLSTM layers in the attention part with 320 units in

each layer and direction. Dropout is applied on both BLSTM

and attention layers with a rate of 0.2. The attention layer

VOLUME 8, 2020 24361
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TABLE 1. Recognition results of TIMIT and WSJ.

is location-based, with 320 units. The decoder is a 1-layer

LSTM with 300 units. The system is rescored by an RNN

languagemodel (RNN-LM)with a weight of 0.2.We evaluate

the recognition results by phone error rate (PER), and list

them in TABLE 1.

The second model is trained with 120-dimensional high-

level features, which is also concatenated with delta compo-

nents as it is in TIMIT. However, what is different is that these

CNMF features are extracted from DNN that is only trained

with the target language. The rest settings are the same as in

TIMIT.

For WSJ, we choose two different models. The first model

is trained on 83 filter banks with no delta components. The

encoder is a 6-layer BLSTM stacked over a CNN. There

are 320 units in each direction and layer in BLSTMs, and

then they are projected to 320 units. The dropout rate for

the encoder is 0.2. The CNN is composed of two identical

components, and each component includes consecutive two

convolutional layers stacked with a max-pooling layer (the

2D max-pooling size is (3, 3)). The convolutional parameters

of the CNN follow the settings in [30]. For the rest BLSTM

layers, the time resolution of the second and the third BLSTM

layer are both declined by half. The activation used is the

rectified linear unit (ReLU). The decoder is a 1-layer LSTM

with 300 units. We train a word-level RNN-LM [35] to help

decode all end-to-end systems. The RNN is a 1-layer LSTM

with 1000 units. The RNN-LM is trained using stochastic

gradient descent (SGD) for 20 epochs with a batch size of

100. The softmax layer predicts 65000-dimensional output

values, the vocabulary size is 65000.

B. VALIDATION FOR THE FORCE ALIGNMENT METHOD

Before trying to understand the encoder, we would like to

prove and show why we make some specific rules to fix

alignments.

1) VALIDATION IN TIMIT

We first take an utterance from the TIMIT test set as an

example. The name of the utterance is ‘‘mwew0_sx11’’, and

the ground truth label of it is ‘‘sil hh iy w el ax l aw er r eh r l

ay sil’’. The alignments are from system P1 (see definition

in Table 1, the same applies to P0, K0, and K1). The raw

alignments before modifications are:

‘‘eh sos sos sos sos sil sil sil sil sil sil sil sil sil sil sos hh hh

hh hh hh hh hh iy iy iy iy iy w w w w el el el el el el el el ax

ax ax ax ax ax ax ax ax ax ax ax ax l l l l l l l l l l l l l l aw aw

aw aw aw aw aw aw aw er er er er er er er er er er er er er er r

r r r r r r eh eh eh eh eh eh eh eh eh eh eh eh sos sos eh eh eh

eh eh eh eh eh r r r r r l l l l l l l l l l l l l l l l ay ay ay ay ay ay

ay ay ay ay ay ay ay ay sil sil sil sil sil sil sil sil sil sil sil sil’’.

The bolded alignments are obvious errors we have men-

tioned in Section IV. The alignments should be started by a

few ‘‘sos’’ followed with some ‘‘sil’’, and no ‘‘sos’’ should be

present in places other than the beginning. Then the modified

alignments are:

‘‘sos sos sos sos sos sil sil sil sil sil sil sil sil sil sil sil hh hh

hh hh hh hh hh iy iy iy iy iy w w w w el el el el el el el el ax

ax ax ax ax ax ax ax ax ax ax ax ax l l l l l l l l l l l l l l aw aw

aw aw aw aw aw aw aw er er er er er er er er er er er er er er

r r r r r r r eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh

eh eh eh eh eh r r r r r l l l l l l l l l l l l l l l l ay ay ay ay ay ay

ay ay ay ay ay ay ay ay sil sil sil sil sil sil sil sil sil sil sil sil’’.

The bolded symbols are corrected symbols.

