
Towards Understanding Modern Web Traffic

Sunghwan Ihm†

Department of Computer Science
Princeton University

sihm@cs.princeton.edu

Vivek S. Pai
Department of Computer Science

Princeton University
vivek@cs.princeton.edu

ABSTRACT

As Web sites move from relatively static displays of simple pages
to rich media applications with heavy client-side interaction, the
nature of the resulting Web traffic changes as well. Understanding
this change is necessary in order to improve response time, evalu-
ate caching effectiveness, and design intermediary systems, such as
firewalls, security analyzers, and reporting/management systems.
Unfortunately, we have little understanding of the underlying na-
ture of today’s Web traffic.

In this paper, we analyze five years (2006-2010) of real Web traf-
fic from a globally-distributed proxy system, which captures the
browsing behavior of over 70,000 daily users from 187 countries.
Using this data set, we examine major changes in Web traffic char-
acteristics that occurred during this period. We also present a new
Web page analysis algorithm that is better suited for modern Web
page interactions by grouping requests into streams and exploiting
the structure of the pages. Using this algorithm, we analyze var-
ious aspects of page-level changes, and characterize modern Web
pages. Finally, we investigate the redundancy of this traffic, us-
ing both traditional object-level caching as well as content-based
approaches.

Categories and Subject Descriptors

C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms

Measurement, Design, Performance

Keywords

Web Traffic Analysis, Web Caching, Content-based Caching

1. INTRODUCTION
The World Wide Web is one of the most popular Internet appli-

cations, and its traffic volume is increasing and evolving due to the
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popularity of social networking, file hosting, and video streaming
sites [29]. These changes and growth of Web traffic are expected
to continue, not only as the Web becomes a de facto front-end for
many emerging cloud-based services [47], but also as applications
get migrated to the Web [34].

Understanding these changes is important for overall system de-
sign. For example, analyzing end-user browsing behavior can lead
to a Web traffic model, which in turn can be used to generate a syn-
thetic workload for benchmarking or simulation. In addition, ana-
lyzing the redundancy and effectiveness of caching could shape the
design of Web servers, proxies, and browsers to improve response
times. In particular, since content-based caching approaches [28,
49, 50] are a promising alternative to traditional HTTP object-based
caching, understanding their implications for Web traffic and re-
source requirements (e.g., cache storage size) could help reduce
bandwidth and improve user experience.

While much research activity occurred a decade ago aimed at
better understanding the nature of Web traffic [9, 11, 35, 56, 63],
it subsided just as the Web changed significantly, and we must
therefore update our understanding of today’s Web traffic. How-
ever, there are several challenges. First, examining changes over
time requires large-scale data sets spanning a multi-year period,
collected under the same conditions. Second, earlier Web page
analysis techniques developed for static pages are not suitable for
modern Web traffic that involves dynamic client-side interactions
(e.g., Ajax [18]). Third, understanding the effectiveness of content-
based caching approaches requires full content data rather than just
access logs.

In this paper, we analyze five years (2006-2010) of real Web traf-
fic from a globally-distributed proxy system, which captures the
browsing behavior of over 70,000 daily users from 187 countries.
Using this data set, we examine major changes in Web traffic char-
acteristics that occurred during this period. We also present a new
Web page analysis algorithm that is better suited for modern Web
page interactions by grouping requests into streams and exploiting
the structure of the pages. Using this algorithm, we analyze var-
ious aspects of page-level changes, and characterize modern Web
pages. Finally, we investigate the redundancy of this traffic, us-
ing both traditional object-level caching as well as content-based
approaches.

Our contributions and key findings are the following:

High-Level Characteristics The rise of Ajax and video content
has impacted a number of different traffic measures. Ajax has
caused in increase in the sizes of JavaScript and CSS [19] objects,
and browsers have increased their simultaneous connection limit
to better support it, resulting in burstier traffic but also improved
client latency. Flash video (FLV) has grown to dominate video
traffic, pushing the share of other video formats lower, and also in-
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creasing bandwidth consumption. Ajax and JavaScript are heavily
used in user tracking and we find that analytics sites are reaching
an ever-widening fraction of Web users, with some sites being able
to track as much as 65% of our client population, which may have
privacy implications. In addition, we observe clear regional differ-
ences in client bandwidth, browser popularity, and dominant con-
tent types that need to be considered when designing and deploying
systems. Finally, we observe an increase in the number of comput-
ers per household over the years in Network Address Translation
(NAT) [59] usage, which is likely related to the scarcity of IPv4
addresses.

Page-Level Characteristics We have developed a new Web page
analysis algorithm called StreamStructure, and demonstrate that it
is more accurate than previous approaches. Using this algorithm,
we find that almost half the traffic now occurs not as a result of
initial page loads, but as a result of client-side interactions after the
initial page load. Also, the pages have become increasingly com-
plex in that both the size and number of embedded objects have
increased. Despite this increase, the page loading latency dropped
in 2009 and 2010 due to the increased number of simultaneous
connections in browsers and improved caching behavior of Web
sites. Furthermore, we quantify the potential reduction of page
loading latency from various tuning approaches, such as increasing
the number of concurrent connections, and prefetching/caching, via
simulations. Finally, we present a simple characterization of mod-
ern Web pages.

Redundancy and Caching We find two interesting trends in URL
popularity: 1) the popular URLs get more popular, and therefore
potentially improves caching, but 2) the long tail of the content is
also growing, and therefore potentially hurts caching. Also, we find
that content-based caching yields 1.8-2.5x larger byte hit rates than
object-based caching, and much larger caches can be effectively
exploited using intelligent content-based caching to yield nearly
ideal byte hit rates. Most of the additional savings of content-based
caching are due to partial content overlap – the redundancy across
different versions of an object as well as redundancy across differ-
ent objects. Finally, a small number of aborted requests (1.8-3.1%),
mostly video, can negatively impact object-based caching perfor-
mance because of its huge volume (12.4-30.8%). Worse, their vol-
ume would comprise a significant portion of all traffic (69.9-88.8%)
if they were fully downloaded.

The rest of this paper is organized as follows: in Section 2,
we describe the details of our data set. Section 3 examines the
major changes in high-level characteristics of Web traffic. Sec-
tion 4 presents the detailed page-level analysis with our new Web
page analysis technique, and Section 5 analyzes redundancy and
caching. Finally, we discuss related work in Section 6, and con-
clude in Section 7.

2. DATA SET

Data Collection We use traffic from the CoDeeN content distribu-
tion network (CDN) [62], a semi-open globally distributed proxy
that has been running since 2003, and serves over 30 million re-
quests per day from more than 500 PlanetLab [45] nodes. The term
“semi-open” means that while anyone can use CoDeeN by con-
figuring his or her browser, it only allows GET requests from the
general public, and limits other methods such as CONNECT, PUT,
or POST to only university-based users. When needed, the system
redirects user requests to other proxy nodes based on the load and
latency. Some requests are cache misses or uncacheable, and need
to be retrieved from the origin Web servers. CoDeeN also deploys

Country Year
2006 2007 2008 2009 2010

USA Requests (M) 33.5 40.3 24.5 23.2 14.4
Volume (GB) 391.2 627.2 338.2 316.2 261.5

# IPs (K) 19.1 21.8 13.6 13.3 12.9
# Users (K) 23.3 27.0 17.6 16.9 16.7

China Requests (M) 22.5 88.8 29.9 38.1 22.9
Volume (GB) 394.5 1,177.8 405.0 409.6 278.4

# IPs (K) 49.3 94.9 38.8 43.2 33.4
# Users (K) 53.9 109.7 45.1 51.8 41.9

France Requests (M) 2.2 3.9 3.3 3.6 3.3
Volume (GB) 21.6 45.8 33.6 42.9 50.5

# IPs (K) 3.6 5.1 3.2 3.7 5.1
# Users (K) 3.9 5.5 3.5 4.3 6.0

Brazil Requests (M) 1.5 4.5 2.0 3.9 7.1
Volume (GB) 16.2 54.8 22.8 44.1 100.2

# IPs (K) 1.4 8.6 3.3 3.1 9.5
# Users (K) 1.6 10.0 3.8 3.6 10.9

Total Requests (M) 59.6 137.5 59.7 68.8 47.7
Volume (GB) 823.5 1,905.6 799.6 812.8 690.6

# IPs (K) 73.5 130.4 58.9 63.3 61.0
# Users (K) 82.8 152.2 70.0 76.7 75.5

Table 1: Summary statistics for captured access logs, sampled

one month (April) per year.

an automatic robot detection mechanism and has rejected accesses
from malicious robots since 2006 [44].

