
DOI: 10.2298/CSIS110716006M 

Towards Understanding of 

Classes versus Data Types in 

Conceptual Modeling and UML 

Dragan Milićev 

University of Belgrade 
Faculty of Electrical Engineering, Department of Computing 

P.O. Box 35-54, 11120 Belgrade, Serbia 
dmilicev@etf.rs 

Abstract. Traditional conceptual modeling and UML take different 
vague, ambiguous, and apparently incompatible approaches to making 
a distinction between two different entity types – classes and data 
types. In this paper, an in-depth theoretical study of these ambiguities 
and discrepancies is given and a new semantic interpretation is 
proposed for consolidation. The interpretation is founded on the 
premise that populations of the two kinds of entity types are defined in 
two substantially different ways: by intensional (for data types) and 
extensional (for classes) definitions. The notion of a generative 
relationship set is introduced to explain the role of specific relationship 
types that are used to define populations of structured data types by 
cross-combinations of populations of the related entity types. Finally, 
some important semantic consequences are described through the 
proposed interpretation: value-based vs. object-based semantics, 
associations vs. attributes, and identity vs. identification. The given 
interpretation is based on runtime semantics and allows for fully 
unambiguous discrimination of the related concepts, yet it fits into 
intuitive understanding and common practical usage of these concepts. 

Keywords: conceptual modeling, Unified Modeling Language (UML), 
formal semantics, class, data type, entity, relationship, object identity, 
identification, association, attribute. 

1. Introduction 

Ever since their introduction with Entity-Relationship (ER) modeling [4], the 
notion of entity type, along with its more recent and object-oriented successor 
concept of class, have had a central role in conceptual modeling and 
programming in general. In addition, classical conceptual modeling 
recognizes the concept of data type as a special kind of entity type, and fairly 
clearly and seemingly unambiguously describes the distinction between data 
types and the other entity types [17, 6]. Unfortunately, as it will be shown in 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

506 

this paper, this distinction does not seem to be precise enough to allow clear 
separation and proper use of the two kinds of entity types. The lack of 
unambiguous criteria for discriminating between data types and the other 
entity types inevitably causes uncertainty to modelers about which of the two 
concepts should be used in each particular case, or about what the original 
semantic intent was behind a particular use of one or the other in a model. 

On the other hand, the Unified Modeling Language (UML) has adopted the 
analogous separation of classes and data types in a yet more explicit way, 
clearly emphasizing a few distinctive characteristics of classes versus data 
types [16]. However, as it will be discussed in this paper, the definitions of the 
distinction between classes and data types appear to be completely different 
from those widely used in classical conceptual modeling. Such a situation 
unnecessarily increases the confusion in understanding of these notions and 
their use in practice. This is yet another of many existing parts of the UML’s 
definition that contributes to its main drawback – the lack of a complete 
semantic formalization. Many concepts of UML, especially in its early 
versions, have not had definitions precise enough to be interpreted 
unambiguously. In other words, many parts of a syntactically correct UML 
model can still be interpreted in different ways by different readers. This has 
been recognized as the main obstacle for UML to become a machine-
interpretable, i.e., executable language. Instead, UML served predominantly 
for recording ideas, sketches, and design decisions in early phases of 
software analysis and design, without an ambition of encouraging 
unambiguously interpretable models. 

Recent model-driven development (MDD) trends in software engineering 
[22, 23, 14] have dramatically increased the importance of formalizing the 
semantics of UML, as the key prerequisite for its switch from a solely 
descriptive to an unambiguously interpretable and executable language. As a 
result, a major revision of UML has emerged in its version 2 [16], making a 
significant step towards precise semantics of concepts. Much effort has been 
made to clarify the meaning of the widely adopted concepts in the very UML 
2 specification, as well as in other attempts before and around it [1, 3, 5, 7, 8, 
9, 14, 15, 17, 18, 19, 24]. However, the distinction between classes and data 
types has not yet been fully clarified and consolidated with the conception in 
classical conceptual modeling. 

In this paper, we describe apparent inconsistencies in and incompatibilities 
between the definitions given in classical conceptual modeling and in UML, 
address these issues, and propose consolidation, attempting to get closer to a 
fully clear understanding of these classical and widely used notions. We also 
show how the understanding of these notions affects the understanding of 
associations versus attributes in UML. We believe that the improvements in 
the common understanding of these notions can lead to better 
communication between software designers and developers, proper and 
certain use of these concepts in conceptual modeling, as well as their 
coherent implementation in environments for building and running executable 
models. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

507 

The rest of the paper is organized as follows. The next section gives basic 
definitions and assumptions in the field as the foundations for the discussions 
that follow. Section 3 brings an overview of the treatment of the concepts 
relevant for the subject matter in classical conceptual modeling and in UML, 
and reveals some ambiguities, discrepancies, or seeming contradictions. 
Section 4 gives an informal analysis of the subject matter that leads to the 
proposed solution in an intuitive way. Section 5 formalizes the proposed 
interpretations through precise definitions. Section 6 summarizes some 
semantic and practical consequences of the presented interpretations. The 
paper ends with conclusions. 

2. Basic Concepts and Assumptions 

2.1. Entity Types 

To avoid terminological confusion and ambiguity, we will use the terms class 
and data type adopted from UML to refer to the two different kinds of 
classifiers of relevance in this discussion, and the term entity type from 
classical conceptual modeling and ER [4, 17] to refer to both (or any). In 
other words, entity type will be used to refer to a generalization of the 
concepts of class and data type, while the division of entity types into classes 
and data types is assumed to be a partition, i.e., a covering and disjoint 
specialization.1 

As a starting definition, we can say that an entity type is a concept whose 
instances at a given time are individual entities that exist in the domain at 
that time. This is a reasonably precise and, with some variations, widely 
adopted definition. For example, this is a variation of the definition from 
classical conceptual modeling [17], with one intentional modification: the 
definition in [17] requires that instances of every entity type be identifiable, 
while we will revisit this aspect in this paper. Put another way, entity types 
represent sets of individual entities. These sets are generally variable in time. 
Variability of entity types over time is one of the fundamental assumptions in 
conceptual modeling. Entities can begin or cease to exist, or they can be 
reclassified to other entity types [17, 6, 14]. A more formal definition of entity 
types as variable sets can be found in [6]. 

                                                   
 
 

1 We will not use the UML term classifier for such a generalizing concept, because 
there are many other kinds of classifiers in UML, such as collaborations or use 
cases, which are out of scope of this discussion. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

508 

In order to make this definition slightly more practical and allow some more 
precise semantic interpretations that will be given in the paper, we will refine 
this definition and say that an entity type represents a set of entities that exist 
in the system or in the domain in runtime. By referring to runtime, we imply 
an inherent dichotomy between design time (or modeling time) and runtime 
that exists in practice. The exact practical meaning of these two terms 
certainly depends on a concrete framework or tooling in case, but 
traditionally, they refer to the activities of data schema design or modeling 
(for design time), and data manipulation or model execution (for runtime). It 
should be noted that the distinction between the two is mostly ontological and 
does not necessarily imply different physical times; in reality, these two may 
refer to the same physical time, meaning that the two activities (of system 
design and its execution) may take place simultaneously. For example, many 
database management systems and other frameworks allow modifications of 
the database schema or model during the exploitation of the system; others 
may need to interrupt the exploitation of the system in order to recompile and 
redeploy the schema/model, and to restart the execution environment, but 
without affecting the existing entities that survived the interruption. Anyhow, 
we consider the runtime as an absolute temporal scope of all entities that 
may exist in a certain system, and outside which the entities cannot exist due 
to the very nature of the considered system or the technology used. That 
might be, for example, the lifetime of a certain installation of a database 
system, or an execution of a program in the classical sense. 

A constant entity type is an entity type whose set of instances is constant, 
i.e., invariable (immutable) in runtime [17, 6]. 

2.2. Relationship Types 

For similar reasons as for entity types, before we discuss and clarify the 
semantics of attributes and associations in UML, we will use a generic term 
relationship type taken from classical conceptual modeling and ER. A 
relationship type is a concept whose instances at a given time are individual 
relationships between entities that are considered to exist in the domain at 
that time [17]. Again, we have omitted the requirement in the definition given 
in [17] that individual instances of a relationship type be identifiable in order 
to allow interpretations like the one given in [14, 15] and to align it with the 
definition given in UML 2 [16], where instances of relationship types (i.e., 
associations in UML) cannot be identified. We do not see any significant 
semantic or practical impact of this modification. 

A relationship type of degree n≥2 consists of an ordered set of n 
participants, whereby a participant is an entity type that plays a role in the 
relationship type [17]. We will write R(p1:E1, ..., pn:En) to denote a relationship 
type named R, with participant entity types E1, ..., En, playing roles p1, ..., pn 
respectively. Note that E1, ..., En do not have to be different entity types, 
because the same entity type can play several roles in the same relationship 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

509 

type. Roles must be, naturally, pairwise different. We may omit the role pi 
played by participant pi:Ei either because it is obvious or it is the same as the 
name of Ei; then it is assumed that pi is the same as Ei. For example, 
Reads(reader:Person, Book) is the same as Reads(reader:Person, 
book:Book). 

