Towards Understanding Mechanisms Governing Cytotoxicity of Metal Oxides Nanoparticles: Hints from Nano-QSAR Studies

A. Gajewicz^a, N. Schaeublin^b, B. Rasulev^c, S. Hussain^b, D. Leszczynska^d, T. Puzyn^a and J. Leszczynski^{c^{*}}

 ^a Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
^b Biological Interaction of Nanomaterials, Applied Biotechnology Branch, Human Effectiveness Directorate 711th, Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base OH, USA
^c Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, Jackson MS, USA
^d Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering Jackson State University, Jackson MS, USA

Supplementary material

*Corresponding author phone :phone: +1 601 979 3723; fax: +1 601 979 7823; e-mail: jerzy@icnanotox.org

Symbols and definitions of all calculated molecular descriptors

Symbol	Definition of molecular descriptor	Included in the model?								
	QUANTUM - MECHANICAL DESCRIPTORS									
ΔH _f c	Standard enthalpy of formation of metal oxide nanocluster	Yes								
TE	Total energy	No								
EE	Electronic energy	No								
Core	Core–core repulsion energy	No								
SAS	Solvent accessible surface	No								
НОМО	Energy of the Highest Occupied Molecular Orbital	No								
LUMO	Energy of the Lowest Unoccupied Molecular Orbital	No								
η	Chemical hardness	No								
S	Total softness	No								
Eg	HOMO-LUMO energy gap	No								
μ	Electronic chemical potential	No								
Ev	Valance band	No								
Ec	Conduction band	No								
Xc	Mulliken's electronegativity	Yes								
Hard	Parr and Pople's absolute hardness	No								
Shift	Schuurmann MO shift alpha	No								
Ahof	Polarizability derived from the heat of formation	No								
Ad	Polarizability derived from the dipole moment	No								
	IMAGE DESCRIPTORS									
A	Area	No								
V	Volume	No								
d _s	Surface diameter	No								
d _{V/m}	Volume/mass diameter	No								
d _{Sauter}	Volume/surface diameter	No								
A _{R_x}	Aspect ratio X	No								
A _{R_y}	Aspect ratio Y	No								
P _x	Porosity X	No								
P _Y	Porosity Y	No								
Ψ	Sphericity	No								
f _{circ}	Circularity	No								