Our data set consists of two parts. First, CoDeeN records all
requests not served from the client’s browser cache in an extended
W3C log format with timestamp, service time, request URL, method,
user agent, content type, referer, response code, and response size.
We use these access logs for examining any longitudinal changes
in Section 3, 4, and 5. In addition, we capture the full content of
the cache-miss traffic between the CoDeeN nodes and the origin
Web servers. Using this full content data, we evaluate both object-
based and content-based caching approaches, and analyze aborted
transfers in Section 5.

For this study, we consider the data from the five-year period
from 2006 to 2010. Due to the large volume of requests, we sam-
ple one month (April) of data per year. We only capture the full
traffic content in April 2010, and use only traffic logs in all other
years. After discarding non-human traffic, the total traffic volume
ranges from 3.3 to 6.6 TB per month, and it consists of about 280-
460 million requests from 240-360 thousand unique client IPs. The
number of users (unique client IP and browser user-agent string
pairs) ranges from 280 to 430 thousand, slightly larger than the
number of client IPs. The clients IPs originate from 168-187 coun-
tries and regions as determined using the MaxMind database [38],
and cover 40-60% of /8 networks, and 7-24% of /16 networks. The
total number of unique origin servers ranges from 820 thousand to
1.2 million.

We focus on the traffic of users from four countries from differ-
ent continents – the United States (US), Brazil (BR), China (CN),
and France (FR). This essentially generates multiple data sets from
different client organizations, and analyzing geographically dis-
persed client organizations enables us to discover common char-
acteristics of Web traffic across different regions as well as region-
specific characteristics. Table 1 shows summary statistics for these
countries. In general, the United States and China have larger data
sets than France and Brazil, mainly due to their larger client popula-
tion. The yearly fluctuation of traffic volume is due to the variation
of the number of available proxy nodes. Overall, our analysis of
four countries covers 48-138 million requests, 691-1906 GB traf-
fic, and 70-152 thousand users per month.
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Figure 1: Average client bandwidth: Client bandwidth gets improved over time.
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Figure 2: NAT usage: Most (83-94%) client IPs have only one user agent. The number gets slightly bigger over time due to an

increase in the number of computers per household.

Users and Content Our large-scale data set spanning many years
is much larger than the sets used in previous Web traffic research,
and has broader coverage than much previous work, which has typ-
ically been restricted to users from a particular university or com-
pany [6, 63]. While some self-selection is unavoidable since we
are measuring users of our own system, we have found that our
user population is quite diverse, covering people who want faster
Web access, unfiltered content, better routing, better privacy, and
other reasons.

As a high-level check on representativeness, we examine the
users of CoDeeN by looking at the User-Agent field in the ac-
cess log, and find that our global trends and regional variations
in browser and operating system usage are consistent with other
studies [60, 61]. Overall, Firefox and Microsoft Internet Explorer
(MSIE) account for more than 86% of the browsers in use over
the course of five years in all of the four countries, and more than
83% of the users’ operating systems are Windows. In some coun-
tries, we see a slightly higher share of Firefox than reported in other
studies, which we attribute to the existence of many Firefox Web
proxy addons that can use CoDeeN [23]. In most countries, we also
observe a decreasing share of MSIE due to the increasing share of
other browsers, such as Firefox and Chrome, with the exception of
China, which continues to show higher usage of MSIE and Win-
dows.

In addition, we investigate content that the users of CoDeeN
browse by examining the top sites in terms of the number of re-
quests. The results also correspond to other studies [5]. We observe
that globally-popular Web sites, such as Google, YouTube, Yahoo,
and Facebook, are commonly ranked high in all of the four coun-
tries. Furthermore, locally-popular Web sites also appear high in
the ranking. For example, these sites include craigslist.org,
go.com, and espn.com in the United States, baidu.com, qq.
com, and sina.com.cn in China, lequipe.fr, free.fr,
and over-blog.com in France, and globo.com, uol.com.
br, and orkut.com in Brazil.

3. HIGH-LEVEL CHARACTERISTICS
In this section, we analyze high-level characteristics of our Web

traffic data, looking at the properties of clients, objects, and Web
sites.

Connection Speed We estimate the client bandwidth by observ-
ing the download time for objects – from the time when CoDeeN
proxy node receives the request from a client to the time when the
proxy finishes sending the object to the client. To minimize the ef-
fect of link latency, we consider only those objects that are larger
than 1 MB. Figure 1 shows CDFs of average client bandwidth per
aggregated /24 IP address, but similar patterns exist when using
the 95th percentile of download time. Overall, we observe that
the client bandwidth is consistently increasing over time, despite
no significant change in PlanetLab’s own connectivity in that pe-
riod. Geographically, the speed of the United States and France is
faster than Brazil and China. This scarcity of bandwidth is partic-
ularly apparent in 2006, when we did not see any clients in Brazil
and China with download speeds exceeding 2 Mbps. Interestingly,
there still exist many slow clients with less than 256 Kbps, even in
the developed countries.

NAT Usage We analyze the use of Network Address Translation
(NAT) in Figure 2 where we present CDFs of the number of differ-
ent user agents per client IP address. The result shows that while
most (83-94%) client IPs have just one user agent, the number gets
slightly bigger over time. We attribute this increase to an increase in
the number of computers per household over the years, which im-
plies the scarcity of IPv4 addresses. The maximum number of user
agents per IP we observe is 69 in the United States, 500 in China
and 36 in Brazil. Our estimated number of NATs that have two or
more distinct hosts (6-17%) is lower than the numbers from other
studies that use client-side measurements or IP TTLs [15, 33, 37],
possibly due to methodology differences or from only some of the
hosts behind a NAT using the CoDeeN system.
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Figure 3: Maximum number of concurrent connections per user: We observe quite a big increase in 2010 due to the browsers

increasing the number of connections.
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Figure 4: Content type distribution changes from 2006 to 2010: We observe growth of Flash video, JavaScript, CSS, and XML.

Images are still dominating request traffic.

Maximum Concurrent Connections Figure 3 shows CDFs of
the maximum number of concurrent connections per user agent.
We observe quite a big increase in 2010 – the median number
grows from 4-5 in 2006 and 2008 to 6-7 in 2010. This increase
is mainly because the browsers change the default number of max-
imum simultaneous connections per server from 4 to 6 in starting
in 2008 [4, 51], largely to accommodate Ajax which usually re-
quires many simultaneous connections to reduce latency. In fact,
the default number specified in HTTP/1.1 is only 2 [22].

Content Type We observe a shift from static image-oriented Web
pages to dynamic rich media Web pages in Figure 4. It presents the
content type distribution changes from 2006 to 2010, connected by
arrows. The X axis is the percentage of requests, and the Y axis is
the percentage of bytes, both in log-scale.

First, we observe a sharp increase of JavaScript, CSS, and XML,
primarily due to the popular use of Ajax. We also find a sharp in-
crease of Flash video (FLV) traffic, taking about 25% of total traf-
fic both in the United States and Brazil in 2010, as it eats into the
share of other video formats. In addition, while the byte percent-
age of octet-stream traffic sees a general decrease, its percentage
of requests actually increases. This may be related to the custom
use of HTTP as a transport protocol for exchanging binary data in
many applications. Still, image traffic, including all of its subtypes,
consumes the most bandwidth.

Despite the growth of embedded images in Web pages, we do not
see a corresponding surge in their numbers in the traffic patterns.
We believe that this is due to the improved caching behavior of
many Web sites that separate the cacheable parts of their content
on different servers and use long expiration dates. As a result, most
of these images are served from the browser cache after the initial
visit to the Web site.

Object Size We find that the size of JavaScript and CSS to be in-
creasing steadily over time. As an example, Figure 5 (a) presents

CDFs of JavaScript sizes in France, and we show CDFs of CSS
sizes in China in Figure 5 (b), from 2006 to 2010. We omit the
similar results of other countries due to space constraints. The in-
creased code size of JavaScript and advanced CSS is likely related
to the increasing popularity of Ajax. In general, other content types
do not show consistent size changes over time.

While there seems to be no significant size changes over time in
video objects, we observe FLV objects are bigger than other video
in general. Figure 5 (c) compares the object size (CDF) of differ-
ent video types in the United States for 2010. Some video objects
(e.g., ASF) are very small in size and they are container objects
that do not contain actual video content. Once users fetch this kind
of container object, they contact media streaming servers that use
non-HTTP protocols such as RTSP [55] or RTP [54] for fetching
the content. The median size of such container objects is typically
less than 1 KB, while that of FLV, WMV, and MPEG is 1743 KB,
265 KB, and 802 KB, respectively.

Finally, while new video streaming technologies that split a large
video file into multiple smaller files for cacheability and perfor-
mance started gaining popularity in late 2009 and 2010 [1, 8, 41],
we do not see its wide deployment in our data set yet. With these
new technologies, we expect to observe a decrease in size of video
objects with an increasing number of requests. We plan to analyze
this case with more recent data set in the future.