A relationship of type R has a form of a set {<p1:e1>, ..., <pn:en>}, 
sometimes also referred to as a tuple, where e1, ..., en are instances of their 
corresponding entity types E1, ..., En. In classical conceptual modeling, all 
relationships of a certain relationship type that exist at a certain moment in 
runtime form a set of distinct tuples [17]. A more recent interpretation [14, 15] 
defines relationship types as concepts whose instances at a certain moment 
in runtime form a bag of tuples (i.e., a multiset), in order to support advanced 
notions of uniqueness of roles in UML 2. The discussions in this paper are 
independent of the interpretation used. 

A binary relationship type R(p1:E1, p2:E2) defines two inverse mappings [5, 
6, 14, 15]: 

 p1 that maps an instance e2 of E2 to a set (or bag in [14, 15]) of all 
those and only those instances e1 of E1 for which {<p1:e1>, <p2:e2>} is 
in R at any particular moment in runtime; 

 p2 that maps an instance e1 of E1 to a set (or bag) of all those and 
only those instances e2 of E2 for which {<p1:e1>, <p2:e2>} is in R at 
any particular moment in runtime. 

It is easy to see that e1 is in p1(e2) if and only if e2 is in p2(e1). The dynamicity 
of the sets of instances of entity and relationship types during runtime implies 
that these mappings are generally also variable in time [5, 6]. 

A relationship type R(p1:E1, ..., pn:En) is constant with respect to a 
particular participant pi if the instances of R in which an instance ei of Ei 
participates are the same during the temporal interval in which ei exists, for 
each ei of Ei. A relationship type is constant if it is constant with respect to all 
its participants [17]. Obviously, when a binary relationship R(p1:E1, p2:E2) is 
constant with respect to e.g. p1, it means that the mapping p2(e1) is constant 
during the lifetime of e1 for each e1 of E1. 

2.3. Populations and Actions 

We will refer to the set of instances of an entity type E that exist at a certain 
moment in runtime as the population of E.2 Similarly, the set or bag of 
instances of a certain relationship type R that exist at a moment in runtime 
will be referred to as the population of the relationship type. 

                                                   
 
 

2 Sometimes also called the extent of E. However, we will use the term extent for a 
slightly different concept. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

510 

Populations of entity and relationship types are assumed to be dynamically 
changed during runtime by means of actions. Actions are atomic units of 
behavior that affect populations of entity and relationship types. In this 
context, we are focused on a generic set of elementary actions on entity and 
relationship types, without going deeper into their formal semantics as they 
are not directly relevant to the conclusions of this paper: 

 Create a new instance of one or more given entity types, which adds 
a new entity e to the system and to the populations of the given entity 
types. (In general, an entity can be an instance of more related or 
unrelated entity types.) 

 Delete an existing entity e, which removes e from the populations of 
its entity types and from the entire system. Deletion of an entity 
implicitly removes all relationships in which that entity participates. 

 Reclassify an existing entity e, by removing the entity from the 
population of zero or more given entity types and adding it to the 
population of zero or more entity types. Removing an entity from the 
population of an entity type implicitly removes all relationships in 
which that entity participates with a role of that entity type. 

 Create a new instance of the given relationship type R, which adds a 
new relationship {<p1:e1>, ..., < pn:en>} to the population of R. 

 Delete an existing relationship, which removes a given relationship 
{<p1:e1>, ..., < pn:en>} from the population of its relationship type. 

While the system’s overall state is defined in terms of populations of its 
entity and relationship types, the system’s behavior is defined in terms of 
executed actions. More detailed and formal treatments of actions and their 
semantics can be found in [6, 14]. 

Constant entity and relationship types have immutable populations. This 
means that actions on constant entity or relationship types that would change 
their populations are illegal. 

2.4. Identification 

An identifier of an entity e is an expression, written in some language, that 
unambiguously denotes e [17].3 In this paper, most relevant are identifiers 
built from binary relationship types that have particular properties, referred to 
as reference relationship types, as defined in [17]. A more general approach 
to building identifiers through so-called observation terms is presented in [10]. 
We will here provide a semi-formal definition of observation terms, which is 

                                                   
 
 

3 In general, identifiers may have temporal or other kinds of scopes, meaning that the 
same identifier (being an expression) may denote different entities at different times 
or in different scopes. We will not consider this case, as it is orthogonal to the 
discussions in this paper. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

511 

sufficient for the discussions given in this paper; for a fully formal definition, 
the reader is referred to [10]. 

Definition (Observation term). Observation term of E (denoted with (E)) is 

an injective function : (E)S, where (E) is the population of an entity type 

E at any moment in runtime, and S is a certain fixed set: 

(e1, e2(E))((e1)=(e2)  e1=e2).4 

Even less formally, (E) is a function that maps an entity e(E) to an 

atomic or structured value (formally bound by a certain set S) so that (e) 
uniquely identifies e. Observation terms are more general than simpler 
identifiers normally used in practice, such as reference relationship types, 

because (E) may map an e to an arbitrarily deeply structured value whose 
components may be obtained by more complex mappings than simple 
relationships, like queries. Of course, reference relationship types (both 
simple and compound) are special cases of observation terms. In [10], 

Gogolla gives a detailed definition of how (E) can be constructed, i.e., how 

S can be defined. 

By its definition, (e) represents an identifier of e, meaning that it implies 

an inverse function f: S (E) that maps a value from S  to an entity e, for 

a subset of S  for which it is defined. It is important to note that (E) is an 
injection that does not have to be a surjection, meaning that there does not 

have to be an e(E) for each element s of S so that (e)=s. This is trivially 

true because the set (E) can be dynamically changed in runtime, while S is 

fixed. Therefore, in general, f is a partial function, defined for a subset of S. 

The function f  is the identification function that can be used for identifying 

entities in (E). 
For a comprehensive study of identification and formalization of 

conceptual modeling in general, the reader is referred to [17, 10]. 

                                                   
 
 

4 The formal semantics of equality is a very subtle and difficult topic; for example, see 
a very interesting perspective and conclusions described in [13]. This is why we do 
not go deeper into that matter. We may simply note that the operation “=” may 
mean equality (up to isomorphism) or identity in different contexts. It seems that 
our observations do not require a fully formal clarification of this issue and that the 

interpretation of e1=e2, where e1 and e2 are (references to) entities, is that e1 and e2 
represent the same entity (identity). 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

512 

3. Overview of the Matter 

3.1. Classes vs. Data Types in Classical Conceptual Modeling 

Classical conceptual modeling defines data type as a constant entity type 
whose instances, called values, can be identified by literals, whereby literals 
are strings (i.e., sequences) of some symbols (e.g., characters) [17, 6]. The 
same value of a certain data type can often be identified by several different 
literals; for example, both 1.0 and 0.1E+1 denote the same value one of a 
floating point data type. Although this definition sounds intuitively clear and 
reasonably practical, it is still formally vague and conceals several important 
issues. 

First, isn’t it possible that an instance of a class (i.e., of an entity type that 
is not a data type) be identifiable by a literal? For example, one can imagine 
a system where each instance of a constant class is assigned (e.g., at design 
time) a literal that identifies it, so identifiability through literals is not a sound 
discriminator between the two notions. (It will be shown later that this is 
exactly the case with enumerations.) On the other hand, is it really necessary 
that each instance of every possible data type (e.g., a structured one) be 
identifiable by a literal? What is the real difference between data types and 
constant classes then? 

<<class>>

Product

<<datatype>>

Money

price

<<datatype>>

Decimal

<<enumeration>>

Currency

amount

currency

product
Costs

 

Figure 1: A constant entity type Money with a non-constant relationship type with 

Product and constant relationship types with Decimal and Currency 

Just being a constant entity type is not a sufficient discriminator for data 
types, simply because classes can also be constant. Data types often imply 
constancy of some (but not all) relationship types. Figure 1 gives an example. 
The data type Money is a structured entity type that represents a certain 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

513 

amount of money expressed in a given currency; these two properties of 
Money are modeled with the two respective relationship types with Decimal 
and Currency data types.5 Obviously, these two relationship types are 
constant with respect to Money. One should not change the pair of instances 
of Decimal and Currency related to a certain instance of Money, because it 
would change the very identity of that instance of Money. Indeed, if it were 
the opposite, one could relate two instances of Money with the same pairs of 
Decimal and Currency, thus making two undistinguishable and fundamentally 
the same instances of Money. In fact, these two relationship types form a 
compound reference [17] of Money, so this situation should not occur. On the 
other hand, however, there are usually non-constant relationship types in 
which a data type participates. The relationship type Costs is obviously non-
constant with respect to Money. However, to the best of the author’s 
knowledge, there is not a clear explanation and understanding of these 
aspects in the open literature, especially of which relationship types of a data 
type are or are not constant (with respect to that data type). 