Crystallographic data utilized to construct the metal oxides clusters

Metal oxide	Reference
Al ₂ O ₃	Kondo, S., Tateishi K., Ishizawa N., Structural Evolution of Corundum at High Temperatures. Japanese Journal of Applied Physics, 2008. 47: p. 616-619
Bi ₂ O ₃	Cornei, N., Tancret N., Abraham F., Mentré O., New epsilon-Bi2O3 metastable polymorph. Inorganic Chemistry, 2006. 26 : p. 4886- 4888.
CoO	Saito, S., Nakahigashi K., Shimomura Y., X-Ray Diffraction Study on CoO. Journal of the Physical Society of Japan, 1966. 21: p. 850- 860.
Cr ₂ O ₃	Finger, L.W., Hazen R.M., Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics, 1980. 51 : p. 5362-5368
Fe ₂ O ₃	Hill, A.H., Jiao F., Bruce P.G., Harrison A., Kockelmann W., Ritter C., Neutron Diffraction Study of Mesoporous and Bulk Hematite, α- Fe2O3. Chemistry of Materials, 2008. 20 : p. 4891–4899.
In ₂ O ₃	Prewitt, C.T., Shannon R.D., Rogers D.B., The C Rare Earth Oxide-Corundum Transition and Crystal Chemistry of Oxides Having the Corundum Structure. Inorganic Chemistry, 1969. 8: p. 1985-1993.
La ₂ O ₃	Wu, B., Zinkevich M., Aldinger F., Wen D., Chen L., Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 2007. 180 : p. 3280-3287.
Mn ₂ O ₃	Norrestam, R., Ingri N., Östlund E., Bloom G., Hagen G., alpha-Manganese(III) Oxide a C-Type Sesquioxide of Orthorhombic Symmetry Acta Chemica Scandinavica, 1967. 21 : p. 2871-2884.
NiO	Shimomura, Y., Kojima M., Saito S., Crystal structure of ferromagnetic nickel oxide. Journal of the Physical Society of Japan, 1956. 11: p. 1136-1146.
Sb ₂ O ₃	Whitten, A.E., Dittrich B., Spackman M.A., Turner P., Brown T.C., Charge density analysis of two polymorphs of antimony(III) oxide. Dalton Transactions, 2004. 7: p. 23-29.
SiO ₂	Martinez, J.R., Palomares-Sanchez S., Ortega-Zarzosa G., Ruiz F., Chumakov Y., Rietveld refinement of amorphous SiO2 prepared via sol–gel method. Materials Letters, 2006. 60: p. 3526–3529.
SnO₂	Gracia, L., Beltrán A., Andrés J., Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. The Journal of Physical Chemistry B, 2007. 111 : p. 6479-6485.
TiO ₂	Swamy, V., Dubrovinsky L.S., Dubrovinskaia N.A., Langenhorst F., Simionovici A.S., Drakopoulos M., Dmitriev V., Weber H.P., Size effects on the structure and phase transition behavior of baddeleyite TiO2. Solid State Communications, 2005. 134 : p. 541–546.
V ₂ O ₃	Rozier, P., Ratuszna A., Galy J., Comparative structural and electrical studies of V2O3 and V2-xNixO3 (0 <x<0.75) 1236-1242.<="" 2002.="" 628:="" allgemeine="" anorganische="" chemie,="" fur="" p.="" solid="" solution.="" td="" und="" zeitschrift=""></x<0.75)>
WO ₃	Woodward, P.M., Sleight A.W., Vogt T., Ferroelectric Tungsten Trioxide Journal of Solid State Chemistry, 1997. 131 : p. 9-17.
Y ₂ O ₃	Santos, C., Strecker K., Suzuki P.A., Kycia S., Silva O.M.M., Silva C., Stabilization of alpha-SIALONs using a rare-earth mixed oxide (RE2O3) as sintering additive. Materials Research Bulletin, 2005. 40 : p. 1094-1103.
ZnO	Singhal, R.K., Samariya A., Xing YT., Kumar S., Dolia S.N., Deshpande U.P., Shripathi T., Saitovitch E.B., <i>Electronic and magnetic properties of Co-doped Zn O diluted magnetic semiconductor.</i> The Journal of Alloys and Compounds, 2010. 496 : p. 324-330.
ZrO ₂	Naray-Szabo, S., Zur Struktur des Baddeleyits ZrO2. Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 1936. 94: p. 414-416.