Traffic Share of Web Sites We examine the traffic share of 1)
video sites 1, and 2) advertising networks and analytics sites 2 in
Figure 6. We consider the top 50 sites that dominate these kinds
of traffic. In Figure 6 (a), we observe that the advertising net-
work traffic takes 1-12% of the total requests, and it consistently
increases over time as the market grows [31]. In addition, we
find the volume of video site traffic is consistently increasing as

1e.g., youtube.com
2e.g., doubleclick.com and google-analytics.com
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Figure 5: Object size: The object size of JavaScript and CSS becomes larger. Flash video is bigger than other video.
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Figure 6: Top sites: Ads/video site traffic is increasing. A single top site tracks up to 65% of the user population.

shown in Figure 6 (b), taking up to 28% in Brazil for 2010. China,
with lower bandwidth, sees more still image traffic than video. Fi-
nally, we see that the single top site reaches a growing fraction
of all users over time in Figure 6 (c). All of the single top sites
by the number of client IPs during a five-year period are either a
search engine (google.com or baidu.com), or analytics site
(google-analytics.com), reaching as high as 65% in Brazil
for 2010, which may have implications for user tracking and pri-
vacy.

4. PAGE-LEVEL CHARACTERISTICS
In this section, we analyze our data with Web page-level details.

We first provide background on page detection algorithms and ex-
plain the problems with previous approaches in Section 4.1. In Sec-
tion 4.2, we present a new page detection algorithm called Stream-
Structure that is better suited for modern Web traffic analysis, and
also demonstrate it is more accurate than previous approaches. Us-
ing this algorithm, Section 4.3 examines the initial page character-
istics, analyzes page loading latency via simulations, and presents
a simple characterization of modern Web pages.

4.1 Previous Page Detection Algorithms
A common approach for empirically modeling Web traffic is to

reconstruct end-user browsing behavior from the access log data,
in which users repeatedly request Web pages. Once Web pages
(or main objects) are identified, we can derive relevant model pa-
rameters such as the number of embedded objects, total page size,
total page time, and inter-arrival time. Thus, detecting Web page
boundaries is crucial to the model accuracy.

Previous approaches for detecting page boundaries fall into two
categories. The first approach (time-based) is to use the idle time
between requests [9, 35, 56]. If the idle time is short enough (less
than a predefined threshold), the request is assumed to be generated
automatically by the browser, and it becomes an embedded object
of the previous Web page. Otherwise, the request is assumed to be
generated manually by the user’s click, and it becomes the main

object of a new Web page. The second approach (type-based) is
to use the content type of the object [17]. This approach simply
regards every HTML object as a main object, and any non-HTML
object as an embedded object of the previous main object.

Unfortunately, the complex and dynamic nature of the current
Web traffic blurs the traditional notion of Web pages, and the pre-
vious approaches do not work well. For example, client-side inter-
actions (e.g., Ajax) that usually have longer idle time would be mis-
classified as separate Web pages by the time-based approach. On
the other hand, the type-based approach would misclassify frames
in a single Web page as separate independent Web pages. As a re-
sult, these approaches would generate inaccurate traffic models if
applied to modern Web traffic. Worse, they have already been used
in hundreds of studies without validation.

4.2 StreamStructure Algorithm
To overcome the limitations of the previous approaches, we de-

velop a new page detection algorithm called StreamStructure, that
exploits the stream and structure information of Web pages. Our al-
gorithm consists of three steps – grouping streams, detecting main
objects, and identifying initial pages. Figure 7 depicts the defini-
tion of streams, Web pages, initial pages, main/embedded objects,
and client-side interactions in our algorithm.

Step 1. Grouping Streams Instead of treating all the requests in a
flat manner, we first group them into multiple independent streams
by exploiting the Referer field. The referer of a request reveals
the address of an object from which the request came from – a de-
pendency between two objects. For example, if an HTML object
includes two embedded objects in it, the referer of those two em-
bedded objects would be the HTML object. Also, if a user clicks a
link to move to a new Web page, the first request of the new Web
page would have the referer field of an object in the previous Web
page.

At a high level, each stream is a transitive closure of the referer
relation on the set of requests. Whenever the referer of a request is
empty, the request becomes the start (or root) of a new stream. If the
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Figure 7: Streams, Web pages, initial pages, client-side interac-

tions, and main/embedded objects.

referer of the subsequent request matches with any of the requests
in the streams, we associate the request with the matched stream.
In case there is more than one matched stream, we choose the latest
one. If not found, we also create a new stream with the request –
this happens because its referer request could be a browser cache-
hit thus not present in the log.

Grouping requests with the referer relation allows isolating logs
from multiple browser instances or tabs, since they belong to dif-
ferent streams. It also helps identifying frames and client-side in-
teractions, since all the frames from the same Web page and all the
client-side interactions to the same Web page belong to the same
stream.

Even though the referer field is optional, we can safely rely on
this information because most current browsers (Firefox and MSIE)
enable it by default. In fact, Firefox and MSIE together account
for more than 86% of our client population as discussed in Sec-
tion 2. When present, we use the referer field to group requests into
streams.

Step 2. Detecting Main Objects Once we finish grouping streams,
we detect a main object for each stream. We first generate main ob-
ject candidates by applying the type-based approach. This would
find HTML frame objects as main object candidates, but non-HTML
interactions would be ignored. Among those main object candi-
dates, we discard those with no embedded object. This is based
on the observation that current Web pages are typically complex,
consisting of many embedded objects. We detect this by looking at
the referer of the next request. If it is not the preceding main object
candidate, we remove the preceding object from consideration.

Next, we apply the time-based approach to finalize the main ob-
ject selection. If the idle time is less than a given threshold, it is
likely that they belong to the same Web page – overlapping HTML
frame objects with a short idle time would be eliminated from the
selection. It is noteworthy that we consider the idle time only
among the main object (HTML) candidates. This is because the
interactions in a Web page happen at an arbitrary point, and it bi-
ases the idle time calculation if included. Now all the remaining
objects between two main objects become the embedded objects
of its preceding main object. This way, we could include all the
interactions in a Web page as its embedded objects.

Step 3. Identifying Initial Pages The final task of our algorithm is
to identify the initial pages, as the previous grouping still includes
client-side interactions in the Web pages. The basic idea is to apply
the time-based approach. However, simply checking the idle time
is inaccurate because the DNS lookup [2] or browser processing
time can vary significantly, especially while processing the main
object before the page is fully loaded.
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Figure 8: Precision and recall: StreamStructure outperforms
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high precision and recall. It is also robust to the idle time pa-

rameter selection.

To this end, we exploit the popular use of Google Analytics in
the pages. It is a piece of JavaScript code that collects various
client-side information and reports to the analytics server when the
DOMContentLoaded event fires. Thus, once we see this bea-
con in the access logs, we can safely assume that the Web page is
successfully loaded at that point, and start applying the time-based
approach to identify the initial page. Note that our algorithm can
also use other ways than the Google Analytics beacon to detect the
page loading event. For example, one could utilize beacons from
other analytics services, or even instrument Web pages with custom
JavaScript at the proxy.

Validation We validate the accuracy of StreamStructure and the
existing approaches on the manually collected data set by visiting
(via CoDeeN) the top 100 sites of Alexa’s list [5] with MSIE. We
not only visit the top-level pages, but also follow approximately ten
links from those top-level pages for each site, resulting 1,197 Web
pages in total. 3 We also record the URLs of those visited Web
pages (or main objects), and compare them with the URLs of the
Web pages found by each approach. Note that this data collection
is different from actual browsing patterns, but we believe that it is
sufficient to capture the structure of representative Web pages and
thus useful for validation.

Figure 8 shows the precision and recall of various approaches.
Precision is defined as the number of correct Web pages found di-
vided by the total number of Web pages found, and recall is de-
fined as the number of correct Web pages found divided by the
total number of correct Web pages. For comparison, we also try
a simple combination of time-based and type-based approaches
(Time+Type) that does not exploit the stream and structure infor-
mation. Multiple data points represent the results of various idle
time (0.1, 0.2, 0.5, and 1–5 seconds) parameters.

The time-based approach performs in general very poorly, and
the best result achieves only a precision of 0.45 and a recall of
0.55. Also, the performance is very sensitive to the idle time selec-
tion. The type-based approach shows the highest recall above 0.88,
which implies that the main objects of most Web pages are HTML.
However, the precision is very low, only about 0.27. StreamStruc-
ture outperforms all of the previous approaches, achieving high
precision and recall above 0.8 simultaneously. Furthermore, it is
quite robust to the idle time parameter selection. The time+type
approach is less accurate, proving the importance of exploiting the
stream and structure information.