2) VALIDATION IN WSJ

We also take an utterance fromWSJ eval92 as another exam-

ple. The name is ‘‘444c040p’’ and the ground truth label of

it is ‘‘T H E Y ’ R E <space> J U S T <space> W A I T

I N G <space> F O R <space> T H E <space> O T H E

R <space> S H O E’’. We achieve the raw alignments from

system K1:

‘‘T T sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos T T T T T T T T T T T T T T T

H HHH E Y ’ R R E E E <space><space> J J J J J J U U U

U S S S S S T T T T <space><space><space><space>

W W W W W A A A A A I I I T T T I I I I I N N

N G G G G <space><space> <space><space><space>

F F F O O R R R <space><space> T T T H H E E

<space><space><space><space> O O O O T T T T

H H H E E E R R R <space><space><space><space>

<space><space> S S S S S S H H H H H O O O O O O O

O O O O O E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T T T T’’.

We also bold obvious errors for raw alignments. The align-

ments should be started by a few ‘‘sos’’ followed with some

‘‘sil’’, and no ‘‘sos’’ should be present in places other than

the beginning. Then we bold the corrected symbols in the

modified alignments:

‘‘sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
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FIGURE 4. T-SNE on TIMIT utterance ‘‘mjdh0_si1984’’ for P0 (a) and P1 (b). Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos T T T T T T T T T T T T T T

T H H H H E Y ’ R R E E E <space><space> J J J J J J U U

U U S S S S S T T T T <space><space><space><space>

W W W W W A A A A A I I I T T T I I I I I N N

N G G G G <space><space> <space><space><space>

F F F O O R R R <space><space> T T T H H E E

<space><space><space><space> O O O O T T T T

H H H E E E R R R <space><space><space><space>

<space><space> S S S S S S H H H H H O O O O O O O

O O O O O E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E E E E E E E E E

E E E E E E E E E E E E E E E E E E E’’.

We correct these alignments to avoid as many errors as

possible so that it would be more accurate to find patterns

based on t-SNE figures. After modification, the location of

each symbol in the alignments exactly follows the order of

the symbols in the ground truth label.

C. VISUALIZING THE ENCODER OUTPUTS

We first take outputs from the last layer of the encoder.

The output vectors are 320-dimensional, corresponding to the

number of the units in the output project layer. Before t-SNE,

we first use K -means for initialization. The perplexity is 30

for t-SNE, which is an empirical setting. For each corpus,

we use alignments obtained from the best-performed model,

model P1. This is because it is most likely able to provide the

most accurate attention weights.

1) COMPARISONS BETWEEN THE ATTENTION-BASED

MODEL AND THE JOINT CTC-ATTENTION MODEL

To compare the attention-based model and the joint CTC-

attention model, we first take two utterances from the TIMIT

test set. The first one is utterance ‘‘mjdh0_si1984’’, which is

the shortest utterance in the set. Its ground truth label is ‘‘sil

eh n w ah dx ay z dh ey w er sil’’. The other one is a much

longer utterance ‘‘mjdh0_sx274’’, and the label is ‘‘sil k l ih

f w ix s uw dh vcl b ay dh ax l ix vcl zh er r iy ix s epi m ix s

aa zh sil’’. We draw t-SNE embeddings of ‘‘mjdh0_si1984’’

and ‘‘mjdh0_sx274’’ in Fig. 4 and Fig. 5 separately.

From Fig. 4 (a), we can see that model P0 fail to cluster

continuous identical alignments. For example, the symbol

‘‘eh’’ only appears once in the ground truth label, while the

alignments of ‘‘eh’’ are in separate areas.

However, Fig. 4 (b) shows that P1 separates different

symbols by into manifolds. The aligned embeddings are

basically shaped into a circle in sequential order, started by

‘‘sos. . . sill. . . eh. . . ’’ and ended by ‘‘w. . . er. . . sil’’.