List of calculated quantum - mechanical descriptors

Metal	∆H _f °	TE	EE	Core	SAS	номо	LUMO	η	S	Eg	μ	Ev	Ec	Xc	Hard	Shift	Ahof	Ad	Metal
oxide	kcal/mol	eV	eV	eV	A^2	eV	eV	eV	eV	eV	eV	eV	eV	eV	eV	eV	A^3	A^3	oxide
Al ₂ O ₃	-600.0	-2755.8	-11997.7	9242.0	307.16	-8.53	1.66	-5.09	-0.10	-10.18	-3.44	1.66	-8.53	3.44	5.09	-3.44	17.83	17.79	Al ₂ O ₃
Bi ₂ O ₃	-148.5	-2864.3	-11242.7	8378.4	251.06	-9.43	-1.25	-4.09	-0.12	-8.18	-5.34	-1.25	-9.43	5.34	4.09	-5.34	19.92	19.84	Bi ₂ O ₃
CoO	-786.8	-5378.2	-45466.7	40088.5	347.56	-9.21	-5.67	-1.77	-0.28	-3.55	-7.44	-5.67	-9.21	7.44	1.50	-8.25	45.50	45.50	CoO
Cr ₂ O ₃	-235.3	-2507.8	-10028.3	7520.4	167.30	-8.25	-0.46	-3.89	-0.13	-7.79	-4.36	-0.46	-8.25	4.36	3.89	-4.36	16.35	16.02	Cr ₂ O ₃
Fe ₂ O ₃	-378.5	-3480.9	-13651.6	10170.7	172.57	-8.33	-0.09	-4.12	-0.12	-8.24	-4.21	-0.09	-8.33	4.21	4.44	-4.57	12.33	12.32	Fe ₂ O ₃
In ₂ O ₃	-52.1	-1961.0	-6085.1	4124.1	191.20	-10.62	-2.95	-3.84	-0.13	-7.68	-6.78	-2.95	-10.62	6.78	3.84	-6.78	12.44	12.43	In ₂ O ₃
La ₂ O ₃	-157.7	-2486.1	-8602.4	6116.2	232.92	-10.91	-2.00	-4.45	-0.11	-8.90	-6.45	-2.00	-10.91	6.45	4.45	-6.45	4.95	4.95	La ₂ O ₃
Mn ₂ O ₃	-96.3	-5269.3	-34774.7	29505.4	321.38	-5.02	-4.98	-0.02	-27.78	-0.04	-5.00	-4.98	-5.02	5.00	0.02	-5.00	734.03	40.97	Mn ₂ O ₃
NiO	68.0	-4671.0	-22764.2	18093.2	179.35	-7.78	-1.16	-3.31	-0.15	-6.62	-4.47	-1.16	-7.78	4.47	3.04	-4.37	21.35	21.23	NiO
Sb ₂ O ₃	-206.7	-2504.8	-10756.3	8251.5	255.24	-7.96	-0.96	-3.50	-0.14	-7.00	-4.46	-0.96	-7.96	4.46	3.50	-4.46	23.21	23.12	Sb ₂ O ₃
SiO ₂	-618.3	-2764.2	-10201.7	7437.6	262.92	-7.90	0.28	-4.09	-0.12	-8.18	-3.81	0.28	-7.90	3.81	4.09	-3.81	31.58	31.54	SiO ₂
SnO ₂	-266.6	-3511.0	-17713.0	14202.0	359.32	-6.97	-2.18	-2.40	-0.21	-4.79	-4.57	-2.18	-6.97	4.57	2.40	-4.57	34.22	34.14	SnO ₂
TiO ₂	-1492.0	-2782.9	-12685.1	9902.2	271.58	-7.08	-2.73	-2.18	-0.23	-4.36	-4.91	-2.73	-7.08	4.91	2.14	-4.33	49.54	24.94	TiO ₂
V ₂ O ₃	-139.5	-2168.1	-7623.9	5455.8	206.12	-5.81	-0.66	-2.58	-0.19	-5.15	-3.24	-0.66	-5.81	3.24	2.58	-3.24	26.36	26.22	V ₂ O ₃
WO ₃	-715.4	-4310.9	-21750.8	17439.9	302.37	-6.84	-6.61	-0.11	-4.41	-0.23	-6.73	-6.61	-6.84	6.73	0.11	-6.73	40.16	39.79	WO ₃
Y ₂ O ₃	-135.3	-2179.8	-9171.1	6991.3	636.97	-5.19	-1.51	-1.84	-0.27	-3.68	-3.35	-1.51	-5.19	3.35	1.84	-3.35	107.00	106.98	Y ₂ O ₃
ZnO	-449.4	-1320.2	-3221.7	1901.5	153.42	-11.36	-5.30	-3.03	-0.16	-6.07	-8.33	-5.30	-11.36	8.33	3.03	-8.33	9.09	9.07	ZnO
ZrO ₂	-638.1	-1331.3	-3510.7	2179.4	178.99	-10.92	1.03	-5.97	-0.08	-11.95	-4.95	1.03	-10.92	4.95	5.97	-4.95	10.74	10.71	ZrO ₂