Finally, we investigate the sensitivity of the idle time parameter

3Some sites have many Web pages while others do not.
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Figure 9: Initial page characteristics: The Google Analytics beacon gets increasingly popular, and pages get bigger both in terms of

the size and number of objects. On the other hand, the page loading latency has dropped in 2009 and 2010 because of the increased

number of concurrent connections and reduced object latency.

for identifying initial pages by comparing CDFs of the page loading
time, number of objects, and size of the initial pages with different
idle time thresholds. Overall, 23.9% of pages have Google Analyt-
ics beacons in our manually collected Alexa data set. We observe
that an idle time of 0.1 seconds is too short and 5 seconds is too
long, distorting the distribution significantly. On the other hand,
an idle time between 0.5 and 2 seconds generates quite stable and
similar results.

4.3 Analysis Results
We apply the StreamStructure algorithm to our CoDeeN access

log data set, and analyze the derived Web pages in various aspects.
We choose the idle time of one second both for identifying Web
pages out of streams, and for identifying initial pages out of Web
pages. Among all the users, we ignore those who are active for less
than 30 minutes to reduce potential bias. We first examine the char-
acteristics of initial pages, and analyze the page loading latency in
detail via simulations. Finally, we provide a simple characteriza-
tion of modern Web pages including client-side interactions.

Initial Page Characteristics We first show the fraction of Web
pages that have a Google Analytics beacon in our data set in Fig-
ure 9 (a). It is less than 5% in 2006, but it has become increasingly
popular and accounts for about 40% in 2010. While there is a lit-
tle variation over time, the volume of the initial page traffic roughly
accounts for about 40-60% of the entire Web traffic in terms of both
requests and bytes. The rest of the traffic is client-side interactions,
which is quite a significant amount.

In Figure 9 (b)-(f), we examine the changes in the number of
objects, size, and latency of the initial pages, and the latency and
inter-arrival time of each individual object in the initial pages. We
compare the median values rather than the mean, since our page
detection algorithm is not perfect and the mean is more susceptible
to outliers/errors.

First of all, the pages have become increasingly complex where

we observe a consistent increase of the number of objects and the
total size in Figure 9 (b) and (c). For example, the median number
of objects per page in the United States sees an increase from 6
objects in 2006 to 12 objects in 2010, and the median page size
gets bigger from 69 KB in 2006 to 133 KB in 2010. This increase
is likely related to the popular use of advertisement/analytics, and
the object size increase of JavaScript and CSS in Figure 5 (a) and
(b).

While the page loading latency also sees a general increase in
Figure 9 (d) until 2008, instead we see it decrease in 2009 and
2010. For example in the United States, the median latency in-
creases from 5.13 seconds in 2006 to 8.45 seconds in 2008, but it
decreases to 5.98 seconds in 2010. 4 This decrease likely stems
from the increased number of concurrent connections in Figure 3.
Another decreasing factor is the reduced latency of fetching an ob-
ject in Figure 9 (e), and it also makes the object inter-arrival rate
burstier in Figure 9 (f). As the object size does not get smaller
over time, the decrease of the object latency is likely related to the
improved client bandwidth in Figure 1, as well as the improved
caching behavior of many Web sites.

Page Loading Latency Simulation As the page loading latency
is determined by many factors including the number of concurrent
connections per server, object latency, and dependency among ob-
jects, we examine the impact of these factors via simulations. Each
object is fetched from a central FIFO queue, and we use the mea-
sured object latency in the access logs for the simulated object la-
tency. The object dependency is extracted from the referer rela-
tions. Since the purpose of this simulation is to assess which fac-
tors affect the page loading latency rather than to predict the actual
latency, we simplify the simulation as follows. First, we ignore net-
work latency and browser parsing/processing time – there is no net-

4The actual user-perceived latency is smaller than our measured
latency because users recognize pages to be loaded before all of
the embedded objects are completely downloaded.
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Figure 10: Page loading latency simulation (US, 2010): Increas-

ing the number of simultaneous connections could further re-

duce page load latency by 23%. Removing dependencies be-

tween objects (NoDep) would yield at most a 50% reduction.

Reducing per-object latency by 50% (HalfLat) would actu-

ally reduce page-load latency by 67% because of the simultane-

ous connections. Together, page loading latency can be reduced

by up to 75%.

work idle time during the page loading process. Second, any depen-
dent object is not fetched before its parent object is finished, which
is less aggressive than current practice, where a browser typically
starts fetching embedded objects as soon as it finds their URLs.

Figure 10 presents the median simulated latency from the United
States in 2010, as a function of the maximum number of concur-
rent connections per server. We omit the results of other coun-
tries that are very similar to that of the United States. We simulate
four different scenarios, and the latency is normalized by the de-
fault latency with one concurrent connection per server. First, we
observe that increasing the number of concurrent connections per
server would reduce the latency by up to 23% at 8 connections, be-
yond which we see no benefit. Second, we simulate the ideal case
where there is no object dependency (NoDep) – all of the object
URLs are known in advance, and it reduces the latency by up to
50%. Given this latency reduction, it is worth exploring ways to re-
lieve/eliminate the object dependency. Third, if per-object latency
is reduced by half (HalfLat) via better caching/prefetching ap-
proaches, it could actually reduce the page loading latency by up to
61% due to the simultaneous connections. All together, we observe
that page loading latency could be reduced by up to 75%.

Entire Page Characteristics For a simple characterization of mod-
ern Web pages, we divide all of the Web pages including client-
side interactions into three groups based on the total page time –

short (0-25th percentile), medium (25-75th), and long (75-100th)
pages. We then characterize these pages in terms of the number of
embedded objects, page size, object inter-arrival time, and content
type distribution. Figure 11 presents an example characterization
of Web pages from the United States in 2010.

Overall, long pages consume about 55% of total requests, and
medium pages take about 40%. In terms of bytes, long pages take
even more than 60%. Short pages account for only about 5% in
terms of both requests and bytes. The content type distribution in
Figure 11 (a) reveals the characteristics of the pages more clearly.
Short pages are mainly HTML-oriented, and search activities could
be typical examples. On the other hand, long pages show a higher
percentage of video and octet-stream bytes than others, meaning
these are mainly video watching activities and large file down-
loads. Medium pages lie in between, and typical examples would
be browsing news or blogs.

In terms of the number of embedded objects, short pages mostly
have less than 10 objects, and medium and long pages have a larger
number of embedded objects, as in Figure 11 (b) where we show
PDFs. The median is 4, 12, and 30 for short, medium, and long
pages, respectively. Especially, we observe heavy client-side inter-
actions in long pages. Note that medium pages will often specify
dozens of embedded images in their HTML but as Web sites im-
prove their cacheability best practices, most of these are cached at
the browser, and we observe only a median of 12 fetches for the up-
dated portions of their content. This in part also explains why page
loading latency is improving despite the increase in page complex-
ity.

In addition, Figure 11 (c) shows PDFs of the total page sizes, and
we observe that the median difference is about 3x between short
(40 KB) and medium pages (122 KB), and more than 2x between
medium and long pages (286 KB). Note that long pages have a
very long tail reaching up to 370 MB, while the largest page size
is only about 5 MB for short pages and 13 MB for medium pages.
Finally, we observe that short and medium pages are burstier than
long pages as it does not usually involve client-side interactions.
The median object inter-arrival time is 90, 89, and 114 ms for short,
medium, and long pages, respectively.

5. REDUNDANCY AND CACHING
The last part of our study is to analyze the redundancy in Web

traffic and the impact of caching. For this study, we analyze the
full content of traffic as well as the access logs. Table 2 shows
the summary of our content data set from April, 2010. We capture
cache misses only to account for simple improvements like using
a local proxy cache. Throughout this section, our analysis is based
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Figure 12: URL popularity: The popular URLs grow, but the long tail of the content is also growing.
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Figure 13: Uncacheable objects by content types: Overall, 19.8-32.2% of unique URLs, 21.5-28.3% of total requests, and 10.5-14.8%

of total bytes are uncacheable. HTML and JavaScript are dynamically generated and thus less cacheable.

USA China France Brazil
# Requests (K) 8,611 12,036 2,129 4,018

Volume (GB) 198 218 42 79

Table 2: Summary of captured full content data (cache-misses

only)

on logically centralized but physically distributed proxy systems,
just like CoDeeN.

We first provide the details of content-based caching in Sec-
tion 5.1. Using the access log data, we examine the changes in
URL popularity during the five-year period in Section 5.2. Us-
ing the full content data, we directly compare the effectiveness of
object-based caching and content-based caching in Section 5.3, and
quantify the origins of redundancy in Section 5.4. We also calculate
the actual byte hit rates with practical cache storage sizes in Sec-
tion 5.5. Finally, we analyze the characteristics of aborted transfers,
and discuss its caching implications in Section 5.6.