Beeri [2] gives one of the most profound analyses on the difference 
between classes (i.e., objects as their instances) and data types (i.e., values 
as their instances) in the context of a formal foundation of object-oriented 
databases. However, his discussion is mostly restricted to primitive data 
types. Using the example of numbers, Beeri gives a few criteria for 
differentiating data types from classes (referred to as abstractions in his 
discussions); we first quote each criterion and then give our comments on it:   

“1. Numbers are a universally known abstraction, and have the same 
meaning to all people. Abstractions such as employees are application 
specific.” 
This is correct for the case of most general and application-independent data 
types. However, applications very often introduce quite specific, derived data 
types, typically structured ones. 

“2. Numbers have names in the name space. In contrast, application 
specific abstractions normally do not have names.” 
We agree that objects of application-specific abstractions (classes) normally 
do not have names as their identifiers, but as discussed above, there is not 
any practical or formal reason against having names, as also clearly 
indicated in the same Beeri’s paper. There are many examples of such 
cases, and this paper will later argue that enumerations are actually constant 
classes with named objects. 

                                                   
 
 

5 One can notice that Money is actually a reified ternary relationship type between 

Product, Decimal, and Currency. It might be regarded so, but the reification (i.e., 
the promotion of the ternary relationship type into the entity type with the three 
binary relationship types) has been done for the purpose of reusability of the data 

type Money in other places in a broader model, such as for properties of other 
entity types. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

514 

“3. Numbers (and their names) are built into the system; they need not be 
defined. Object abstractions need to be introduced to the system by 
definitions.” 
This is actually a distinction between built-in and user-defined (application-
specific) entity types, primarily determined by the construction of a particular 
language or model, but not a distinction between data types and classes. We 
believe that this distinction is orthogonal to the distinction between classes 
and data types, as both classes and data types can be built-in as well as user-
defined. For example, a structured derived data type such as Money in 
Figure 1 can be either built-in or user-defined, depending on the concrete 
implementation of the language or framework. 

“4. The information carried by a number is in itself. ... In contrast, the 
interesting information about application specific abstractions is carried in 
relationships they have with other objects and values.” 
We argue that this is a correct distinction between primitive data types on 
one hand and both classes and structured data types on the other, but not 
between classes and data types. For example, a structured derived data type 
such as Money in Figure 1 is an example of a data type whose interesting 
information is truly in its relationships with Decimal and Currency and not in 
itself. 

Beeri also concludes that “none of these distinctions is absolute” and that 
“both objects and values are objects in the general intuitive sense.” In this 
paper, we will stay aligned with this conclusion, but will try to provide a more 
precise and unambiguous distinction between classes and data types. 

3.2. Classes vs. Data Types in UML 

The confusion becomes even worse when the definitions of data types in 
UML get involved [16]. In UML, instances of classes are entities (called 
objects) with inherent identity, while instances of data types are “pure values” 
that have no identity: “A data type is a special kind of classifier, similar to a 
class. It differs from a class in that instances of a data type are identified only 
by their value. All copies of an instance of a data type and any instances of 
that data type with the same value are considered to be the same instance. 
Instances of a data type that have attributes (i.e., is a structured data type) 
are considered to be the same if the structure is the same and the values of 
the corresponding attributes are the same. If a data type has attributes, then 
instances of that data type will contain attribute values matching the 
attributes.” [16, p. 60] 

This “definition” is extremely vague. First, the construction that “all copies 
of an instance of a data type and any instances of that data type with the 
same value are considered to be the same instance” sounds logically 
problematic indeed. Second, it is unclear what “values” really are. Then, in 
case of structured data types, the definition partially relies on the notion of 
attributes, which is even more unclear, as it will be discussed soon. Finally, 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

515 

even if the notion of attribute is taken to be just a relationship type as in [17], 
it is unclear which relationship types have to relate the given two instances of 
a data type to the same sets of other instances in order to be treated as 
“having the same value.” For example, for the data type Money in Figure 1, if 
two instances of Money have relationships with the same instances of 
Decimal and Currency, respectively, they obviously have to be interpreted as 
having the same “value”. However, these two same instances of Money 
obviously may be related to different instances of Product, stating simply that 
these two products have the same price, but the two instances of Money are 
still having the same value, although they do not have the same relationships 
(structure). This observation indicates a certain hidden difference between 
the meaning and purpose of different relationship types relating the data type 
Money. 

An elaborate discussion and clarification of the meaning of these 
statements and their practical implications can be found in [14]. In brief, 
every object of a class has its own identity, which is an inherent characteristic 
of that object that distinguishes it from any other object of the same or any 
other class. The identity of an object is inherent, meaning that it is ensured by 
the very existence of the object, and does not require any special activity by 
the modeler or user in design or runtime. For example, one instance of class 
Person is, by default, different and can be distinguished from any other 
instance of the same class or any other class. How it can be distinguished is 
a matter of a concrete technique, notation, and implementation. It is only 
important to emphasize that two objects are distinguishable simply because 
they are two separate identities by their nature and existence (that is, 
because they have been created by two separate executions of the Create 
Entity action). The identity of an object is its inherent characteristic, and is 
independent of any relationships (e.g., properties of the object or any other 
part of its state). In other words, two objects can have exactly the same 
relationships and exactly the same state, but they are still two different 
identities. For example, two instances of the class Person may have the 
same name, home address, date of birth, and all other properties, but they 
are still treated as two different and independent entities. In addition, the 
identity of an object is not affected by any modification of its properties. 

Unlike class instances, instances of data types do not have their identity in 
UML's interpretation — that is, they are pure values. Two instances of the 
same data type with all properties having equal values cannot be 
distinguished. Being pure values without identity, instances of data types in 
UML are immutable, meaning that operations of data types do not have side 
effects and do not change values of their owner instances, but are pure 
functions that can only produce new instances and not change the existing 
ones. 

To conclude, the two approaches taken in classical conceptual modeling 
and in UML obviously differ significantly. (The only apparent commonality is 
that operations of data types cannot modify their owner instances.) Both rely 
on the notion of value, but what is really “a value”? In UML, one can create 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

516 

many “equal” instances of a data type by Create Entity actions, while data 
types are constant in classical conceptual modeling and such actions should 
be treated as illegal. 

3.3. Associations vs. Attributes 

The confusion is similar with distinguishing associations and attributes as 
different subkinds of relationship types. 

Olivé [17] clearly points out that attributes are very similar to binary 
relationship types and are not really needed at the conceptual level. In fact, 
an attribute is a binary relationship type R(p1:E1, p2:E2) in which participant p2 
is considered to be a characteristic (or property) of E1 (with E2 being the type 
of the attribute), or p1 a characteristic of E2 (with E1 being the type of the 
attribute). Therefore, an attribute is like a binary relationship, except that 
users and designers add the interpretation that one participant is a 
characteristic of the other. In associations, on the other hand, the order of the 
participants does not imply any priority or subordination between them. 

Obviously, except from the rather subjective interpretation by the humans, 
there is not any formal distinction between attributes and associations. “Thus 
it is not clear whether attributes should be used or when,” concludes Olivé 
[17, p. 76]. 

Quite similarly, standard UML [16] does not impose any significant 
semantic difference between binary associations and attributes either. It 
simply provides them as different kinds of modeling elements, without giving 
any clear and formal difference in their runtime semantics. For example, one 
can use either or even both at the same time to model a specific binary 
relationship type between certain entity types. In other words, mostly similarly 
to classical conceptual modeling, standard UML treats attributes and 
associations just as two syntactic variations of the same background concept 
of a binary relationship type. Obviously, having such a situation does not help 
modelers and model readers too much, because it increases confusion in 
which modeling concept to apply or how to interpret the intention of the model 
designer when reading a model. 

Instead of sound criteria on the use of attributes, some guidelines exist 
only. One guideline, well known in conceptual modeling and also suggested 
by standard UML [21], is that types of attributes should be entity types 
defined outside the scope of the considered model, while associations should 
be used to relate entity types that are defined within the considered model. 
This is, however, not a strict guideline; it just helps modelers make models 
easier to understand. 

A formal and executable profile of UML named OOIS UML and described 
in [14] gives more precise and strict discriminating characteristics between 
the two notions: associations are relationships that may involve only classes 
as their participants, while attributes are binary relationship types whose one 
participant is always a data type and represents the type of the attribute, 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

517 

while the other can be either a class or a data type and represents the owner 
of the attribute. In other words, the type of an attribute may only be a data 
type. The profile also describes some additional semantic implications, briefly 
summarized as follows: 

 Objects of classes are compared for equality by reference, while 
instances of data types are compared for equality by value. 

 As they can have only attributes, instances of data types have 
implicit copy semantics that deeply (recursively) copies values of 
their attributes. Objects of classes do not have implicit copy 
semantics. 

 Objects of classes have an explicit lifetime – they are explicitly 
created and destroyed by executing actions. Instances of data types 
have an implicit lifetime – they are created by executing actions, but 
are destroyed implicitly, when they are not referred to any more. 

 Operations of classes may modify the objects’ state. Operations of 
data types must not modify values of their attributes; they must be 
pure functions that possibly produce new values.  

The semantics given in [14] is strict, clear, and unambiguous. The author 
has applied the profile and the rules in many industrial projects and has found 
the interpretation practically useful. However, it is not obvious whether the 
described two approaches are compatible and how they relate to each other. 
Although there are practical and intuitive rationales behind the definition 
given in [14], its formal background was still unclear. 