List of calculated image descriptors

Metal oxide	Α	V	$d_s = \sqrt{\frac{A}{\pi}}$	$d_{V/_m} = \sqrt[3]{\frac{6V}{\pi}}$	$d_{Sauter} = \frac{6V}{A}$	$A_{R_x} = \frac{d_{\min_x}}{d_{\max_y}}$	$A_{R_{_y}} = \frac{d_{\min_y}}{d_{\max_x}}$	$P_x = \sum_{i=1}^n x_i - x_j $	$P_y = \sum_{i=1}^n y_i - y_j $	$\psi = \frac{\pi^{1/3} 6 V^{2/3}}{A}$	$f_{circ} = \frac{4\pi A}{V^2}$	
	Area	Volume	Surface diameter	Volume/ mass diameter	Volume/surface diameter	Aspect ratio X	Aspect ratio Y	Porosity X	Porosity Y	Sphericity	Circularity	metal oxide
	[px]	[px]	[(px) ^{1/2}]	[(px) ^{1/3}]	[-]	[-]	[-]	[px]	[px]	[(px) ^{-1/3}]	[1/px]	
Al ₂ O ₃	1.11E+09	1.86E+06	1.88E+04	153	1.01E-02	0.568	0.072	5.15E+04	-3.16E+05	6.62E-05	4.00E-03	Al ₂ O ₃
Bi ₂ O ₃	9.80E+08	2.05E+06	1.77E+04	158	1.25E-02	0.402	0.055	-2.86E+05	-1.80E+05	7.94E-05	2.90E-03	Bi ₂ O ₃
CoO	1.14E+09	2.14E+06	1.90E+04	160	1.13E-02	0.429	0.061	2.11E+04	-2.42E+05	7.07E-05	3.10E-03	CoO
Cr ₂ O ₃	8.70E+08	1.52E+06	1.67E+04	143	1.05E-02	0.263	0.060	-3.42E+05	-5.51E+05	7.34E-05	4.70E-03	Cr ₂ O ₃
Fe ₂ O ₃	1.09E+09	1.78E+06	1.86E+04	150	9.80E-03	0.446	0.066	-1.18E+05	-3.18E+05	6.52E-05	4.30E-03	Fe ₂ O ₃
In ₂ O ₃	1.07E+09	2.04E+06	1.85E+04	157	1.14E-02	0.499	0.065	-1.68E+04	-2.81E+05	7.24E-05	3.20E-03	In ₂ O ₃
La ₂ O ₃	1.10E+09	1.91E+06	1.87E+04	154	1.05E-02	0.524	0.072	1.33E+04	-2.87E+05	6.79E-05	3.80E-03	La ₂ O ₃
Mn ₂ O ₃	1.09E+09	2.04E+06	1.86E+04	157	1.12E-02	0.479	0.064	7.57E+04	-2.46E+05	7.12E-05	3.30E-03	Mn ₂ O ₃
NiO	1.19E+09	1.96E+06	1.95E+04	155	9.90E-03	0.596	0.068	6.55E+03	-3.11E+05	6.36E-05	3.90E-03	NiO
Sb ₂ O ₃	9.60E+08	1.80E+06	1.74E+04	151	1.13E-02	0.241	0.055	3.49E+05	-3.72E+05	7.48E-05	3.70E-03	Sb ₂ O ₃
SiO ₂	9.70E+08	1.81E+06	1.76E+04	15	1.12E-02	0.421	0.065	1.25E+05	-4.13E+05	7.39E-05	3.70E-03	SiO ₂
SnO ₂	9.30E+08	1.68E+06	1.72E+04	148	1.09E-02	0.408	0.078	-6.23E+04	-4.28E+05	7.37E-05	4.10E-03	SnO ₂
TiO ₂	9.20E+08	1.77E+06	1.71E+04	150	1.16E-02	0.408	0.078	9.79E+03	-3.98E+05	7.70E-05	3.70E-03	TiO ₂
V ₂ O ₃	1.30E+09	2.20E+06	2.03E+04	161	1.02E-02	0.569	0.059	-5.81E+03	-2.20E+05	6.29E-05	3.40E-03	V ₂ O ₃
WO ₃	9.80E+08	1.72E+06	1.76E+04	149	1.06E-02	0.409	0.067	-1.67E+05	-4.30E+05	7.11E-05	4.10E-03	WO ₃
Y ₂ O ₃	1.28E+09	2.26E+06	2.02E+04	163	1.06E-02	0.633	0.058	1.02E+04	-1.89E+05	6.51E-05	3.10E-03	Y ₂ O ₃
ZnO	1.11E+09	1.95E+06	1.88E+04	155	1.05E-02	0.535	0.071	1.83E+03	-3.04E+05	6.80E-05	3.70E-03	ZnO
ZrO ₂	1.20E+09	2.22E+06	1.95E+04	162	1.11E-02	0.508	0.059	9.68E+03	-2.19E+05	6.86E-05	3.10E-03	ZrO ₂