However, Fig. 5 shows that both model P0 and P1 could

not explicitly separate different symbols for a long utter-

ance. Many different alignments overlap in similar areas

and the manifolds are not clear. But still, the joint model

P1 could separate symbols between ‘‘dh’’ and ‘‘eh’’, while

P0 could not. This also explains why attention-based mod-

els have difficulties decoding long utterances: the encoder

could not explicitly distinguish different symbols at different

locations, and this leads to vague attention weights to some

utterances.

We further experiment onWSJ, Fig. 6 (a)& (b) show t-SNE

results for a short utterance ‘‘440c040j’’ and a long utterance

‘‘447c040d’’ in model K1, and Fig. 7 (a) & (b) show t-SNE

results for a short utterance ‘‘440c040j’’ and a long utterance

‘‘447c040d’’ in model K0. Their ground truth labels are ‘‘I T

<space> WA S N ’ T <space> A <space> G I V E AWA

Y’’ and ‘‘<NOISE><space> A L S O <space> M E N T I

O N E D <space> W A S <space> A <space> C O N T R

O V E R S I A L <space> P R O P O S A L <space> T O

<space>DENY<space>THE<space>DEDUCT IO

N <space> F O R <space> TW E N T Y <space> P E R C

E N T <space> O F <space> C O R P O R A T E <space>

A D V E R T I S I N G: <space> C O S T S <space> A N

D <space> T O <space> R E Q U I R E <space> I N S T

E A D <space> T H A T <space> T H E Y <space> B E

<space> AMO R T I Z E D <space> O V E R <space> T

W O <space> Y E A R S’’ respectively.

Fig. 6 (a) and Fig. 7 (a) show good manifolds of the

encoder outputs, and it successfully separates the starting
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FIGURE 5. T-SNE on TIMIT utterance ‘‘mjdh0_sx274’’ for P0 (a) and P1 (b). Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 6. T-SNE on WSJ utterance ‘‘440c040j’’ (a) and ‘‘447c040d’’ (b) for K1. Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 7. T-SNE on utterance ‘‘440c040j’’ (a) and ‘‘447c040d’’ (b) for K0. Horizontal axis: the 1st dimension of t-SNE
embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

symbol and the ending symbol. However, the embeddings of

the long utterance in Fig. 6 (b) and Fig. 7 (b) are not prop-

erly divided. For example, the first symbol ‘‘<NOISE>’’ is

distantly located to the start symbol ‘‘sos’’, and is closely

located to irrelevant symbols like ‘‘O’’ and ‘‘V’’. This

reflects that the output vectors are not well sequentially

connected.

2) COMPARISONS AMONG DIFFERENT

NUMBER OF UTTERANCES

Next, we experiment with different number of utterances.

We have already known what one utterance is distributed

visually using t-SNE. We also would like to know what

patterns could be found when embeddings from multiple

utterances are shown together.
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FIGURE 8. T-SNE on 3 utterances (a) & 5 utterances (b) & 10 utterances (c) for K0. Horizontal axis: the 1st dimension of t-SNE embeddings; vertical
axis: the 2nd dimension of t-SNE embeddings.

FIGURE 9. T-SNE on ‘‘mjdh0_si1984’’ for P1 at epoch 4 (a) & 8 (b) & final epoch (c). Horizontal axis: the 1st dimension of t-SNE
embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

TABLE 2. utterance list of WSJ.

We respectively choose 3, 5, and 10 utterances from WSJ

eval92 set and draw their aligned t-SNE embeddings in Fig. 8.

The names of chosen utterances are listed in TABLE 2.

Although it is impossible to separate one manifold from

another in the figure, the embeddings with the same align-

ment symbols are basically located in the same area. The sym-

bols may be hard to recognize visually due to a limited size

and the overlapping problem, but the gathering of the same

colored symbols indicate that the encoder of the attention-

based model is well trained for temporal modeling.