All the described approaches agree that data types can have attributes too. 
Such data types are called structured in UML. Attributes of data types are 
considered to be immutable characteristics of their owner instances. 

3.4. Summary 

The presented discussions are summarized in Table 1 that gives an overview 
of the criteria used to discriminate classes vs. data types in classical 
conceptual modeling (including Beeri’s guidelines), standard UML, and OOIS 
UML. 

It is useful to mention briefly that a similar confusion exists in programming 
in classical object-oriented programming languages, such as C++ or Java. 
There, objects of classes (as the only kinds of supported entity types) have 
their inherent identity that is based on their very existence in time and space 
– the computer memory. Unrelated to their state, objects can be distinguished 
by their technical identifiers – references (pointers) that conceptualize 
objects’ physical location in computer memory. However, programmers 
usually feel a need for what is clearly recognized in conceptual modeling and 
UML as a data type, so they introduce “special kinds of classes” that they 
usually call “immutable,” rely on their “value-based equality comparison, 
copying, argument passing, etc.,” and must deal with implicit lifetimes of data 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

518 

type instances or explicit lifetimes of objects (although the language 
sometimes supports only one of them). 

Table 1: Summary of the discriminators of classes vs. data types used in classical 
conceptual modeling and UML 

 Class Data Type Issue 

 
 
 
 
 
 
 
 
Conceptual 
modeling 

Variable? Constant Why cannot a class be 
constant as well? 

Not identifiable by 
a literal? 

Identifiable by 
a literal 

Why cannot a class be 
identifiable by a literal? 

Domain/application
-specific 

Universally 
known 
abstraction 

A user-defined, 
domain-specific, 
structured data type is 
not a universally 
known abstraction. 

User-defined Built-in Both classes and data 
types can be built-in 
and user-defined. This 
is an orthogonal 
distinction. 

Interesting 
information carried 
by relationships 

Interesting 
information 
carried by the 
value 

Not true for structured 
data types. 

 
 
 
Standard 
UML 

Instances have 
identity 

Instances do 
not have 
identity, but 
are pure 
values 

What do “values” 
exactly mean? 

Equality by identity Equality by 
structure/value 

Definition for 
structured data types 
based on the unclear 
notion of attribute. The 
isomorphism of 
relationships/attributes 
unclear. 

Instances are 
generally mutable 

Instances are 
immutable 

No issues. 

 
 
 
 
 
 
 
 

Instances have 
identity 

Instances do 
not have 
identity, but 
are values 

What do “values” 
exactly mean? 

May take part in 
associations 

May have 
attributes only 

No issues. 

May not be types of 
attributes 

May be types 
of attributes 

No issues. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

519 

OOIS UML Equality by identity 
(reference) 

Equality by 
attribute values 
(recursively) 

No issues. 

No implicit copy 
semantics 

Implicit copy 
semantics 

No issues. 

Explicit lifetime of 
instances 

Implicit lifetime 
of instances 

No issues. 

Instances are 
generally mutable 

Instances are 
immutable 

No issues. 

 
As a conclusion, these two approaches (in classical conceptual modeling 

and in UML) to distinguishing between classes and data types on one hand, 
as well as between associations and attributes on the other, may seem 
unrelated or even contradictory, or at least vague and confusing at first sight. 
We will try to consolidate them and form a unified and consistent 
understanding of the notions. In fact, we will show that both approaches are 
actually correct and compatible, although not complete and fully formal, and 
will provide complete formalizations of all related notions. 

4. Analysis 

Before reaching precise definitions, we will carefully analyze the practical use 
and intents behind of what are traditionally referred to as classes and data 
types (including primitive and derived data types, structured data types, and 
enumerations). 

4.1. Populations of Classes and Data Types 

We deem that the central difference between different subkinds of entity 
types is the way how the population of an entity type is defined. 

For entity types that we traditionally treat as data types, the population is 
typically defined intensionally. That is, the set of instances of a data type is 
defined by a formula or a set of rules or constraints that are necessary and 
sufficient conditions for belonging to the set. For example, the population of a 
primitive type Integer can be defined as the set of integer numbers that can 
be represented with a certain binary format, e.g., a 32-bit two’s complement, 
which defines the set of integers in the range from -2

31
 to +2

31
-1. Similarly, 

the population of the data type String is the set of all logically unlimited arrays 
of characters, including the empty array. 

On the other hand, the population of a typical class is defined 
extensionally: for each particular instance of a class in its population, it is 
directly and explicitly stated that the instance belongs to the population, 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

520 

basically by executing a Create Entity or Reclassify Entity action; the 
instance belongs to the population of the class until it is destroyed or 
reclassified by another action. 

4.2. Structured Data Types 

The given simple example of data type Integer addresses only a subset of 
simple data types that are traditionally called primitive data types. These are 
types that are not defined in terms of other data types; they exist ab initio. 
Derived data types are those that are defined in terms of other data types. 
The way how (populations of) derived data types are defined predominantly 
depends on the language constructs and features, but we can list some of the 
most general approaches: 

1) Defining a subset of another data type or of a union of other data 
types. The subset can be defined intensionally, by a rule, or extensionally, by 
enumerating instances that form the subset. 

2) Through a set and functional calculus, by defining a data type whose 
instances are sets or functions of other data types, or with algebraic 
specifications of abstract data types [11, 12]. Such types include different 
kinds of collections, sets, bags, maps, and other non-atomic types used in 
different languages. 

3) Defining structured data types by composition of other entity types. 
In this paper, we will focus on and confine to the semantics of the third 

subcategory – structured data types only, as they are most typical derived 
data types used in conceptual modeling. There, a derived data type is 
defined in terms of relationship types with other entity types. The data type 
Money in Figure 1 represents one such example. Another simple and intuitive 
example is a data type Point with two relationship types (Point, x:Decimal) 
and (Point, y:Decimal) that define the coordinates of a point in a two-
dimensional space. 

Let us carefully consider the semantics of structured data types, actually, 
the intent of the modeler who defined them and the meaning she obviously 
had in mind. The populations of such entity types are defined intensionally, in 
terms of a set of some other entity types and relationships with them. For the 
two given examples, this looks like the following: 

 For each pair of existing instances of Decimal and Currency, there 
exists exactly one (one and only one) instance of Money that is 
related to the two instances of Decimal and Currency. 

 For each pair of two existing instances (possibly the same) of 
Decimal, there exists exactly one (one and only one) instance of 
Point that is related to the two instances of Decimal that play the x 
and y roles. 

Optionally, in a more general case, such a definition may include a 
constraint that reduces the set of instances obtained by a simple Cartesian 
product of the related populations. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

521 

Consequently, unlike other relationship types in which a certain data type 
participates, such relationship types have a special meaning: they are used to 
define the population of the entity type by the (optionally reduced) Cartesian 
product of populations of the related entity types. Due to their special role in 
the definition of an entity type E, we will call such a set of relationship types 

the generative set of E and denote it with (E). Consequently, the relationship 

types in (E) are always constant with respect to E. For the example shown in 
Figure 1, the relationship types of Money with Decimal and Currency form the 
generative set of Money, because they are used to “generate” and identify 
instances of Money, and are therefore significantly different from other 
relationship types of Money, such as the one with Product whose instances 
do not affect the population of Money. 

It can be easily concluded that if all other entity types that participate in the 

relationship types in (E) are constant, E is also constant. However, one can 

imagine a more general case where there is a relationship type R in (E) with 
a non-constant class C whose instances are dynamically created and 
destroyed by actions during runtime. The definition of E’s population remains 
the same, but the population is not constant any more. Namely, when an 
instance c of C is removed from C’s population, all instances e of E related to 

c by a relationship type from (E) should also cease to exist, as their 
existence is defined in terms of their relationships with instances of C. Thus, 
the population of E changes over time, as the population of C changes. As a 

conclusion, an entity type E is constant if and only if (E) relates E with 
constant entity types only. 

Consequently, if the notion of the generative set is to be taken as the basis 
for defining populations of structured data types, then the previous conclusion 
calls for: 

 either a restriction that (E) for a structured data type E cannot relate 
E with a non-constant entity type; in that case, structured data types 
are constant entity types; 

 or for a revision of the claim that data types have to be constant 

entity types; as just shown, if (E) for a data type E relates E with a 
non-constant entity type, then E is also non-constant. 

We will take the first approach in this paper in order to stay aligned with a 
commonly accepted conception that data types are constant entity types. 

4.3. Constant Classes 

In a traditional sense, as well as in UML, an ordinary, non-constant class 
specified in a conceptual model designates a set of objects that can 
potentially exist in the system’s object space in runtime. This (typically 
infinite) set of potential objects is basically defined by intensional semantics, 
in terms of the features that objects of the class will have; all objects and only 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

522 

objects that have the features of a specified class are potential instances of 
that class. On the other hand, the actual set of objects that exist in the 
system’s object space at a particular point in runtime is defined by 
extensional semantics, in terms of explicit Create, Reclassify, and Destroy 
Entity actions that have been executed up to that point. Such set of objects is 
always finite. In order to ensure clear disambiguation, we will refer to the 
former (the usually infinite set of potential objects defined intensionally) as 
the extent of the class or entity type in general, and to the latter (the set of 
actually existing objects at a certain point in runtime) as the population. One 
important corollary of this definition is that the population of a data type is 
always equal to its extent, that is, the population covers the entire extent and 
is constant. This is a fundamental observation and assumption that underpins 
the further ideas presented in this paper.  