5.1 Content-based Caching
At a high level, content-based caching works by splitting an ob-

ject or file into many smaller chunks, and caching those chunks
instead of an entire object. The chunk boundaries are determined
based on the content, commonly with Rabin fingerprinting [48] – if
the fingerprinting value over a sliding window of data matches with
low order n bits of a predefined constant K, this region of data con-
stitutes a chunk boundary. The expected average chunk size is 2n

byte assuming a uniform distribution of content values. To prevent
chunks from being too small or large in a pathological case, we
specify the minimum and maximum size of chunks as well. Unlike
fixed-size chunking (e.g., every 1 KB), content-based chunking is
robust to any insertion/deletion/modification to the content since it
only affects nearby chunks.

Once chunk boundaries are detected, chunks are named based on

the content, often with SHA-1 hash. The next time the system sees
the same chunk, it can pass only a reference instead of the original
content. This way, content-based caching could find the same con-
tent within an object and across different objects, yielding much
higher cache hit rates than object-based caching. Furthermore, it is
protocol independent and effective for uncacheable content as well.

5.2 URL Popularity
We investigate the underlying changes in URL popularity during

the five-year period with our access log data set, which directly in-
fluences the caching effectiveness. We find two interesting trends.
First, we observe that the popular URLs are getting more popular
as in Figure 12 (a) and (b) where we present the request percent-
age of the top 100,000 URLs in the United States and China. The
request traffic to most popular URL increases from 0.08-0.12% in
2006 to 0.28-0.41% in 2010, and this concentration would increase
the cache hit rate. The most popular URL in the United States
for 2010 is a dynamically generated beacon object from google.

com, which is uncacheable, though. At the same time, we also find
that the percentage of URLs that are accessed only once is con-
sistently increasing as in Figure 12 (c). We see its increase from
76.9-83.3% in 2006 to 84.6-87.8% in 2010. Overall, they account
for a significant amount of traffic – 30.0-48.8% of total requests
and 27.3-63.9% of total bytes. These least popular URLs are all
cache-misses and would decrease the cache hit rate.

While these two trends in URL popularity could affect cache hit
rate both positively and negatively, we do not observe any consis-
tent changes in resulting cache hit rate during the five-year period.
This is because they cancel out each other, and cache hit rate is
also determined by other factors such as user population. In order
to get an upper bound on object-based cache hit rate with our ac-
cess log data set, we assume every object is cacheable, and two ob-
jects are identical (cache hit) once their URLs and content lengths
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match. The estimated cache hit rate we observe ranges from 35.6%
to 54.5%, and the byte hit rate ranges from 15.1% to 49.3%. The
byte hit rate is smaller than the cache hit rate because cache hits are
biased towards relatively smaller objects. In fact, we observe that
the mean object size of those URLs that are accessed only once
is always larger than the mean object size of those URLs that are
accessed more than once over the five years.

5.3 Caching Effectiveness
In this section, we first investigate HTTP cacheability of the traf-

fic, and calculate the ideal cache hit rate. We then compare the ef-
fectiveness of object-based and content-based caching on our full
content data, and further examine the impact of content types.

HTTP Cacheability We examine HTTP cacheability of objects
with our full content data from 2010. We decide if an object is
cacheable or not by looking at its Cache-Control and Pragma
fields in the response header. Figure 13 shows the percentage of
uncacheable objects in terms of the number of unique URLs, total
requests, and total bytes. Overall, 19.8-32.2% of unique URLs are
uncacheable, and it accounts for 21.5-28.3% of total requests and
10.5-14.8% of total bytes. Among different content types, HTML
and JavaScript are less cacheable than other content types, implying
that they are dynamically generated and updated frequently. Even
though the low fraction of uncacheable traffic implies substantial
potential for caching, the actual cache hit rates would be severely
limited due to the growing fraction of URLs that are accessed only
once.

We also observe a few other interesting points. First, a significant
portion of XML traffic (over 70%) in China is uncacheable, and it
turns out to be due to the popular use of Really Simple Syndication
(RSS) [52] feeds – two RSS URLs are responsible for 90.8% of
total uncacheable bytes and 64.8% of total uncacheable requests.
Second, Brazil (not shown) shows a higher fraction of uncacheable
XML and audio traffic than other countries. This is due to the pop-
ular use of real time update of sports games and live streaming of
audio.

Ideal Byte Hit Rate We calculate the ideal bandwidth savings
achievable with a centralized proxy cache having infinite cache
storage by the traditional object-level HTTP caching and content-
based caching. For object-level caching, we decide if an object is
cacheable by respecting cache-control headers. If cacheable, we
check if the URLs and content lengths match as in Section 5.2. We
also calculate a slightly optimistic behavior of object-based caching
by discarding query strings from URLs in order to accommodate
the case where two URLs with different metadata actually belong
to the same object. For content-based caching, we vary the aver-

age chunk size from 128 bytes, 1 KB, 8 KB, to 64 KB. Note that
we apply content-based caching on compressed content without de-
compressing it, because the volume of compressed content such as
gzip or deflate is less than 1% in our data set.

In Figure 14, we observe that content-based caching with any
chunk size outperforms object-based caching. The cache hit rate of
object-level caching ranges from 27.0-37.1% (not shown in the fig-
ure), but the actual byte hit rate is only 16.8-28.1%, which is lower
than the byte hit rates from a decade ago, but similar to that in more
recent studies [3, 13, 24, 30, 40, 63]. The hit rate of the optimistic
version (HTTP-OPT) is only slightly larger. On the other hand,
the lowest byte hit rate of content-based caching is 29.4-38.4%
with 64 KB chunks, and the highest byte hit rate is 42.0-50.6%
with 128 byte chunks, 1.8-2.5x larger than object-level caching’s
byte hit rate. The small chunk size performs better than the large
chunk sizes because of its finer granularity. For example, 128 bytes
chunks can detect redundancy at the sentence-level, but 64 KB can
do only at the document-level.

Impact of Content Types Among many different content types,
we find that text resources such as HTML, JavaScript, XML, and
CSS have much higher redundancy than binary resources such as
image, audio, video, and octet-stream. Figure 15 shows the ideal
redundancy by content type. In particular, JavaScript shows over
90% of redundancy with the smallest chunk size of 128 bytes. On
the other hand, video exhibits much lower redundancy of 20%,
illustrating the impact of long-tailed popularity in video content.
Object-based caching performs very poorly, and its redundancy
elimination for XML is one-eighth that of the gains with 128 byte
chunks in China.

We also find that content-based caching works well regardless of
the content types, while the object-based caching is mainly effec-
tive for JavaScript and image traffic only. Figure 16 depicts the con-
tribution of byte savings, basically showing which caching scheme
works best for which content type. In object-based caching, the
contribution of JavaScript and image is relatively larger than that of
other content types. It should be noted that the contribution of bi-
nary resources such as video, audio, and octet-stream is extremely
low, implying that object-based caching is not suitable for them.
On the other hand, content-based caching provides more uniform
benefits.

5.4 Origins of Redundancy
In order to understand how content-based caching approaches

provide more than double the byte hit rate than the object-based
caching approach, we quantify the contribution of redundancy from
different sources in Figure 17. We use the average chunk size of
128-bytes for this analysis.

Overall, we observe that about 40.3-58.6% of the total redun-
dancy is due to identical objects with the same URLs, which is
essentially the upper bound of the object-based caching approach’s
byte hit rate (object-hit). The other half of the total redun-
dancy is purely from the content-based caching approaches, and we
further break it into the following three sources. First, there exists
redundancy across the content changes of an object (intra-URL),
and it accounts for about 21.8-32.5% of the total redundancy. Sec-
ond, some objects with different URLs actually have identical con-
tent [32] (aliasing), and it represents 6.7-9.8% of the total re-
dundancy. Finally, the rest is due to the redundancy across dif-
ferent objects that have different URLs and non-identical content
(inter-URL), and it represents 12.8-20.0% of the total redun-
dancy. This analysis result implies that most of the additional sav-
ings from the content-based caching approaches come from its abil-
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Figure 15: Ideal redundancy by content types: Text resources have higher redundancy than binary.
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Figure 16: Byte saving contribution by content types: Content-based caching is effective for any content type, but object-based

caching works well only for JavaScript and image.

ity to detect and eliminate the redundancy in the content changes
of an object as well as redundancy across different objects.

In terms of content types, we find that HTML and XML gener-
ally show relatively higher intra-URL redundancy than other con-
tent types. It implies that they are frequently updated but their
content changes slowly. Also, aliasing in general accounts for a
small amount of the total redundancy, but we observe a significant
amount of aliasing in XML and audio content types in Brazil. This
is again because of the popular use of the real time updates of sports
games (XML) and live streaming of audio in Brazil. These objects
have identical content but with different URLs. Finally, we see
that most of the redundancy in binary resources, especially video,
come from partial content overlaps (intra-URL + inter-URL) rather
than complete object matches (object-hit + aliasing). This is partly
because they are aborted before they are fully downloaded. We
examine the aborted transfers in more detail in Section 5.6.