3) COMPARISONS BETWEEN DIFFERENT ENCODERS

We also compare between encoders of K0 and K1. Note that

the number of the output vectors for K0 is only one-fourth

of the number of the output vectors for K1 due to the time

resolution reduction. However, we get similar conclusions for

K0. The embeddings of the short utterance still clearly form

a manifold of sequential symbols in the ground truth label,

while the embeddings of the long utterance are not shaped

into regular manifolds. This could explain why time reso-

lution reduction works for the attention-based model: many

neighbored frames share the same alignment, and keeping

one frame out of every two frames still enables them to form

a complete utterance.

4) COMPARISONS AMONG DIFFERENT EPOCHS

We further would like to know the differences among dif-

ferent training stages for the attention-based model using

our methods. We use the same utterances in TIMIT as we

used in previous experiments. Fig. 9 (a) & (b) & (c) respec-

tively show t-SNE results on P1 at epoch 4, epoch 8, and

the final epoch for the short utterance ‘‘mjdh0_si1984’’.

Fig. 10(a) & (b) & (c) respectively show t-SNE results on

P1 at epoch 4, epoch 8, and the final epoch for a longer

utterance ‘‘mjdh0_sx274’’.

For the short utterance ‘‘mjdh0_si1984’’, the aligned

embeddings show that the encoder forms better and bet-

ter manifolds of the sequence with the training goes on.

In Fig. 9(a), both ‘‘sos’’ and ‘‘sil’’ are distantly sepa-

rated, which should be located together. In Fig. 9(b), ‘‘eh’’

should follow ‘‘sos’’ and ‘‘sil’’, instead they are located

far away. From the results at the final epoch of the

model, none of the above problems exists. The aligned
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FIGURE 10. T-SNE on ‘‘mjdh0_sx274’’ for P1 at epoch 4 (a) & 8 (b) & final epoch (c). Horizontal axis: the 1st dimension of t-SNE embeddings;
vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 11. T-SNE on ‘‘444c040c’’ of the CNN outputs (a) & the first BLSTM layer outputs (b) & the third BLSTM layer outputs (c) &
the last BLSTM layer outputs (d) in K0. Horizontal axis: the 1st dimension of t-SNE embeddings; vertical axis: the 2nd dimension
of t-SNE embeddings.

embeddings show relative better manifolds which start from

‘‘sos. . . . . . sil. . . . . . eh. . . . . . ’’, and end at ‘‘. . . . . . er. . . . . . sil’’.

For the longer utterance ‘‘mjdh0_sx274’’, the case is

not the same with the short utterance. We could see that

embeddings are not sequentially ranged in all three sub-

figures. In Fig. 10 (a), ‘‘sos’’ symbols are separated. In both

Fig. 10 (b) and 9 (c), the beginning symbols are not well

ranged and they are overlapped with other symbols, even

with ending symbols like ‘‘zh’’. Besides, ‘‘sos’’ symbols

are distantly separated in both Fig. 10 (a) and 10 (c).

Since these show the dynamics of the encoder outputs, it can

be concluded that the improvements are less for a relative long

utterance than a short utterance during training.

5) COMPARISONS AMONG OUTPUTS OF DIFFERENT LAYERS

At last, we study outputs of different layers in the encoder, and

show them in Fig. 11. We choose model K0 to experiment on

since it has more layers than other models in our experiments.

The model K0 is composed of a CNN and a 6-layer BLSTM.

We compare outputs from the last layer of CNN in Fig. 11(a),
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TABLE 3. Ratios of cca coefficients values among different phone categories for P0.

FIGURE 12. Training accuracy of the model P0 (a) and P1 (b). Horizontal axis: the training epochs; vertical axis: the
training accuracy.

the first BLSTM layer in Fig. 11(b), the third BLSTM layer

in Fig. 11(c), and the last BLSTM layer in Fig. 11(d). We

take the utterance ‘‘444c040c’’ as an example to show t-SNE

results. Its ground truth label is ‘‘I N <space> A <space>

S E P A R A T E <space> I N C I D E N T <space> A

<space> U. <space> S. <space> D E S T R O Y E R

<space> F I R E D <space> M A C H I N E <space> G U

N <space> W A R N I N G <space> S H O T S <space>

A T <space> T W O <space> S M A L L <space> U N I

D E N T I F I E D <space> B O A T S <space> T H A T

<space> A P P R O A C H E D <space> T H E <space>

C O N V O Y’’.