As opposed to a non-constant class, the extent and population of a 
constant class are the same, and are defined in design time rather than in 
runtime. In fact, this observation conceals a subtle potential inconsistence. 
Namely, objects of classes are created in an explicit, extensional manner, by 
executing Create Entity actions. Execution of actions is naturally bound to 
runtime. Hence, objects of constant classes cannot be “created in design 
time,” but can only be “specified” (defined) in an extensional manner in 
design time, for example by so-called instance specifications of UML [16] 
(see, for example, creational object specifications in [14] as an advanced 
example). Anyhow, these specifications are manifested as actions being 
executed in runtime. Every successfully executed Create Entity action in turn 
modifies the population of the entity type. However, if a class is constant, it 
does not allow such actions. Therefore, totally constant classes, in this purely 
theoretical sense, actually cannot exist. 

It seems that this inconsistence, however, is purely conceptual and does 
not have a significant practical impact. Constant classes may be defined as 
those whose instances are created in some strictly defined and controlled 
periods of runtime, e.g., at system’s startup or by certain restricted 
administrative, initialization, or configuration procedures only. 

An alternative resolution could be a relaxation of the notion of extensional 
population definition: an instance specification, made in a model and in 
design time, does not have to result in an action of creating an instance in 
runtime, but may be conceptually treated as a formal statement that such an 
instance (with its optionally specified relationships) merely exists, with the 
lifetime that has not its “creational beginning nor ending during runtime” but 
spans over the entire system’s lifetime, and is a member of the population of 
its entity type ab initio. 

This is just the case with enumerations: in essence, an enumeration is 
nothing more than a constant class whose instances can be referred to by 
literals specified in design time. Indeed, if an enumeration can take part in 
relationship types (either constant or non-constant with respect to itself) and 
can have other features (such as operations), there is not any semantic 
difference between a constant class and an enumeration, as both must have 
populations defined extensionally, in design time. This is really the case in 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

523 

some languages, such as Java, where an enumeration is nothing but a 
constant class with objects enumerated in the program and identified by 
literals. UML does not prevent enumerations from having relationship types 
and other features as well. However, in UML, “enumeration is a kind of data 
type, whose instances may be any of a number of user-defined enumeration 
literals” [16, p. 67]. Except from being influenced from some older 
programming languages, such as C/C++, and the semantics and 
implementation of enumerations in them, there seems to be no rationale 
behind the decision that enumerations are data types. We argue that this is 
yet another design flaw of UML that makes its semantics vague. From our 
perspective, the extensional nature of the definition of an enumeration’s 
population is a much stronger qualifier that classifies it into classes, as 
opposed to the identifiability of its constant set of instances through literals, 
which is a characteristic applicable to constant classes as well. 

In general, a constant class can take part in constant as well as in non-
constant relationship types (with respect to itself); it seems that there is not a 
valid reason for any restriction in this respect. 

5. Definitions 

In this section, we provide a summary of the conclusions from the previous 
analysis in a form of precise definitions. Our definitions are based on the 
following observations described informally so far: 

 Extents of both kinds of entity types are defined intensionally. 
Populations, on the other hand, are defined differently: extensionally 
for classes and intensionally for data types. This reflects our basic 
orientation to providing clear runtime semantics. 

 Data types are constant entity types and their populations are equal 
to their extents. 

 Populations of structured data types are defined as all allowed cross-
combinations of different relationships of the relationship types from 
a generative set. 

In the discussions that follow, we use the following notation: 

 (T) denotes the extent of an entity or relationship type T, that is, the 
(possibly infinite) set of all possible instances of T allowed by the 
model and constraints in it. 

 (T) denotes the population of an entity or relationship type T, that is, 
the set of all existing instances of T at a certain moment in runtime; 

(T) obeys all implicit and explicit constraints defined by the model. 

 (S) denotes the entire system’s population, that is, populations of all 
entity and relationship types from the considered conceptual model at 
a certain (but the same) moment in time; the populations altogether 
obey all implicit and explicit constraints defined by the model. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

524 

 In symbols for entities, subscripts differentiate types of those entities, 
while superscripts differentiate instances within the same entity type. 

E2

E

p2 p2,1

0..2

E1

p1 p1,1

1..1

R1

R2

 

Figure 2: An example of an entity type E and its generative set (E)={R1, R2} 

Prior to giving a general definition of generative set, we first develop it for 
a simpler case with binary relationship types shown in Figure 2. The example 

shows an entity type E and its generative set (E) consisting of two binary 
relationship types R1 and R2. There are also some cardinality constraints 
(called multiplicities in UML) associated with the relationship types, so that R1 

is total and functional with respect to E (p1,1: (E)(E1)), while R2 is neither 
total nor functional (p2,1

 
is

 
multivalued and partial because of the 0..2 

constraint). In addition, we may assume a set C of domain-specific 
constraints defined in the model, in a form of predicates that take entities as 
parameters. 

The idea of the generative set (E)={R1, R2} is that there is exactly one 

e(E) for each valid combination of relationships with all existing entities of 
E1 and E2 so that all cardinality constraints and all predicates in C are also 
satisfied. For example, if there is only one existing instance e1

1
 of E1 and two 

existing instances e2
1
 and e2

2
 of E2, there are exactly four instances of E, 

related to instances of E1 and E2 as given in Table 2, assuming that C holds 
for all of them.6 

Table 2: The population of entity type E defined by its generative set (E) in Fig. 2 

Entity of E Relationships of R1 Relationships of R2 

e
1
 {<p1:e

1
>,<p1,1:e1

1
>} None 

e
2
 {<p1:e

2
>,<p1,1:e1

1
>} {<p2:e

2
>,<p2,1:e2

1
>} 

e
3
 {<p1:e

3
>,<p1,1:e1

1
>} {<p2:e

3
>,<p2,1:e2

2
>} 

e
4
 {<p1:e

4
>,<p1,1:e1

1
>} {<p2:e

4
>,<p2,1:e2

1
>}, 

{<p2:e
4
>,<p2,1:e2

2
>} 

                                                   
 
 

6 We assume that the roles have the semantics of unique association ends in UML as 
discussed in [14]. If a role is non-unique, the result is slightly different, but the core 
idea remains the same. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

525 

Just as another example, if the constraint at p1,1 were 0..1, the number of 
instances of E would be eight: four of them would be related as shown in the 
given table, and the other four would be unrelated to any instance of E1 and 
related to the instances of E2 as shown in the table. 

In our formal definitions, we introduce the notion of relationship projection: 
informally, this is a tuple obtained from a relationship by omitting a certain 
role. For example, the projection of the relationship {<p1:e

1
>,<p1,1:e1

1
>} from 

Table 2, for the role p1, denoted with ({<p1:e
1
>,<p1,1:e1

1
>},p1), is {<p1,1:e1

1
>}, 

while ({<p2:e
4
>,<p2,1:e2

2
>}, p2)= {<p2,1:e2

2
>}. 

Similarly, the projection of an entity e for the given role p, denoted with 

(e,p), is the set of projections of all relationships in which e participates with 

the role p. For the same example in Table 2, (e
3
,p2)={{<p2,1:e2

2
>}}, while 

(e
4
, p2)={{<p2,1:e2

1
>}, {<p2,1:e2

2
>}}. 

Finally, the projection of the given entity e for the entire ordered set of 
given roles p1, p2, ..., pn, is an n-tuple consisting of projections for each role: 

(e, <p1, p2,..., pn>)=<(e,p1), (e,p2), ..., (e,pn)>. For the same example in 

Table 2, (e
4
,<p1,p2>)=<{{<p1,1:e1

1
>}}, {{<p2,1:e2

1
>},{<p2,1:e2

2
>}}>. 

The purpose of the notion of projections is to allow for considering and 
comparing different possible and well-formed configurations of relationships 
for the generative set of a certain entity type E, independently of concrete 
entities of E that take part in them. 

E

R1

E1,1 E1,m1E1,2 ...

p1

p1,1 p1,2 p1,m1

R2

E2,1 E2,m2E2,2 ...

p2

p2,1 p2,2 p2,m2

Rn

pn

...

...

 

Figure 3: A general case of an entity type E and its generative set (E)={R1, R2, ..., 

Rn} 

Now we can get to general definitions. In the following definitions, these 
assumptions and notations are used (Figure 3): 

 Let E be an entity type. 

 Let ={R1, R2, ..., Rn} be a finite set of relationship types such that E 
participates in each, where Ri(pi:E, pi,1:Ei,1, pi,2:Ei,2, ..., pi,mi:Ei,mi), mi≥1, 

1in. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

526 

Definition (Projections). (See Figure 3 for assumptions and notation.) 