5.5 Cache Storage Size
We simulate cache behavior with different cache storage sizes to

determine the required cache storage size for achieving close to the
ideal byte hit rate, but also include the metadata overhead (20 bytes
per chunk) of content-based caching in the byte hit rate calculation.
We use a simple LRU cache replacement policy as a first step, and
leave for future work investigating more sophisticated policies [46].

In addition to object-based and content-based caching, we also
simulate multi-resolution chunking (MRC), a recently-developed
strategy that simultaneously exploits multiple chunk sizes [28] and
is well-suited for large storage sizes. MRC always favors large
chunks over small ones, and uses small chunks only when large
chunks are cache misses. It also caches all different chunk sizes for
the same content redundantly for the future reference. This way,

MRC minimizes the metadata overhead, disk accesses, and mem-
ory pressure at the cost of more disk space.

Figure 18 shows our simulation results in the United States and
China, which shows that content-based caching always outperforms
object-based caching regardless of cache storage size. However,
due to the significant metadata overhead for fixed 128 bytes chunks,
the actual byte hit rate of 128 byte chunks is similar to that of 1 KB
chunks. The saturation point of cache size is similar across the dif-
ferent caching approaches except for MRC. For example, beyond
100 GB of cache storage, the byte hit rate no longer increases in
the United States and China. The saturation point essentially indi-
cates the working set size of the traffic, so increasing the cache size
beyond it gives no further benefits. On the other hand, while MRC
performs relatively poorly when cache storage is small, it continues
to increase the byte hit rate beyond the saturation point, as the mul-
tiple chunk sizes reduce metadata overhead. The simulation has a
few missing data points because of the limitation of main memory
we have (16 GB) during the simulation. Also, the byte hit rate of
MRC with infinite cache size is estimated from the ideal byte hit
rate of 128 byte chunks minus 1% overhead.

While increasing cache storage size gives diminishing returns
for object-based caching, using large cache storage with MRC is
highly beneficial as it doubles the byte hit rate compared to object-
based caching. This option would be especially attractive in devel-
oping regions where the bandwidth is much more expensive than
disk storage [27]. Since a TB-sized disk costs less than $100, it
makes sense to allocate much more cache storage than was used 10
years ago, when disk sizes were in the tens of GB.

In our data set, we need about 800 GB for the United States and
China, 200 GB for France, and 400 GB for Brazil to achieve close
to the ideal byte hit rate with MRC. It is roughly four times of the
total traffic size because MRC uses four different chunk sizes in
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Figure 17: Origins of redundancy with 128-bytes chunks: Most of the additional savings from the content-based caching approaches

come from partial content overlap – the redundancy across different versions of an object as well as redundancy across different

objects.
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Figure 18: Cache size vs. byte hit rate: A large cache with MRC provides 2x the byte hit rate than the object-based caching.

Request (K) Byte (GB) GB if fully downloaded

US 265 (3.1%) 61 (30.8%) 712 (83.8%)
CN 377 (3.1%) 27 (12.4%) 444 (69.9%)
FR 38 (1.8%) 10 (23.6%) 258 (88.8%)
BR 85 (2.1%) 22 (28.3%) 216 (79.3%)

Table 3: Aborted transfers

our simulation. Note that one might want to reduce the storage
requirement by storing only unique content and metadata such as
offset for different chunk sizes. However, it complicates the cache
index management and increases memory pressure, as pointed out
by Ihm et al. [28].

5.6 Aborted Transfers
In Table 3, we find a small number of requests (1.8-3.1%) are

aborted before they are fully downloaded, but their volume is quite
significant. These events occur when users cancel ongoing trans-
fers by clicking the stop button of the browser, or move to another
Web page. We detect the aborted transfer if the downloaded length
is less than the given content-length in the response header. The to-
tal volume of the downloaded bytes until aborted is 12.4-30.8%. If
they were fully downloaded, it would take 69.9-88.8% of the entire
traffic. The investigation of the content type distribution of these
transfers reveals that most of the bytes are from the video transfers,
presumably previewing the first part of the video clips. In particu-
lar, Flash video comprises roughly 40-70% of all aborted transfers,
and we also observe users canceling file downloads.

The large volume of aborted transfers could negatively impact
the performance of object-based caching proxies. Such systems
have roughly four options to deal with the aborted transfers. The

first option is to discard and do not cache them, but it just wastes the
bandwidth and reduces cache hit rate. The second option is to fully
download and cache them (of course, for those cacheable objects
only), but it consumes significant bandwidth for downloading ob-
jects that might not be referenced in the future. The third option lies
in between the first and second, and decides whether to discard or
fully download depending on the number of bytes remaining [58].
The final option is to cache the downloaded portion and do a range
request on a cache hit, but it is effective only for cacheable objects.

In comparison, content-based caching could cache data from only
the downloaded content without any configuration, thus any data
received over network, even uncacheable, is useful. As evidence,
content-based caching’s byte hit rate of video traffic is much higher
than object- based caching’s byte hit rate in Figure 15.

6. RELATED WORK
Our work is related to previous work in the areas of Internet mon-

itoring, traffic characterization, and caching behavior. We describe
our relation to this previous work below.

Internet Monitoring There is a great deal of previous work ana-
lyzing traffic behavior. For example, Akamai analyzes data gath-
ered from its global server network, and reports the Internet pen-
etration rate and connection speeds for each country [10]. Also,
ipoque examines traffic from its customer ISPs and universities [29],
and they find the increase of Web traffic as well as the decrease of
P2P traffic due to the popularity of file hosting, social networking,
and video streaming sites. Several other studies commonly observe
the same trend of increasing Web and video traffic [21, 34, 36].

While all of these previous studies primarily focus on the anal-
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ysis of overall usage of Internet traffic, our focus is to investigate
various aspects of Web traffic changes in great detail. A few other
studies also have conducted long-term characterizations of Web
traffic [14, 26], but their analyses on the data set from specific or-
ganizations, such as universities or research institutes, are tied to
their host institutes. Instead, our large-scale data set spanning a
multi-year period covers a world-wide user population.

Web Traffic Characterization A very widely used Web traffic
model was first proposed by Mah, in which he introduces the idle
time based page detection algorithm [35]. Since then, this model
has been widely adopted by many researchers for characterizing
Web traffic [9, 56]. Later, Choi and Limb developed a method that
simply regards every HTML object as a Web page [17]. More re-
cently, several studies have investigated a small number of popular
Ajax Web applications such as maps and Web mails, and streaming
services [16, 53].

However, all of the previous studies have limitations in that they
either assume the simple/static Web pages ignoring client-side in-
teractions, or rely on application/site-specific knowledge. Instead,
our page detection algorithm is able to identify initial pages and
client-side interactions, and also does not require application/site-
specific knowledge. Furthermore, we demonstrate that our algo-
rithm is more accurate than the previous approaches via careful
validation.

A contemporary work by Butkiewicz et al. [12] investigates the
complexity of Web sites with browser-based active measurements
from four vantage points. While their use of HTTP archive record
(HAR) format [25] allows a precise detection of page load events,
their data set consists of only the top-level pages of randomly cho-
sen 2,000 Web sites, also ignoring client-side interactions. Analyz-
ing real users’ browsing behaviors with detailed HAR logs would
be an interesting future work.

Redundancy and Caching Traditional object-level Web caching
works by storing previously seen objects and serving them locally
for future requests. However, the benefit of object-based caching
is limited only to the cacheable objects such as static text and im-
age files – the typical cache hit rates reported in the previous work
range from 35% to 50% in much earlier work, and have dropped
over time [3, 13, 24, 30, 40, 63]. The byte hit rate is even worse as a
cache hit is biased towards smaller popular objects. Most recently,
Ager et al. examined potential for HTTP caching in various sce-
narios by controlling the strictness of object cacheability [3]. More
advanced object-based caching techniques include delta-encoding
that reduces traffic for object updates [39], and duplicate transfer
detection (DTD) that avoids downloading of aliased objects [40].

Spring and Wetherall further extend object-based caching to sub-
packet granularity, and develop a protocol independent content-
based caching technique [57]. Since then, it has been adapted in
many applications – network file systems [7, 42], WAN acceler-
ation [28, 50], Web caching [43, 49], and storage systems [20].
Recently, Anand et al. analyzed university and enterprise network
traces, and show that 15-60% of the entire traffic is redundant,
while the redundancy of Web traffic is only 16-32% [6].

While both the object-based and content-based caching schemes
have been studied heavily, the focus of our work is to perform a
head-to-head comparison between them on real Web traffic. Our
analysis result shows that content-based caching achieves byte hit
rates of 42-51%, almost twice that of object-based caching’s byte
hit rates. Furthermore, we evaluate the effectiveness of MRC [28],
and find increasing cache storage size is highly beneficial. In-
deed, the redundancy we find (42-51%) is much higher than what

Anand et al. report (16-32%), and it is partly because we assume a
large disk-based cache while they use in-memory cache only.