First, we can see that the t-SNE embeddings of CNN

outputs are quite different than BLSTM outputs. The aligned

embeddings of CNN outputs are not fully spatially separated

in Fig. 11(a).

Especially, both the starting symbol ‘‘sos’’ and the ending

symbol ‘‘Y’’ are overlapped with many other symbols in

similar locations. For BLSTM layers, the spatial distribution

is more compact when the outputs are from a deeper layer.

The same aligned embeddings from the deeper BLSTM layer

are located more closely.

Overall, if the encoder embeddings are not clearly shaped

into manifolds of the ground truth label sequences, the model

would not have a good performance due to bad attentions.

Also, the embeddings that output from a CNN or a shallow

BLSTM layer could not produce clear manifolds indicate that

a certain number of recurrent layers are necessary for the

attention-based model.

D. ANALYSIS OF DYNAMICS OF PHONES

In this part, we experiment on the training dynamics of the

encoder using t-SNE and CCA. We experiment on TIMIT

since it is modeled with phones.

According to the method in chapter V, we first compute

CCA coefficients for each phone in each utterance. The

alignments are all obtained from the best-performed model

(model P1). The comparison is carried out between the epoch

4 and the final epoch. Fig. 12(a) & (b) respectively show the

accuracy of model P0 & P1 in different training stages. Epoch

4 is chosen as a representative for its low accuracy during the

early training stage.

We then statistic their values following the procedure in

section V, step 5. We respectively experiment on model

P0 and P1 and summarize their ratios in TABLE 3 and

TABLE 4. We summarize the phone labels into phone cat-

egories according to TABLE 5, which is based on [36]

and [37]. If the ratio that represents the higher domain of

values is large, it means that the phone category tends to

converge in an early stage during training.

Similar results are observed from both models. Almost

40% of the plosive and the nasal/flap embeddings vary in

a limited scale after epoch 4. The strong fricative, weak

fricative, semi-vowel, and short vowel have almost the same

distributions for ratios of CCA coefficient values, indicating

that their dynamics are similar through the whole training

period. The long vowel does not have large ratios for higher

domains comparing with other phone categories. They con-

verge slowly during training.
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TABLE 4. Ratios of CCA coefficients values among different phone categories for P1.

TABLE 5. Phone categorization.

The fast-convergent phone such as the plosive or the

nasal/flap belongs to burst voices, while the slow convergent

phone like the long vowel has a long vocal duration, and

has tonal slippage. As is known, the attention-based model

is difficult at decoding long sentences [38]–[40], we further

demonstrate that the attention-based model is also difficult at

modeling phones with long tones in the speech recognition.

However, what should be emphasized is that the con-

vergent speed does not necessarily have a causal correla-

tion to the classification accuracy of that phone category.

The conclusions drawn from our CCA experiment are only

helpful for understanding the training dynamics of phones,

and are potentially useful for further improvements upon the

attention-based model.

VII. CONCLUSION

In order to better understand the attention-based model, we

propose to use a human-intervened force alignmentmethod to

align the t-SNE embeddings of the encoder outputs. In addi-

tion, we propose a method of combining t-SNE and CCA

to analyze the training dynamics of phone categories in the

attention-based model. Examples from both TIMIT and WSJ

validate the necessity of human interventions during aligning.

The aligned embeddings of the encoder outputs are shaped

into manifolds of the ground truth label sequences visually,

demonstrating the effectiveness of the attention mechanism

in speech recognition. Outputs that come from the deeper

layer, the shorter utterance, or the better-performed models

in speech recognition, tend to produce clearer manifolds.

Besides, embeddings with the same aligned symbols tend

to gather at similar positions when multiple utterances are

drawn together. This proves the consistency of our method.

Further experiments on analyzing the phone dynamics show

that the long vowel phone tends to converge slowly, while the

plosive and the nasal/flap phone converge quickly.
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