 Let ri(Ri) be a relationship from the extent of Ri, ri={<pi:e>, 

<pi,1:ei,1>, <pi,2:ei,2>, ..., <pi,mi:ei,mi>}, e(E), ei,j(Ei,j), 1in, 

j=1,...,mi. The projection of ri for pi, denoted with (ri, pi), is the set: 

(ri, pi)={<pi,1:ei,1>, <pi,2:ei,2>, ..., <pi,mi:ei,mi>}. 

 Let e(E) be an entity from the extent of E and pi the role played by 

E in a relationship Ri, 1in. The projection of e for pi, denoted with 

(e, pi), is the set of projections of all relationships with existing 
entities of Ei,j in which e plays the role pi: 

(e, pi)={(ri, pi)| ri={<pi:e>, <pi,1:ei,1>, <pi,2:ei,2>, ..., <pi,mi:ei,mi>}, 

ri(Ri), ei,j(Ei,j), j=1,...,mi}. 

 Let e(E) be an entity from the extent of E. The projection of e for 
the roles p1, p2, ..., pn played by E is an n-tuple consisting of 
projections for each role: 

(e, <p1, p2, ..., pn>)=<(e, p1), (e, p2), ..., (e, pn)>. 

Definition (Generative set). (See Figure 3 for assumptions and notation.)  
is a generative set of E, denoted with (E), if and only if (by definition): 
i) In any system’s population, there are no two different entities of E 

with the same projections for the roles of E in the relationship types from : 

((S))(e
1
, e

2
(E))((e

1
, <p1, p2,..., pn>)=(e

2
, <p1, p2,..., pn>)  e

1
=e

2
). 

ii) For any system’s population, and for any possible well-formed 

configuration of relationships for , that is, for any legal projection, there is an 
existing entity of E in that population with that projection: 

((S))(e
1
(E))(relationships of e

1
 satisfy all model constraints  

(e
2
(E))((e

1
,<p1, p2, ..., pn>)=(e

2
,<p1, p2, ..., pn>))). 

These definitions imply a function  that maps (E) on all possible 
projections of relationships allowed by the model and its constraints, defined 

as (e)=(e, <p1, p2,..., pn>). The clause i) of the latter definition means that 

 is injective, while the clause ii) means that  is surjective. 

Being both injective and a surjective,  is a bijection. Being injective,  is 
an observation term. As it is also a surjection, its corresponding identification 

function f is total and is equal to 
-1

. It can be shown that the statement ii) 
of the given definition implies that there is not any potential true extension of 
the population of E and of the populations of some or all of the relationship 

types from (E) that satisfies all model constraints and preserves injectivity of 

. 

It should be noted that surjectivity differentiates  from an observation 

term in general. For the example in Figure 2, if (E) were a simple 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

527 

observation term that is not also a generative set, then instances of E would 
not have to exist for each combination given in Table 2; for a generative set, 

this is mandatory (i.e., f is total for a generative set). In addition, the 
relationship types from a generative set do not have to be reference types as 
defined in [17], because the participation of E in reference relationship types 
has to be total, while this is not necessary for a generative set; an example is 
the participation of E in R2 in Figure 2 with the lower multiplicity bound equal 
to 0 at the opposite end. 

Now we can formulate the definitions of different kinds of data types and 
classes. 

Definition (Primitive data type). A primitive data type is a constant entity 

type without a generative set, whose population definition is intensional and 

whose instances can be identified by literals. 

Definition (Structured data type). A structured data type is an entity type E 

whose population definition is intensional and has a generative set (E), 

where any R(E) has all participating entity types other than E constant. 

Definition (Class). A class is an entity type without a generative set, whose 

population definition is extensional. 

Definition (Enumeration). An enumeration is a constant class whose 

instances can be identified by literals. 

We will illustrate the meaning of the given definitions, especially of the one 
of a generative set, on two examples. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

528 

Point
<<datatype>>

Decimal

x

y

X

Y

1..1

1..1
 

Figure 4: Example of entity type Point 

Example (Point). The example in Figure 4 shows the entity type Point with 

two relationship types: X(Point, x:Decimal) and Y(Point, y:Decimal) with 1..1 

cardinality constraints on x and y. If these two relationship types form the 

generative set for Point, then Point is a data type. In that case, the population 

of Point is defined intensionally and consists of one and only one instance of 

Point for each pair of existing instances of Decimal (it is basically isomorphic 

to the Cartesian product of Decimal with itself). On the other hand, if these 

two relationships do not have the semantics of a generative set, then Point is 

a class and its population is managed explicitly, by creating and deleting 

objects with actions executed in runtime. In practice, the modeler considers 

the case the opposite way: if she wants to have the semantics of an 

intensionally defined and constant population of Point, without having to 

manage its population in runtime by actions, she will declare Point as a data 

type, and the two relationship types will form the generative set of Point; 

otherwise, she will declare it as a class. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

529 

String
<<datatype>>

Char

tail

Head

0..1

0..1

Tail

head

 

{context String inv: 

    self.tail<>self and 

    self.tail->size()+self.head->size()<>1} 

Figure 5: Example of entity type String 

Example (String). The example in Figure 5 illustrates another, more 

interesting case, where instances of entity type String can be recursively 

constructed from other instances of the same type. The constraint given 

below the diagram, along with the implicit constraints given in the 

multiplicities of the roles head and tail, specifies that only the following cases 

are allowed: 
i) A String can have an empty head and an empty tail. This is the case of 

an empty string. 
ii) A String can have one character as its head and another string as its tail. 

(Note that the tail can be an empty string.) This defines the recursive nature 
of constructing strings. 

If the two relationship types are treated as a generative set and String as a 
data type consequently, there will be a logically infinite population of String, 
defined conceptually as follows: 

 there is one and only one instance with no head and no tail, the 
“empty string;” 

 for each existing instance of Char and each existing instance of 
String, there is another instance of String that is constructed by 
concatenating the character and the former string. 

As before, in the opposite case when the two relationships do not have the 
semantics of a generative set, String is a class and its population has to be 
managed explicitly, by creating and destroying instances with actions. In that 
case, there can be two instances of String that are different identities, but 
which can be treated as equal strings with respect to their isomorphic 
structure, when they have the same character as their heads and 
(recursively) equal tails. 

This example also suggests a general approach of defining other recursive 
structured data types, such as lists, trees, and others. It also shows the dual 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

530 

nature of those classical structures, since they can be treated as either 
classes or data types, depending on the intent of the modeler. 

There are several interesting implications and properties that can be 
observed from the presented definitions: 

 The extent and the population of a data type do not have to be finite. 
Since the definition of a primitive data type’s population is 
intensional, it can be logically infinite.7 The described example of the 
data type String is an example of a structured data type with an 
infinite population. The similar holds for a data type 
BinaryLargeObject (BLOB), which can be treated as primitive, and 
whose instances are finite but unlimited strings of bits. 

 The population of a structured data type can be either finite or 
infinite, depending on the finiteness of the populations of other entity 
types that take part in its generative set, and on the way the 
generative set is defined. 

 Due to the limitation that all entity types other than the considered 
structured entity type that take part in its generative set are constant, 
the extent and the population of the structured data type are equal, 
i.e., it is also constant. 

 If all other entity types that take part in the generative set of a 
structured data type E are identifiable, then E is also identifiable 

through the observation term . For example, in a typical (but not 

necessary) case when the relationship types in (E) relate E only with 
primitive types, other identifiable structured data types, or 
enumerations, E is identifiable. E is not identifiable if, for example, it 
depends on a non-identifiable constant class. 

 Due to its extensional definition, the population of a class is always 
finite, but generally unlimited. 

All these definitions and conclusions can be summarized in Table 3 and 
Figure 6. 

Table 3: Summary of the main characteristics of different kinds of entity types 

Entity type 
kind 

Population 
definition 

Generative 
set 

Population 
 

Identifiable 
 

Population 
finite 

Primitive data 
type 

Intensional 
 

No 
 

Constant 
 

Yes Yes or No 

Structured 
data type 

Intensional 
 

Yes 
 

Constant 
 

Yes or No Yes or No 

Constant class Extensional No Constant Yes or No Yes 

                                                   
 
 

7 Typically, all such populations are physically finite, because they are limited by the 
amount of physically addressable computer memory or storage, but there is often 
no logical limit. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

531 

Enumeration Extensional No Constant Yes Yes 

Non-constant 
class 

Extensional 
 

No 
 

Variable 
 

Yes or No Yes 

Population definition

Intensional Extensional

Data type Class

Entity type

Primitive

data type

Structured

data type

Generative set?
No Yes

Non-constant 

class
Constant class

Population constant?
No Yes

Non-identifiable 

constant class
Enumeration

Identifiable?
No Yes

 

Figure 6: Classification of different kinds of entity types 

6. Consequences 

In this section, we analyze some consequences of the given semantic 
interpretations: how they relate to the definitions in UML, the value-based 
semantics, and the distinction between attributes and associations. 