7. CONCLUSIONS
For a better understanding of modern Web traffic, we analyze

five years of real Web traffic from a globally distributed proxy
system that captures the browsing behavior of over 70,000 daily
users from 187 countries. Among our major findings is that Flash
video and Ajax traffic is consistently increasing, and search en-
gine/analytics sites are tracking an increasingly large fraction of
users. Our StreamStructure algorithm reveals that almost half the
traffic now occurs not as a result of initial page loads, but as a result
of client-side interactions after the initial load. Also, while pages
have grown in terms of both the number of objects and size, page
loading latency has dropped due to the increased number of concur-
rent connections and improved caching behavior. Finally, multi-
resolution chunking (MRC) with large cache storage provides al-
most twice the byte hit rate of traditional object-based caching, and
it is also effective for aborted transfers. Most of the additional sav-
ings of content-based caching are due to the partial content over-
laps.
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Reviewer #1 
Strengths: Nice dataset. The analysis confirms the expected 

increase in complexity of webpages. 

Weaknesses: The data covers US and China mostly, which would 

lead to an interesting comparison if it had been made. The authors 

throw numbers without giving as much high-level insight, making 

the observations hard to retain for the reader. Without much 

information about how representative this dataset is in terms of 

content, the CDNs from which the content is obtained, the impact 

of PlanetLab on the CDN answers, it is hard to judge the validity 

of the observations.  

Comments to Authors: The dataset is interesting. However, the 

number of plots and the writing style make it boring to read. 

There are way too many numbers for which the authors do not 

have an explanation. Instead of digging into the data so much, the 

message of the paper would be more clear if more high-level 

insights were provided instead of numbers.  

I would have preferred to see a more extensive comparison of 

USA and China rather than having the paper filled with the 

caching section which is questionable in its applicability. 

Knowing more about the CDNs that deliver the content and the 

impact of PlanetLab on wherefrom you get content from CDNs is 

important while missing.  

Detailed comments: 

If they want to discuss caching, the authors should discuss more 

than the proxy-level cacheability but also the network-level one, 

for example as studied by: - B. Ager et al. Revisiting Cacheability 

in Times of User Generated Content. IEEE Global Internet 

Symposium, 2010.  

Regarding NAT usage, the authors should cite the recent work by 

Kreibich et al.: - Netalyzr: Illuminating The Edge Network, IMC 

2010.  

The high-level description of section 5 in the introduction sounds 

conflicting: popular URLs grow which improves caching 

(potentially!) while the long tail also grows which hurts caching 

(again potentially). The authors should rephrase this. Stating it in 

the current way is nice as it raises the attention of the reader, but 

if the reader does not get it he will be frustrated.  

Your dataset is great, in principle. However, does it provide 

realistic latencies as well as representative DNS answers by 

CDNs? Relying on the PlanetLab infrastructure is a bias from the 

viewpoint of the DNS answers that CDNs return, which is most of 

the content in the Internet. Please tone down the claims about the 

greatness of your dataset. A great dataset does not require 

overdoing the marketing. The fourth paragraph of section 2 is too 

strong.  

The authors have to reduce the number in terms of the number of 

countries the dataset really has. USA and China make most of the 

content of the dataset, so claiming that the dataset spans 187 

countries is misleading.  

In section 3.1, the authors mention that they provide the results of 

US, China and Brazil due to space limitations. Those 3 countries 

represent most of the dataset anyway, only France seems to be 

important enough and is omitted. This sounds misleading again, 

as the 187 countries mentioned before. The results of this section 

should be compared to the results of Kreibich et al.  

Figures 3-4 omit years 2007 and 2009. Are the trends for 2006-

2008-2010 consistent with them?  

How many embedded images do you observe? Embedded content 

is important nowadays as it pervades a lot of webpages, e.g., 

advertisement. This part might deserve more attention.  

The authors do not observe video streaming that split files into 

chunks. This may point to a bias of the dataset.  

One thing I was curious and was not analyzed by the authors is 

the properties of the dataset on a per CDN basis. Do the trends 

show up consistently across all content delivery platforms or is 

the observed behavior an artefact of the specific content that 

CoDEEN users are accessing?  

For a recent analysis of DNS in the wild, the authors may cite: - 

B. Ager et al. Comparing DNS resolvers in the wild. IMC 2010.  

When the authors mention the increase in Google analytics 

beacons in the manually collected dataset, what is the message? Is 

that good, bad, neutral? All mentions of google analytics leave a 

feeling of “so what?”.  

From section 4.3, the authors do not discuss changes in RTT and 

bandwidth that may affect the observations. The placement of 

CDN servers or their connectivity is likely to have an impact here. 

It is simplistic to discuss loading latency while completely 

ignoring the content delivery side.  

How much is ‘somewhat’? How much do the authors expect to 

actually under-estimate the loading latency? Did they carry out 

some tests to check this?  

Given the actual lifetime of objects, what is the actual 

cacheability of web objects? It’s not clear from the paper how 

much of the caching can really be achieved in practice.  

Section 5 should be another paper. As it is now it is not strong 

enough to be comparable to previous work and does not add much 

to the content of the paper, while bringing issues.  

Where is caching assumed to be done? At the browser, the proxy, 

inside the network? What information is used to assess the 

cacheability of a specific object? This section should be compared 

with the following work: - B. Ager et al. Revisiting Cacheability 
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in Times of User Generated Content. IEEE Global Internet 

Symposium, 2010.  

In 5.3, it seems that the authors assume a centralized cache inside 

a country that would serve all content. This is clearly not feasible, 

as this would affect the latency to obtain content. The problem of 

caching is more complex than presented in section 5. That leaves 

a negative impression on the whole paper. 

 

Reviewer #2 
Strengths: The authors have a nice dataset in their disposal, and 

this alone makes the paper interesting. There is an interesting 

study on caching and the trends looking at object sizes. 

Weaknesses: There are several limitations in the paper. The 

authors never really describe their dataset and the precise 

methodology in their analysis, which makes it hard in some cases 

to follow the paper. Unclear how representative the data is (could 

easily have been checked). No web model is presented contrary to 

author claims in the intro and abstract. 

Comments to Authors: I was really intrigued by the paper’s 

abstract since historical studies of web traffic are rare due to lack 

of datasets. However, despite the unique data, the paper fell short 

of my expectations in many respects.  

First, the authors attempt to pack many different things in one 

paper (trends, web model, caching, etc), with the result of not 

examining any of them in detail but rather providing initial 

observations. Also, to do this, the dataset is sampled (trimmed) in 

many respects (one month per year, only some countries etc) 

without much justification.  

Second, the authors never really describe their data and the 

information included in them. What fields do the logs include? 

What type of users are we looking at? Is it mostly academics 

since this is planetlab? The reader has to infer this information 

from the analysis (for example, the paper looks at object inter-

arrival times, so there must be some sufficient timing information 

in the logs).  

Third, related to the above, how representative the data examined 

are. For example, the browser popularity appears quite peculiar 

with firefox reflecting 60-75% of the users in some cases. 

Comparing this with any public statistic out there (and there are 

many), the numbers look sufficiently different. Do the data 

mainly reflect academic users, and as such present a specific 

community? A way to check this would be to compare the most 

popular requested URLs with statistics from Alexa for example. 

Similarly, NAT usage also appears low IMHO.  

Fourth, there is no web model presented, but rather statistics and 

distributions for various web traffic characteristics (e.g., number 

and size of objects, inter-arrival times etc).  

Instead, I believe that the section on caching is interesting and one 

of the contributions of the paper.  

Other detailed comments:  

Section 2: Table 1: There seems to be a drop in the number of 

requests after 2007. Why is this? Also, how is it possible that the 

number of IPs/Agents in most of the countries is larger than the 

number of requests? How do you separate non-human traffic? 

How do you know the number of users?  

Section 3 You attribute the increase of javascript and CSS in the 

use of AJAX. How is this justified? Simply, this could be an 

effect of more code and advanced style-sheets out there. The 

paragraph “Domains” is hard to understand, and I was not able to 

follow it.  

Section 4: Is it true that step 3 can be performed only for 23.9% of 

the pages? If so, the methodology is not very effective. You visit 

the top-100 sample sites from Alexa. If not mistaken, most of 

these are simple pages (e.g., search or other simple home pages). 

It is thus unclear whether the validation of your streamstructure 

algorithm is sufficient. How do you know the latencies? What 

type of information do you have in the logs?  

Section 5: You need to formally define what you mean by 

redundancy. You examine the most popular URLs. Which year is 

your reference for this? For URLs that were examined only once, 

is that for the whole trace? Since the content-based caching is so 

important for your discussion, a more complete description of 

how it works would make the understanding of your results 

easier. 

 

Reviewer #3 
Strengths: This paper represents a great effort in understanding 

the long term trend of network traffic.  

The measurement results are of great interest to network 

community such as IETF. 