* [px] - number of pixels

	Name	Definition of image descriptor*						
	Volume (V)	The sum of all non-zero pixels episodes, combining measures of contour elements, assuming that the contour is a square with a side equal to the unity						
Descriptors reflecting	Surface diameter $(d_{\rm s})$	The diameter of a sphere having the same surface area as the projected particle	$d_s = \sqrt{\frac{A}{\pi}}$					
nanoparticle size	Equivalent volume diameter (d _v)	The diameter of a sphere having the same volume as the projected particle	$d_{V_{m}} = \sqrt[3]{\frac{6V}{\pi}}$					
	Equivalent volume/surface (d _{Sauter})	The diameter of a sphere having the same volume to surface ratio as the projected particle	$d_{Sauter} = \frac{6V}{A}$					
	Area (A)	The sum of the all non-zero pixels (xi)	$A = \sum_{i=1}^{n} (x_i)$					
Descriptors reflecting nanoparticle	Porosity (P _x)	The sum of the relative differences in intensities between values of neighboring pixels (x, and y,) along the X axis	$P_x = \sum_{i=1}^n x_i - x_j $					
	Porosity (P _y)	The sum of the relative differences in intensities between values of neighboring pixels (xi and yi) along the Y axis	$P_y = \sum_{i=1}^n y_i - y_j $					
	Sphericity (Ψ)	The ratio of the surface area of a sphere - with the same volume as the particle considered - to the surface area of the particle	$\psi = \frac{\pi^{1/3} \delta V^{2/3}}{A}$					
Descriptors reflecting	Circularity (f_{circ})	The function of the surface area of the particle (A) and the particle's perimeter (V ²)	$f_{circ} = \frac{4\pi A}{V^2}$					
nanoparticle shape	Anisotropy ratio (AR _x)	The ratio of the minimum length of chord of the X axis and the maximum length of chord of the Y axis.	$A_{R_x} = \frac{d_{\min_x}}{d_{\max_y}}$					
	Anisotropy ratio (AR _y)	The ratio of the minimum length of chord of the Y axis and the maximum length of chord of the X axis.	$A_{R_{y}} = \frac{d_{\min_{y}}}{d_{\max_{x}}}$					

* Javad Sameni, Particle size analysis - Pharmaceutical material and product characterization. Available from: http://www.authorstream.com/Presentation/javadsameri/231114/particle-size-analysis-pharmaceutics-particles-sciencetechnology-ppt-proverpoint (accessed April 02, 2013).

Statistics for the model's coefficients

bi std. error t-value p-value intercept 2.47 ± 0.05 54.19 1.9 x 10⁻¹⁰ b₀ 1.4 x 10⁻³ coefficient ± 0.05 5.08 b_1 0.24 7.7 x 10⁻⁵ coefficient 0.39 ± 0.05 8.21 b_2