6.1. Classes vs. Data Types in UML 

Populations of data types considered here are constant and defined 
intensionally. Therefore, in a certain sense, instances of data types 
(generally, of constant, intensionally defined entity types) can be considered 
as residing outside the scope of the running system, because the behavior of 
the system does not affect these populations and does not even define them 
explicitly. On the other hand, these populations are typically very large and 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

532 

sometimes unlimited. These are reasons why systems most often do not 
physically store instances of data types as individual physical entities 
referenced in relationships. Instead, a system internally uses values that are 
actually identifiers or references to those external instances, in all places 
such as relationships. For example, a 32-bit two’s complement binary 
representation with all digits equal to one is a value that refers to the 
conceptual notion of minus one. Such values are then stored and 
manipulated wherever needed. Of course, this interpretation does not prevent 
an implementation to store each physical instance of a data type and use 
compact references to it in all other places, if this is cost-effective. The 
decision, of course, depends on different engineering trade offs but is 
certainly an implementation, not a conceptual concern. For example, if the 
space required for storing a reference or a key to the instance in a map is 
comparable to the space of storing the actual instance, the system may opt 
not to store physical instances. If, on the other hand, the system opts to store 
particular instances of a data type, when the population of a data type is huge 
or unlimited, the system may also opt to store only instances that are referred 
to from relationships with other entities. For example, if an implementation 
estimates that only a tiny subset of the entire extent of 64-bit integers will be 
referred to in the system, it can store only the used instances in a central 
repository and provide short integer keys to those values in a map; it is then 
much more cost-effective to manipulate with those shorter keys instead of 
“original” 64-bit values throughout the system. 

These observations bring us to the rationale behind defining data types in 
standard UML as well as in OOIS UML [14] as described in Section 3. There, 
instances of data types are actually only typed references to external entities, 
but not real entities. The remaining semantic implications follow directly from 
that observation: 

 “Instances of data types in UML do not have their identity, they are 
pure values; equal values represent the same instance. Instances of 
data types are compared for equality on value base.” Indeed, values 
are typed references to entities and do not have identity themselves; 
instead, they refer to external entities with identity. Obviously, equal 
references refer to the same entity, because references are 
inherently unique identifiers. 

 “Instances of data types can be arbitrarily copied and passed by 
value (e.g., as parameters),” again because they are simple typed 
references. 

 “Instances of data types are immutable, and operations of data types 
cannot change any instance; instead, they are pure functions that can 
create and return new values.” Really, values in UML serve as 
references to and proxies of external entities, while data types are 
constant entity types. Therefore, operations on such values are 
operations called on proxies. They cannot create new entities of 
constant entity types, but can create and return references to 
external, already existing entities. 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

533 

 “As opposed to objects of classes, instances of data types have 
implicit lifetime: they disappear as soon as they are not needed any 
more” (this is a rule specific for the OOIS UML profile). Indeed, a 
reference (as an implementation thing) is just a handle that is used to 
access an entity; it can be discarded implicitly, as soon as it is not 
needed in its scope or when its temporal scope expires. On the other 
hand, in UML and OOIS UML, instances of data types are created by 
a Create Instance action. This is, formally, a minor semantic flaw. As 
it implies from this discussion, when a “data type instance is created” 
in UML, only a reference to an external entity is created and 
obtained; that external entity has to be identified then. More 
concretely, in a textual notation, instead of using a statement e.g.: 

 Integer i = new Integer(5); 

a more appropriate notation would be: 

 Integer i = Integer(5); 

because this is actually not an action that creates a new instance of 
an entity type, but a request for a reference to an external entity 
identified by the parameters of the request (“constructor”). 

System

#25 : Order

John Doe : Person

customer

date = 30 March 2005

March 2005

S M T W T F S

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

April 2005

S M T W T F S

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

February 2005

S M T W T F S

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28

#64 : Order

date = 30 March 2005

customer

 

Figure 7: Instances of data types, such as Date, as defined in UML, represent values 
that refer to external entities that reside outside the system’s boundaries 

The decision whether an entity should be modeled with a class or with a 
data type is, thus, basically a matter of defining the boundaries of a system 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

534 

under consideration, as shown in Figure 7. If the system does not want to 
manage the population explicitly, but the population is defined outside the 
system’s boundaries, then the entity type is a data type, while the values 
manipulated by the system refer to these external entities. For the example in 
Figure 7, objects of class Order are related with external entities of type Date 
that reside outside the system boundaries and abstract the common notion of 
a day. If, however, the system wants to define the population explicitly, by 
enumerating them or by creating and deleting them with actions, then the 
entity type is a class. For example, in an event management system, Day 
can be a class that conceptualizes the explicitly defined limited set of days of 
an event, possibly related to the external notion of Date in order to be 
properly positioned in the calendar and described additionally for human 
readability. 

6.2. Value-Based vs. Object-Based Semantics 

Following the same deduction in a more general context, value-based 
systems, such as relational data models, found their semantics on the 
fundamental assumption that real entities and relationships between them 
reside outside the running system and its data space, while the system 
manipulates data values that refer to those entities and relationships. More 
precisely, by storing and manipulating values and tuples of values, the 
system actually manipulates facts that certain external entities exist, are 
instances of their types, and are related with certain relationships. The 
existence of many occurrences of the same value or the same tuple of 
values in the system has no particular meaning, as they all represent replicas 
of the same fact that holds in the external domain. In some sense, the system 
does not affect the external domain with its execution, nor does it create or 
delete entities and relationships, but just tracks the facts from the external 
system and changes its scope of concern: at some time, some facts are 
relevant for the system and some are simply not. An absence of a fact (a 
value or a tuple) in the system does not necessarily mean that the thing 
referred to by that fact does not exist in the domain: it may not exist, or it 
may exist, but it is simply not relevant for the system or not captured by it at 
that time. This is why values and tuples do not have identities in such 
systems, and why modeling languages based on such semantics require that 
all entities be identifiable, as those systems have to maintain references 
(identifiers) to external entities. 

On the other hand, object-based systems maintain entities that have their 
inherent identity and lifetimes internal to the system. Although such entities 
(objects) often model external concrete or abstract entities from the problem 
domain, like persons, things, or logical concepts, they also often represent 
pure abstractions invented in the implementation domain. The system 
maintains such entities by creating and deleting them, and by changing their 
states and properties, i.e., by creating and deleting relationships between 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

535 

entities. In such systems, entities have their inherent identities and do not 
have to be identifiable as in value-based systems. More detailed explanations 
on this aspect with examples can be found in [14]. 

It seems that the recent understandings and trends in the design of 
languages and systems for conceptual modeling and model execution, as 
well as in designing data models in practice even with the relational paradigm 
take the second approach. Indeed, it is a common practice in designing 
relational databases to introduce so called technical IDs as internally 
generated, outwardly invisible primary keys of records to ensure uniqueness 
of records in a certain table that cannot be identified by other means or 
whose “natural” (domain) identifiers are bulky. Such engineering technique is, 
actually, a reification (“objectization”) of a tuple. 

6.3. Attributes vs. Associations 

The previous conclusions also justify the clear and precise discriminating 
characteristics of associations vs. attributes as defined in OOIS UML [14]: 

 Associations are relationship types that can relate classes only; types 
of attributes can only be data types or enumerations.8 This restriction 
clearly indicates that instances of attributes, i.e., attribute values, are 
references to external entities that reside outside the boundaries of 
the running system or to internal instances of enumerations whose 
populations are constant, as illustrated in Figure 4. Associations, on 
the other hand, model relationships (called links in UML) that are 
structural connections between objects, whereby the lifetime of both 
objects and links is managed by the system, i.e., by executed 
actions. 

 Put the other way, (structured) data types can only have attributes, 
and cannot participate in associations. This rule clearly distinguishes 
the relationship types that form the generative set of a structured 
data type: they are modeled as its attributes, which fully fits into 
intuitive understanding of their purpose and meaning. On the other 
hand, the other relationship types with that same data type (that are 
not in its generative set) are modeled as attributes of other entity 
types: classes, when those attributes represent relationships that 
cross the system’s object space boundaries, or attributes, when those 
attributes represent the generative set of another structured attribute 
whose definition is dependent on the former data type. 

 The lifetime of an attribute value is bound to the lifetime of its owner 
object or another data type instance, while the lifetimes of objects are 

                                                   
 
 

8 In UML, as discussed previously, enumerations are classified as data types. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

536 

managed by the system and are generally independent (unless 
constrained by other specific model elements, such as propagated 
destruction [14]). Really, in this interpretation, attribute values are 
only references used within their owner objects to refer to external 
entities, i.e., relationships that cross the system’s boundaries. This is 
why they are not needed when their scope ceases to exist. Attributes 
of data types actually model relationships that reside completely 
outside the system boundaries, so the system does not have to 
manage them through actions. 

 Data types have implicit copy semantics; for an instance of a 
structured data type, a clone is a deep copy obtained by cloning the 
original’s attribute values recursively. Again, this makes sense 
because attribute values of data types are just references to external 
relationships from the generative set and references can be copied. 