Weaknesses: 2 comments on the weakness. First, from reading 

this paper alone I did not fully understand how the data is 

collected, exactly what is the relation between CoDeeN and 

PlanetLab, and who are the users.  

Second, the authors seem running out of space (e.g. the last 

paragraph of introduction apparently suffered from over-cut, 

leaving the sentences incomplete), while at the same time 

repeated their major results several times word by word; perhaps 

also running out of time to do a good proof reading. 

Comments to Authors: None. 

 

Reviewer #4 
Strengths: The combination of a detailed look at many aspects of 

Web traffic and a fabulous dataset. It’s rare that we see this, and 

the datapoints in the paper are great documentation about how the 

Web has changed over the past five years, even if they are not 

always surprising. I don’t know of any comparable study for this 

period, as other notable efforts like Arbor’s Internet 

Atlas/Observatory are more broad but much less detailed wrt Web 

traffic.  

The new page clustering algorithm is also useful, and will help 

other researchers. 

Weaknesses: The paper covers broad ground and thus is a bit thin 

in places, particularly wrt experimental method. There are a 

bunch of places where I wanted to object a bit (e.g., Why is the 

average download time for objects >1MB a good estimator for 

client bandwidth?) or wanted better validation (e.g., on the page 

clustering technique). I think this can be handled by being careful 

in the writing about what the paper has and has not shown. 

Comments to Authors: Very nice -- thanks for a good read. You 

have a fabulous dataset and some nice results. I particularly liked 

the stat that the majority of requests are now due to page 

interaction rather than traditional page fetches.  
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What kind of users browse the Web via CoDeen? You likely have 

some bias and evolution here (usage drops off over time) that is 

worth stating. 

I can’t read your graphs, starting with Fig 1!  

It comes across as a bit arbitrary the way you pick US, China, BR, 

and FR and then jump between them for different results. It would 

be better to be more consistent and to explain your selection. 

Related to this comment, consider that a paper is *not* the best 

way to present your results. You might provide a web page or 

technical report that does not have space limitations and can show 

the full set of graphs for a larger set of countries. The paper would 

then be a representative subset, as you have targeted, but 

researchers would be able to consult the more complete results as 

needed.  

Why is average download time for objects >1MB a good 

estimator for client bandwidth? It can fail due to slow servers or 

points of congestion within the Internet (between US and BR for 

instance). My guess is that a better measure is the 95% (fastest) 

download time. Either way, some validation would be really help.  

Similarly, I am unsure whether your results indicate that NAT 

usage is growing or not. They could easily be explained by an 

increase in the number of computers per (already NATed) 

household over the years. Can you compare with an independent 

datapoint, as your claim is presently unvalidated?  

Fig 6 felt like an odd extraction of different pieces for different 

countries.  

I do not understand how your page clustering algorithm works for 

pages that lack Google Analytics. Do you just skip them? If so it 

is bit of a fragile method! I also encourage you to perform a better 

validation of the technique; I would not call what you have done 

“careful validation”. This is because visiting 10 pages per top site 

may be markedly different than task-based Web browsing (doing 

mail, looking at a stock portfolio). I think that you can validate it 

fairly easily. Just create a browser extension that spits out a log of 

the pages visited over time, use it for real surfing, and see how it 

compares with your inference.  

Re the simple model of web traffic: it reads as a rough 

characterization, not a complete model. It would be better to 

either specify a complete model (that other researchers could use 

to generate synthetic traffic) or just keep it as a characterization.  

In the text, the median page load latency in 2010 is given as 5.98 

seconds. This is really long per my usage! Perhaps there is 

substantial variation in the median for different countries and 

access bandwidths that is making the overall median statistic of 

questionable utility?  

Is your use of “page load time” is different than the normal 

definition of page load time as seen within the browser and 

indicated by the onLoad() handler firing? I was a bit confused on 

this.  

At the end of 4.3: I really have no idea if the predictions from the 

simulation are likely to be accurate. There is no validation of any 

simulated points, and I don’t see how you can easily validate. 

This is a bit troubling and deserves some mention in your text.  

In Fig 12(f), the medians look substantially the same, but you 

describe them as different.  

Re caching figures: can you compare with earlier results to put the 

numbers you give in perspective.  

Re aborted transfers: the 12-31% figure seems the right one to 

use, but you use the higher one (for the full size of the aborted 

loads) elsewhere in the paper. Even so, I’m surprised that there is 

so much volume in a small number of aborted transfers -- they 

may deserve more attention and a look at their distribution. 

Reviewer #5 
Strengths: The paper is a straightforward, nicely executed 

analysis of a great longitudinal dataset. It provides helpful 

numbers and contains a few cute tricks. 

Weaknesses: In parts I find the paper repetitive and plot-heavy. I 

believe the authors could free up a bunch of room by avoiding 

repeat mentioning of findings and leaving out some plots, making 

room for additional analysis. 

Comments to author: In the introduction when you recap 

Section 5, I did not understand “the popular URLs grow, and 

therefore improves caching”. It becomes clear later in Section 5.  

Table 1 is poorly designed. Show the years only once. Sort the 

rows alphabetically by country, or make the current sorting 

criterion clear. Say 33,457 instead of 33457, and use less lines. 

What are “agents”?  

The beginning of Section 3 overlaps the findings summary in the 

intro a lot. Cut it, and make your figures larger instead, as 

virtually all are too small.  

In 3.1, when you describe connection speed, how does that 

account for CoDeeN’s architecture? Are you measuring the 

download speed for objects stored on a CoDeeN server to the 

client, or ... ? Regarding NAT use, I would suspect not so much 

increase of it, rather than proliferation of browser-enabled devices 

behind existing NATs.  

In Figures 5 and 6 the placement of the legend destroys 

comparability for the right-hand plot. Fold the legend out 

horizontally and place it under all three graphs.  

I like the trick in 4.1 of relying on observing the activity of 

entities known to trigger only at specific page load events, in 

order to delineate initial pages.  

In 4.3, what do you mean by “stay less than 30 minutes” -- stay 

where?  

12a and 12f could go, as they add little over the text and would 

allow you to make the other ones larger.  

I like your caching analysis. In “Ideal Byte Hit Rate”, you say 

you optimistically removed query strings from the URLs. A well-

designed site should make cacheability of such content explicit, 

say via ETags. How often is that the case? Also, it would have 

been interesting to read more about the clients’ correct support for 

HTTP content caching. For example, how often do clients re-

request content they should cache locally, etc. Finally, you don’t 

say how your content-based caching relates to cacheability 

information conveyed in the entities’ headers. Are your byte hit 

rates optimal in the sense that they match content signatures 

across unrelated downloads and regardless of cacheability, or ...? 

 

Response from the Authors 
(1) Data set: We provide a more detailed description of CoDeeN 

and PlanetLab to help understand our data set. In addition, we 

compare the users of CoDeeN and the content they browse with 

other studies. Finally, we describe the limitations of our data set, 

and explain the origins of potential bias.  

(2) High-level analysis: We agree that the average download time 

of objects might not be the best estimate of client bandwidth 

because bandwidth estimation itself is a challenging problem. 

However, we believe our estimates are good enough to show 

yearly improvements and the existence of many slow clients. In 
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fact, the same conclusions hold for the 95th percentile of 

download time. Regarding NAT usage, we agree that the 

increased number of browser-enabled devices per household is a 

better explanation, and changed our text accordingly.  

(3) Page-level analysis: First, one of the contributions of 

StreamStructure is to delineate initial page loads by catching any 

kind of page load event, and we exploit Google Analytics simply 

because of its popularity. One can easily utilize beacons from 

other analytics services to increase coverage. Second, regarding 

our manually collected Alexa data set, we visit not only the top-

level pages but also other pages linked from those top-level pages. 

Of course, our data collection is different from actual browsing 

patterns, but we believe that it is sufficient for validation as it 

captures the structure of representative Web pages. Third, we 

clarify that the purpose of our page loading latency simulation is 

to raise issues about which factors affect the latency rather than to 

predict the actual latency.  

(4) Caching analysis: We mention that our analysis is based on 

logically centralized but physically distributed proxy systems, just 

like CoDeeN. Thus the result should read as potential bandwidth 

reduction when replacing conventional caching proxies with 

content-based caching proxies. Also, we add two more results that 

further analyze uncacheable content and the origins of 

redundancy.  

(5) Miscellaneous: We acknowledge prior work on NAT usage, 

DNS performance, and caching analysis. We also address all of 

the presentation issues, cleaning up tables and figures. Finally, a 

comparison of US and China is a non-goal of this paper. Instead, 

we encourage interested readers to read our workshop paper: S. 

Ihm et al. ``Towards Understanding Developing World Traffic’’ 

in NSDR’10, which includes more detailed analysis of aborted 

transfers including object size distributions, which we omitted due 

to space limitations. 
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