Results for internal validation with leave-one-out algorithm

				b _i	std. error	t-value	p-value	R ²	RMSE _c
		b ₀	intercept	2.54	± 0.05	49.26	4.7 x 10 ⁻⁹		
Model C	V-LOO_1	b ₁	coefficient	0.14	± 0.06	2.52	4.5 x 10 ⁻²	0.90	0.13
		b ₂	coefficient	0.41	± 0.06	7.30	3.4 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	R ²	RMSE _c
		b ₀	intercept	2.52	± 0.04	64.30	9.5 x 10 ⁻¹⁰		
Model C	V-LOO_2	b ₁	coefficient	0.24	± 0.04	5.85	1.1 x 10 ⁻³	0.95	0.10
		b ₂	coefficient	0.41	± 0.04	9.76	6.7 x 10⁻⁵		
		-		b i	std. error	t-value	p-value	R ²	RMSEc
		b ₀	intercept	2.50	± 0.05	52.73	3.1 x 10 ⁻⁹		
Model C	V-LOO_3	b ₁	coefficient	0.26	± 0.05	5.23	2.0 x 10 ⁻³	0.93	0.12
		b ₂	coefficient	0.41	± 0.05	8.11	1.9 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	R ²	RMSE _c
		b ₀	intercept	2.49	± 0.05	53.34	2.9 x 10 ⁻⁹		
Model C	V-LOO₋₄	b ₁	coefficient	0.23	± 0.05	4.72	3.3 x 10 ⁻³	0.94	0.11
		b ₂	coefficient	0.40	± 0.05	7.96	2.1 x 10 ⁻⁴		
		-		b i	std. error	t-value	p-value	R ²	RMSEc
		b ₀	intercept	2.48	± 0.05	48.65	5.1 x 10 ⁻⁹		
Model C	V-LOO₋₅	b ₁	coefficient	0.26	± 0.05	4.76	3.1 x 10 ⁻³	0.93	0.13
		b ₂	coefficient	0.40	± 0.05	7.46	3.0 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	R ²	RMSE _c
		b ₀	intercept	2.46	± 0.05	50.46	4.1 x 10 ⁻⁹		
Model C	V-LOO₋₀	b ₁	coefficient	0.26	± 0.05	5.05	2.3 x 10 ⁻³	R ² 0.93 R ² 0.94	0.12
		b ₂	coefficient	0.42	± 0.05	8.06	2.0 x 10 ⁻⁴		
				b i	std. error	t-value	p-value	R ²	RMSEc
		b ₀	intercept	2.45	± 0.05	48.50	5.2 x 10 ⁻⁹		
Model C	V-LOO ₋₇	b ₁	coefficient	0.24	± 0.05	4.46	4.3 x 10 ⁻³	R^2 R 0.95 R R^2 R 0.93 R 0.93 R 0.94 R 0.93 R 0.93 R 0.94 R 0.93 R 0.93 R 0.93 R 0.94 R 0.93 R 0.94 R 0.93 R 0.93 R 0.93 R 0.92 R 0.93 R 0.93 R 0.93 R 0.93 R 0.93 R 0.93 R 0.91 R	0.12
		b ₂	coefficient	0.42	± 0.05	7.82	2.3 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	R^2	RMSEc
		b ₀	intercept	2.43	± 0.05	47.38	5.9 x 10 ⁻⁹		
Model C	V-LOO₋₀	b ₁	coefficient	0.26	± 0.05	4.69	3.4 x 10 ⁻³	0.92	0.13
		b ₂	coefficient	0.37	± 0.05	6.73	5.2 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	R ²	RMSE _c
		b ₀	intercept	2.42	± 0.05	49.19	4.7 x 10 ⁻⁹		
Model C	℃V-LOO ₋₉	b ₁	coefficient	0.26	± 0.05	4.93	2.6 x 10 ⁻³	0.93	0.12
		b ₂	coefficient	0.41	± 0.05	7.84	2.3 x 10 ⁻⁴		
				b _i	std. error	t-value	p-value	\mathbf{R}^2	RMSE _c
		b ₀	intercept	2.37	± 0.05	52.40	3.2 x 10 ⁻⁹		
Model C	V-LOO ₋₁₀	b ₁	coefficient	0.26	± 0.05	5.30	1.8 x 10 ⁻³	0.91	0.11
		b ₂	coefficient	0.28	± 0.05	5.85	1.1 x 10 ⁻³		

The results of the Y-scrambling test

FIGURE S1

Insubria plot