All these rules explain that the support for classes and data types, as well 
as for associations and attributes in systems based on UML semantics, 
actually allows for mixtures of object-based and value-based semantics in the 
same system. The first given rule is the most important one. It seems to be a 
sounder rule for distinguishing associations vs. attributes than the rule that 
types of attributes should be entity types defined outside the model 
mentioned in Section 3. While in the latter rule it only matters whether an 
entity type is owned by the model of the considered system or is defined 
elsewhere, which is purely a matter of (static) model organization, packaging, 
and model compilation, it has nothing to do with the runtime semantics of the 
concepts. On the other hand, our rule is based completely on runtime 
semantics, which is, we believe, more sensible and appropriate for practical 
use, as it reduces confusion. Our experience shows that a modeling concept 
that has impact on the execution of the system is clear, easy to adopt, and 
unambiguous in use only if it has clear runtime semantics. We find this fact 
as the main advantage of programming languages over yet immature 
modeling techniques (without fully formal and executable semantics) and the 
main reason of a rather poor scale of adoption of model-driven development 
methods in industry. 

7. Conclusions 

We have provided a new interpretation of the semantic difference between 
classes and data types in conceptual modeling and UML. It is based on the 
difference between how populations are defined: extensionally for classes 
and intensionally for data types. Extensional definitions assume explicit 
statements that certain instances belong to the population, by enumerating 
instances or by executing actions in runtime. On the other hand, populations 
of data types are defined intensionally, by stating the conditions for belonging 
to the population, or describing the population implicitly. In the special case of 
structured data types, we have proposed the notion of a generative set, 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

537 

consisting of the relationship types that are used in defining the population of 
a structured data type: informally, the population is defined as a total and 
unique coverage of all allowed configurations of relationships from the 
generative set and for all existing entities of other entity types taking part in 
the generative set. We have also suggested that, according to this distinction, 
enumerations belong to classes rather than to data types. It has been 
suggested that in practice, the decision whether an entity should be modeled 
with a class or with a data type is, basically, a matter of defining the 
boundaries of a system under consideration, and whether the responsibility of 
managing populations of entity types is inside or outside the system’s 
boundaries. 

The proposed interpretation allows for unambiguous discrimination of the 
related concepts, yet it fits into intuitive understanding and common practical 
usage of these concepts. In addition, our interpretation provides a clear 
explanation of apparent discrepancies between definitions taken in 
conceptual modeling and in UML. 

We have also described some semantic implications of the given 
interpretation that clearly distinguish value-based vs. object-based semantics, 
associations vs. attributes, and identity vs. identification. We strongly believe 
that such precise definitions, based on formal runtime semantics of the 
concepts, are crucial for practical use and wider adoption of model-driven 
software development techniques in practice. In fact, the described 
interpretations emerged from and have been verified in our practical 
experience in applying the described interpretations and model-driven 
development with an executable UML profile and its implementation in the 
SOLoist framework (www.soloist4uml.com), in many industrial projects. 

One topic of interest that has not been covered in this paper is the formal 
semantic alignment of the notion of generalization/specialization (i.e., 
inheritance, subsumption) relationship between entity types with the 
interpretations given in this paper, in particular, the coherence of intensional 
definitions of populations via generative sets in presence of specializations. 
Our internal analysis shows that the notion of specialization fully accords with 
the given interpretations. However, a deeper study is left for some future 
work and publications. 



Dragan Milićev 
 
 

ComSIS Vol. 9, No. 2, June 2012 
 

 

538 

Acknowledgments. The author is grateful to the anonymous reviewers for their very 

thorough and qualified reviews that have inspired him to improve the paper in several 

aspects, and clarify or correct it in many places. 

References 

1. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle,  A.,Bruel, J.-M.: 
Formalization of the Whole-Part Relationship in the Unified Modeling Language. 
IEEE Trans. Software Engineering, Vol. 29, No. 5, 459-470. (2003) 

2. Beeri, C.: A Formal Approach to Object-Oriented Databases. Data and 
Knowledge Engineering, Vol. 5, No. 4, 353-382. (1990) 

3. Bourdeau, R. H., Cheng, B. H. C.:  A Formal Semantics for Object Model 
Diagrams. IEEE Trans. Software Engineering, Vol. 21, No. 10, 799-821. (1995) 

4. Chen, P. P.: The Entity-Relationship Model. ACM Trans. on Database Systems, 
Vol. 1, No. 1, 9-36. (1976) 

5. Diskin, Z., Dingel, J.: Mappings, Maps and Tables: Towards Formal Semantics 
for Associations in UML2. In O. Nierstrasz et al. (eds.): Proc. of  MoDELS 2006, 
Lecture Notes in Computer Science 4199, Springer-Verlag, 230–244. (2006) 

6. Diskin, Z., Kadish, B.: Variable Set Semantics for Keyed Generalized Sketches: 
Formal Semantics for Object Identity and Abstract Syntax for Conceptual 
Modeling. Data & Knowledge Engineering, Vol. 47,  No. 1, 1-59. (2003) 

7. France, R. B.: A Problem-Oriented Analysis of Basic UML Static Requirements 
Modeling Concepts. In Proc. 1999 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA '99), 
ACM SIGPLAN Notices, Vol. 34, No. 10, 57-69. (1999) 

8. Génova, G., Llorens, J., Fuentes, J. M.: UML Associations: A Structural and 
Contextual View. Journal of Object Technology, Vol. 3, No. 7, 83-100. (2004) 

9. Génova, G., Llorens, J., Martínez, P.: The Meaning of Multiplicity of N-ary 
Associations in UML. Software and Systems Modeling, Vol. 1, No. 2, 86-97. 
(2002) 

10. Gogolla, M.: Identifying Objects by Declarative Queries. In Advances in Object-
Oriented Data modeling, Papazoglou, M. P., Tari, Z., eds., MIT Press, 255-277. 
(2000) 

11. Guttag, J.V.: The Specification and Application to Programming of Abstract Data 
Types. Ph.D. Thesis, Dept. of Computer Science, University of Toronto. (1975) 

12. Guttag, J.V.: Algebraic Specification of Abstract Data Types. In Broy, M., 
Denert. E., (eds.): Software Pioneers, Springer (2002) 

13. Mazur, B.: When is one thing equal to some other thing?. 
http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf, June 2007. 
(Retrieved December 2011) 

14. Milicev, D. Model-Driven Development with Executable UML. John Wiley & Sons. 
(2009) 

15. Milicev, D.: On the Semantics of Associations and Association Ends in UML. 
IEEE Trans. Software Engineering, Vol. 33, No. 4, 238-251 . (2007) 

16. Object Management Group: UML Superstructure Specification, Version 2.4.1, 
http://www.omg.org. (2011) 

17. Olivé, A.: Conceptual Modeling of Information Systems. Springer. (2007) 



Towards Understanding of Classes versus Data Types in Conceptual Modeling and 
UML 

 
 

ComSIS Vol. 9, No. 2, June 2012 
 
 

539 

18. Övergaard, G.: A Formal Approach to Relationships in the Unified Modeling 
Language. In Proc. PSMT'98 Workshop on Precise Semantics for Modeling 
Techniques, Technische Universität München, TUM-I9803. (1998) 

19. Övergaard, G.: Formal Specification of Object-Oriented Modelling Concepts. 
PhD Thesis, Department of Teleinformatics, Royal Institute of Technology, 
Stockholm, Sweden. (2000) 

20. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
Oriented Modeling and Design. Prentice-Hall International. (1991) 

21. Rumbaugh, J., Jacobson, I., Booch, G.: The UML Reference Manual. Addison-
Wesley. (2005) 

22. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, Vol. 20, 
No. 5, 19-25. (2003) 

23. Selic, B., Ramackers, G., Kobryn, C.: Evolution, Not Revolution. 
Communications of the ACM, Vol. 45, No. 11, 70-72. (2002) 

24. Stevens, P.: On the Interpretation of Binary Associations in the Unified Modeling 
Language. Software and Systems Modeling, Vol. 1, No. 1, 68-79. (2002) 

 
 

Dr. Dragan Milićev is Associate Professor and Chairman of the Software 
Engineering Department at the University of Belgrade, Faculty of Electrical 
Engineering (www.etf.rs). He is specialized in software engineering, model-
driven development, UML, object-oriented programming, software 
architecture and design, information systems, and real-time systems. He has 
published papers in some of the most prestigious scientific and professional 
journals and magazines, contributing to the theory and practice of model-
driven development and UML. He is also a member of the program 
committees of two premier international conferences on model-based 
engineering (MODELS and ECMFA). He is the author of three previous 
bestselling books on object-oriented programming and UML, published in 
Serbian, and a recent book in English, published by Wiley/Wrox, “Model-
Driven Development with Executable UML” (also publish in Chinese by 
Tsinghua University Press, Beijing, China). With more than 25 years of 
extensive industrial experience in building complex commercial software 
systems, he has been serving as the chief software architect, project 
manager, or consultant in a few dozen international projects, some of them 
having national scope and importance. He is the founder of SOL Software 
(www.sol.rs), a software research and development company specialized in 
designing software development tools using model-driven approach, as well 
as in building custom applications and systems. He was chief software 
architect and project manager for most of SOL’s projects and all its products. 
 
 

Received: July 16, 2011; Accepted: February 27, 2012. 


